The production process of the Global MPI

Nicolai Suppa

German Stata Users Group Meeting Munich, Germany May 2019

1 Introduction

2 Key elements of the production process

3 Concluding Remarks

What is the global MPI?

- a multidimensional **poverty measure**
 - see Alkire and Foster (2011); Sen (1992); Alkire and Santos (2014) Alkire et al. (2018)
- available for 100+ countries (and 1200 sub-national regions)
- developed and published by OPHI and UNDP
- published since 2010

The global MPI

Computational aspects

- all figures are obtained from a **single survey** per country
- numerous measures are calculated for each country
 - headcount, intensity, adj. headcount, (un-) censored headcounts,...
- most numbers can be **disaggregated** by area, region, and age group
- (normative) parametric choices require sensitivity checks
 - deprivation cutoffs, weighting schemes, poverty cutoff, ...
 - not all measure-parameter-combinations are needed
- → *N*: 5k–2.7m with $N_{med} \approx 50$ k; # of estimates ≈ 130 k

Other aspects

- a highly standardised, but not entirely fixed project.
- well-defined deliverables, e.g., excel sheets, country briefings, ...
- relatively small team and not all are Stata experts or even Stata users

Related literature

• Previous work on workflow considerations and programming in Stata:

The Stata Journal (2005) 5, Number 4, pp. 560–566

Suggestions on Stata programming style

Nicholas J. Cox Durham University, UK n.j.cox@durham.ac.uk

Abstract. Various suggestions are made on Stata programming style, under the headings of presentation, helpful Stata features, respect for datasets, speed and efficiency, reminders, and style in the large.

Keywords: pr0018, Stata language, programming style

Motivation

- well-conceived **workflow is vital** for any large-scale project
- → why sharing?
 - 1 transparency: how is the GMPI computed?
 - 2 share some experience and lessons & how to refine this process?
 - 3 illustrate workflow-related problems & implications of coding decisions
 - general workflow questions receive rather little attention
 - hard to de-contextualise (typically project-specific)
 - often work-flow decisions may (i) not be recognised as such or (ii) alternative solutions make no real difference in practice
 - aspects of the present workflow may be relevant in other settings
 - e.g., other cross-country studies
 - e.g., juggling with a plethora of estimates
 - e.g., other large scale projects where 'tiny' coding tweaks make a difference
 - small 'innovations': results file, reference sheet, spelling sheet, etc.

Desiderata

The 2018 revision

1 improve efficiency in general

- estimation time and storage
- 2 ensure replicability and tractability
 - track down and fix errors

3 achieve flexibility

re-estimate selected countries or measures

4 low maintenance costs

- Stata skills & feasible revisions
- **5** develop a more **widely applicable approach** to MPI-estimation
- **6** increase the number of **default estimates** (e.g., disaggregations, SE)

The basic workflow

The results file

Principle structure

- each estimate is an observation
- each estimate can be uniquely identified using auxiliary variables
 - e.g., cty, measure, k, wgts, loa, indicator, ...

ile Edi	t View Da	ta Tools											
	b[7887]	27.5	0588059425										
	b	se	u	ul	ccty	loa	neasure	indicator	k	wgts	timestamp	Variables	
7887	27.50588	.1298492	27.2521	27.76112	IND	national	н		33	equal-nested	3 Dec 2018 17	Q Filter varia	bles h
13961	.1207622	.0006164	.1195593	.1219756	IND	national	MO		33	equal-nested	3 Dec 2018 17	Name	L
43057	36.41494	.1189128	36.18218	36.64833	IND	national	hd	d_nutr			3 Dec 2018 17	🖬 b	e
43559	13.93312	.0888283	13.75992	14.10814	IND	national	hd	d_asst			3 Dec 2018 17	🗹 se	s
43861	51.81157	.1910191	51.43707	52.18587	IND	national	hd	d_sani			3 Dec 2018 17	⊻ 1	c
47242	13.80902	.0885407	13.63639	13.98348	IND	national	hđ	d_educ			3 Dec 2018 17	⊌ ul ⊮ cctv	C IS
47655	12.10132	.1075281	11.89213	12.31366	IND	national	hd	d_elct			3 Dec 2018 17	v (cty v loa	la la
54930	45.37968	.1643731	45.0577	45.70286	IND	national	hd	d hsg			3 Dec 2018 17	✓ measure	
56181	2.937478	.0349685	2.869787	3.886799	IND	national	hd	d_cn			3 Dec 2018 17		
57273	6.375015	.0678922	6.243229	6.509388	IND	national	hđ	d_satt			3 Dec 2018 17	Properties	
57553	14.63432	.1641875	14.31543	14.95988	IND	national	hd	d_wtr			3 Dec 2018 17	Name	b
60141	58.10674	.1891993	57.73544	58.47712	IND	national	hd	d_ckfl			3 Dec 2018 17	Label	estin
66638	5.499408	.0616725	5.37977	5.621548	IND	national	hdk	d_satt	33	equal-nested	3 Dec 2018 17		
69723	20.52749	.1075857	20.31742	28.73916	IND	national	hdk	d_nutr	33	equal-nested	3 Dec 2018 17	Type	doul
69725	24.24823	.1236494	24.00669	24.49141	IND	national	hdk	d_sani	33	equal-nested	3 Dec 2018 17	Format	%9.0
71733	23.27105	.1280074	23.03666	23.5071	IND	national	hdk	d_hsg	33	equal-nested	3 Dec 2018 17	Value label	
71878	6.138152	.0715215	5.999454	6.279844	IND	national	hdk	d_wtr	33	equal-nested	3 Dec 2018 17		
72846	8.519154	.0824651	8.358983	8.682187	IND	national	hdk	d_elct	33	equal-nested	3 Dec 2018 17	Notes	Nor
72550	9.421442	.0721288	9.281013	9.563771	IND	national	hdk	d_asst	33	equal-nested	3 Dec 2018 17	Data	
75424	2.389173	.0318782	2.32748	2.452459	IND	national	hdk	d_cn	33	equal-nested	3 Dec 2018 17		
76910	11.59044	.0819834	11.43071	11.7521	IND	national	hdk	d_educ	33	equal-nested	3 Dec 2018 17		
81821	25.75446	.1287705	25.50287	26.00766	IND	national	hdk	d ckfl	33	equal-nested	3 Dec 2018 17		

The master do-file

- designed for interactive use (day-to-day work)
 - **1** reference sheet production > extdta prep > spelling sheet
 - 2 re-run data prep > certification scripts > quality checks
 - estimation
 - 4 convert and compile
 - 6 assemble cleaned results file
 - 6 deliverables: graphs, excel sheets, country briefs, export for data viz

Tool: ctyselect → returns country codes in r(ctylist)

```
ctyselect ccty
ctyselect ccty, r(^A)
ctyselect ccty, s(IND)
```

The reference sheet

- contains country and region level information
 - separates estimation from housekeeping (incl. merge of external data)
 - reduces data carried through estimation
 - allows parallel processing
 - simplifies some quality checks
 - key information can be quickly obtained through entire process

ccty	ccnum	region	survey	year	region_n~e	fname	fdate a	date
BGD	050	1	DHS	2014	barisal	bgd_dhs14.dta	22 Apr 2019 12:22 29 Apr 2019 1	7:36
BGD	050	2	DHS	2014	chittagong	bgd_dhs14.dta	22 Apr 2019 12:22 29 Apr 2019 1	7:36
BGD	050	3	DHS	2014	dhaka	bgd_dhs14.dta	22 Apr 2019 12:22 29 Apr 2019 12	7:36
BGD	050	4	DHS	2014	khulna	bgd_dhs14.dta	22 Apr 2019 12:22 29 Apr 2019 1	7:36
BGD	050	5	DHS	2014	rajshahi	bgd_dhs14.dta	22 Apr 2019 12:22 29 Apr 2019 12	7:36
BGD	050	6	DHS	2014	rangpur	bgd dhs14.dta	22 Apr 2019 12:22 29 Apr 2019 1	7:36
BGD	050	7	DHS	2014	sylhet	bgd_dhs14.dta	22 Apr 2019 12:22 29 Apr 2019 12	7:36
BGD	050	•	DHS	2014		bgd_dhs14.dta	22 Apr 2019 12:22 29 Apr 2019 1	7:36

Tool: refsh

refsh using path2refsh, rebuild char(ccty survey year) ///
id(ccty) region(region) path(path2microdata)

Estimation and storing

The principle approach

```
eststo H'k'_'subg': svy: mean I_'k' , over('subg')
estadd loc measure "H"
estadd loc scalar k = 33
estadd loc loa "'subg'"
```

• for eststo, estadd, see Jann (2005, 2007)

```
estwrite * using path/'cty'_'subg'.sters , replace
est clear
```

- however, single mega loop is dysfunctional
 - ➔ i.e. several nested loops over k, dimensions, subgroup, ...
- grouping of estimates to achieve flexibility and avoid Stata limits
 - along cty and loa (national, regional, ...)
 - along auxiliary, main, and dimensional quantities

Estimation and storing

The packaged approach

```
Tool: mpi_set, mpi_est
mpi_set, d1(d_cm d_nutr, name(hl)) ///
d2(d_satt d_educ, name(ed)) ///
d3(d_elct d_sani d_wtr d_hsg d_asst d_ckfl, name(ls)) ///
name(GMPI)
```

```
mpi_est, estsave(path/'cty'_nat_aux.sters, replace) ///
name(GMPI) aux(all) addmeta(ccty='cty')
```

mpi_est, k(01 10 20 33 40 50) weights(equal) name(GMPI) ///
measures(all) measuresdim(all) kdim(1 20 33 40 50) gen

Tools

gafvars, mpi_setwgts, genwgts, addmetainfo,...

Dumping and compiling the results

Principle and packaged approach

- 1 estread each ster-file, and for each estimate
- 2 dump results into data using _coef_table and xsvmat

ĺ		b	se	t	pvalue	เเ	ul	df	crit	eform
	c 33_equal:0	.23306712	.00900391	25.885091	8.734e-99	.21538287	.25075137	580	1.9640625	0
	c_33_equal:1	.10311217	.00753559	13.683353	3.882e-37	.0883118	.11791255	580	1.9640625	0

- 3 add locals or scalars from estimates as variables (e.g., loa, k,...)
- 4 append all dumped estimates of this ster-file

```
Tool: est2dta
```

```
ctyselect ccty , s(IND BGD ETH PER)
foreach cty in 'r(ctylist)' {
   est2dta, inpath(path2sters) outpath(path2dta) llist(loa
        indicator measure wgts spec ccty) slist(N k time
        timedata) clist('cty')
```

}

Graph and country brief production

- 1 for each country, 9–12 pages, up to 9 figures and 2 tables
- some countries lack section 'Subnational Analysis'

Nicolai Suppa

Graph and country brief production

- graphs for other countries or parameter choices are easy to obtain
- use (i) LTEX-template, (ii) rely on LTEX-variables, (iii) ctyselect

```
tempname lc
file open 'lc' using lc.tex , w t replace
file w 'lc' "\newcommand\ctyname{'ctyname'}" _n ///
    "\newcommand\ctycode{'ctycode'}" _n ///
    "\newcommand\calcyear{'year'}" _n ///
    ...
file close 'lc'
...
!pdflatex --interaction=nonstopmode --shell-escape
    \input{CB_template.tex}
!mv "CB_template.pdf" "pdfs/CB_'ctycode'.pdf"
```

 Latex includes country-specific figures and omits entire section if needed.

Other 'innovations'

- certification scripts for cleaned micro data:
 - check existence and data type of key variables (confirm), check for sensible values (assert), and non-empty data characteristics.
 - reduces the probability of loop breaking
 - saves time, even though other quality checks are still needed

• spelling sheet:

- 1 clean country and regions names, e.g., using proper()
- 2 export cleaned region names (and IDs) into dedicated spreadsheet
- 3 let copy-editor suggest revised names in separate column (if needed)
- generate and update variable for labels
- systematic cross-release folder structure (e.g., portability)
- time stamps for both estimates and the underlying micro data
- data characteristics to hand-over information

- flexible results dta
- reference sheet (conditional independence of results & housekeeping)
- certification scripts for cleaned micro data
- spelling sheet (based on reference sheet)
- sensible partitioning of estimations
- data characteristics to hand-over information

Lessons

- a sensible workflow has many benefits
 - often simpler and **cleaner code** (e.g., missing indicators)
 - may allow sensible packaging of the code
 - allows instructive benchmarking and future revisions
 - simplifies documentation
 - ▶ ...
- however, developing a sensible work flow was not trivial
 - required lots of discussion, experimentation and time
 - 'pure' coding decisions can determine the workflow, and therefore, should be recognised as such in the first place.
- anticipate performance relevant issues to easier identify bottlenecks, when project is scaled up
 - ▶ variable generation, data types, order of loops and degree of nesting, ...

Open issues

- documentation:
 - Stata help files, desktop companion, paper, presentations, ...
- performance tweaks:
 - ▶ so far based on user-experience, little systematic benchmarking
- more comprehensive packaging
 - interesting for other scenarios: i.e. stand-alone toolbox?
- add additional quality checks in certification scripts
- review code and replace re-invented wheels, if more efficient.
- which other aspects could be interesting for a wider audience?
 - ancient coding decisions, which turned out to be problematic
 - difficult trade-offs faced during revision
 - contextual factors
 - ▶ ...

References

- Alkire, S. and Foster, J. (2011). Counting and multidimensional poverty measurement. *Journal of Public Economics*, 95(7-8):476–487.
- Alkire, S., Kanagaratnam, U., and Suppa, N. (2018). The global multidimensional poverty index (MPI): 2018 revision. OPHI MPI Methodological Notes 46, Oxford Poverty and Human Development Initiative, University of Oxford.
- Alkire, S. and Santos, M. E. (2014). Measuring acute poverty in the developing world: Robustness and scope of the multidimensional poverty index. *World Development*, 59:251–274.
- Cox, N. (2005). Suggestions on stata programming style. The Stata Journal, 5(4):560–566.
- Jann, B. (2005). Making regression tables from stored estimates. The Stata Journal, 5(3):288–308.
- Jann, B. (2007). Making regression tables simplified. The Stata Journal, 7(2):227-244.
- Kohler, U. and Kreuter, F. (2012). Data Analysis Using Stata, Third Edition. Stata Press.
- Long, J. S. (2008). The Workflow of Data Analysis Using Stata. Stata Press.
- Mitchell, M. N. (2010). Data Management Using Stata. Stata Press.
- Sen, A. K. (1992). Inequality Reexamined. Russell Sage Foundation book. Russell Sage Foundation, New York, 3 edition.