
Playing nice with others:

Initializing your work
with external
configurations
Sven O. Spieß (sven[dot]spiess[at]dpc-software[dot]de)

DPC Software GmbH

Motivation

• Encourage Stata users to think in terms of re-usable (software) applications

• Facilitate quality of collaboration
(with others/across programs)

• …by demonstrating three ways of implementing easily accessible setups/configurations
in Stata, namely (a) macros within dedicated do-files, (b) INI files, and (c) Excel Sheets

• Promote discussion of good (and maybe less good) practices

…and offer some humble suggestions

Agenda

1. An Innocuous Example («Use Case»)

2. Four Plus X Approaches

3. Summary

4. Discussion

An Innocuous Example

• Grading single-choice exams

• Three crucial parts:
1. Student answers

2. Model solution correct choices

3. Grading, i.e. analysis

• Outputs, e.g.
 List of grades

 Item statistics/figures (distributions,
selectivities, …)

• Fictitious data of 15 undergrad students of
dramatics taking a 10 question sc-exam

→ data

→ «settings»

→ do-file

An Innocuous Example – Exam Data

Four Plus X Approaches – Stata Do-Files

• Macro variables go-to feature to define things we want to reuse again (and again)
. global question_1 = “c”

• Compatible to general programming principle of key-value pairs

• In simple cases issue than becomes a matter of organizing our do-files

___ ____ ____ ____ ____
/__ / ____/ / ____/
___/ / /___/ / /___/

Four Plus X Approaches – Stata Do-Files

. global question_1 = “c”

(a) «just in

time»

(b) «top-loading»

do settings

analysis.do

settings.do

(c) «outsourcing»

Four Plus X Approaches – Stata Do-Files

Outsourcing example «settings.do»

Four Plus X Approaches – Other Formats

• Macro variables go-to feature define things we want to reuse again (and again)
. global question_1 = “c”

• Compatible to general programming principle of key-value pairs

• In simple cases issue than becomes a matter of organizing our do-files

• However, if our goal/demand is (a) collaborating with people unfamiliar with Stata or
(b) interacting with other programs, we might have to consider using other file formats
such as Excel sheets or INI files, respectively

___ ____ ____ ____ ____
/__ / ____/ / ____/
___/ / /___/ / /___/

Four Plus X Approaches

. global question_1 = “c”

(a) «just in

time»

(b) «top-loading»

do settings

analysis.do

settings.do

(c) «outsourcing»

settings.ini

settings.xlsx

settings.*

(d) «mix and match»

Four Plus X Approaches – INI Files

Example «settings.ini»

Four Plus X Approaches – INI Files

• As INI files are plain-text based we can use Stata’s tools to read settings relatively
conveniently and split lines with key-value pairs at position of equal sign:

file open ini using “settings.ini”, read

file read ini line
while r(eof)==0 {

local pos = ustrpos(“`line’”, “=“)
local name = usubstr(“`line’”, 1, `=`pos’-1’)
local content = usubstr(“`line’”, `=`pos’+1’, .)
global `name’ = “`content’”

file read ini line
}

file close ini

macro list

Four Plus X Approaches – INI Files

• As INI files are plain-text based we can use Stata’s tools to read settings relatively
conveniently and split lines with key-value pairs at position of equal sign:

• However:

 INI standard only loosely defined (e.g., equal signs (=) vs. colons (:) as delimiters)

 Need to adhere to Stata’s quoting rules – or (much) more advanced parsing

 Stata naming limitations (e.g., length, characters)

 No advanced features (e.g., sections, defaults, anchors, etc.)

Four Plus X Approaches – Excel Sheets

Example «settings.xlsx» with data validation error

Four Plus X Approaches – Excel Sheets

• With Excel, we first need to take a little detour by importing our settings as an
“artificial” data set:

frame create settings
frame change settings

import excel using settings.xlsx

• Subsequently we can again loop over the rows (i.e., observations) to assign macros:

forvalues line = 1/`c(N)’ {
global `=name[`line’]’ = value[`line’]

}

macro list

Four Plus X Approaches – Excel Sheets

• With Excel, we first need to take a little detour by importing our settings as an
“artificial” data set

• However, using Excel sheets, we can set many defaults and data validation rules to
reduce entry errors/misspecifications

• Same limitations of Stata macro variables apply

Four Plus X Approaches – Sample Outputs

• By only getting the respective settings for each exam, we can from now on produce
consistent outputs without “messing” with our analysis syntax

Example list of grades

Example plot

Summary – Decision Aid

Top-loading Outsourcing INI files Excel Sheets

Stata

compatibility
✔✔✔ ✔✔✔ ✔✔ ✔

Maintainability ✔✔ ✔✔✔ ✔✔✔ ✔

Ease of setup ✔✔✔ ✔✔ ✔ ❌

Ease of sharing (✔) ✔✔ ✔✔✔ ✔✔

Ease of use

(collaborators)
✔ ✔✔ ✔✔ ✔✔✔

Validation/control (✔) ❌ ❌ ✔✔✔

Compatibility/

interoperability
❌ ✔ ✔✔✔ ✔✔

Discussion

• With a changing data science ecosystem, maybe we should revise some conventions in
using and teaching Stata

 e.g., more liberal use of global macros, hierarchical do-files, & macro drop _all

• Future releases of Stata should drop all user-defined macro variables with clear all

• Do we need more (native) support for other data formats, such as INI, and YAML files?

• Limitation of macros regarding more complex structures (e.g., lists of dictionaries, etc.)

