

Specifying appropriate null models with longitudinal SEMs

Sven O. Spieß

German Stata User Group Meeting 6/22/2018

- No immediate indicator of the overall quality of the respective model
- Instead typically reliance on several indicators
- Among those so-called fit indices such as the comparative fit index,
 CFI, and the Tucker-Lewis index,
- Fit indices are computed by comparing the model of interest with an assumed worst-fitting baseline model
- Some authors have made the case that the standard baseline model is only appropriate for single-group, single-occasion models (e.g. Little, Preacher, Card, & Selig, 2007; Widaman & Thompson, 2003)

The Independence Model

- Default worst-fitting baseline the so-called independence model:
 - All observed variables are restricted to have zero covariance; i.e. are completely independent
 - Model without latent constructs
 - Means and variances estimated freely

A Longitudinal Baseline Model

What could possibly be worse?

A Longitudinal Baseline Model

- What could possibly be worse?
- How about on top of no covariance, adding the additional restriction that the means and variances are the same over time:

- For easy reproduction the following example is based on [SEM] manual data set sem_sm2.dta:
 - . use http://www.stata-press.com/data/r15/sem_sm2.dta
 (Structural model with measurement component)
- Simplified target model:

Estimate model:

```
sem ///
(anomia67 pwless67 <- Alien67) /// measurement piece
(anomia71 pwless71 <- Alien71) /// measurement piece
(Alien71 <- Alien67) // structural piece
(output omitted)</pre>
```


How well are we doing with the default baseline?

```
estat gof, stat(all)
Fit statistic | Value Description
Likelihood ratio
        chi2_ms(1) | 61.220 model vs. saturated
          p > chi2 | 0.000
        chi2 bs(6) | 1565.905 baseline vs. saturated
          p > chi2 | 0.000
         (output omitted)
Baseline comparison
                        0.961 Comparative fit index
              CFI
                        0.768
                               Tucker-Lewis index
```


With the -covstruct()- option we can easily reproduce the default baseline model:

```
sem ///
(anomia67 anomia71 pwless67 pwless71) /// measurement piece
, covstruct(_Ex, diagonal)

(output omitted)
```


- Accessing the stored results we can compute the fit indices of our target model with the reproduced (default) baseline.
- The indices are defined as follows:

■ (Cf. -view mansection SEM methodsandformulasforsem-)

(chi2 base/df base) - 1

Plugging in the values we get the following results:

```
CFI = 1 - [max((61.220 - 1), 0) /
           \max((61.220 - 1), (1565.905 - 6), 0)]
    = .96139481
TLI = ((1565.905/6) - (61.220/1)) / ((1565.905/6) - 1)
    = .76836885
(Note: estat gof results: CFI = .96139481; TLI = .76836885)
. assert 1 - [max($diff m, 0) / max($diff m, $diff db, 0) ] ==
$cfi db
. assert (($chi2 db/$df db) - ($chi2 m/$df m)) / (($chi2 db/$df db) -
1) == $tli db
```


Things are looking good, so now we can go ahead with the longitudinal baseline model:


```
[...]
```

```
[/]var(anomia67) - [/]var(anomia71) = 0
 (2) [/]var(pwless67) - [/]var(pwless71) = 0
 (3) [/]mean(anomia67) - [/]mean(anomia71) = 0
 (4) [/]mean(pwless67) - [/]mean(pwless71) = 0
                                MIO
                    Coef.
                            Std. Err.
                                                P>|z|
                                                          [95% Conf. Interval]
mean(anomia67)
                    13.87
                             .0810246
                                       171.18
                                                0.000
                                                           13.71119
                                                                      14.02881
mean(anomia71)
                                                                      14.02881
                    13.87
                             .0810246
                                       171.18
                                                0.000
                                                           13.71119
mean(pwless67)
                   14.785
                             .0720539
                                       205.19
                                                0.000
                                                          14.64378
                                                                      14.92622
mean(pwless71)
                   14.785
                             .0720539
                                       205.19
                                                0.000
                                                          14.64378
                                                                      14.92622
 var(anomia67)|
                 12.23713
                             .4008405
                                                          11.47618
                                                                      13.04853
 var(anomia71)|
                 12.23713
                             .4008405
                                                          11.47618
                                                                      13.04853
 var(pwless67)|
                                                                      10.31912
                 9.677445
                                                          9.075669
                             .3169952
                                                                      10.31912
var(pwless71)
                 9.677445
                             .3169952
                                                          9.075669
```

LR test of model vs. saturated: chi2(10) = 1580.51, Prob > chi2 = 0.0000

Behold:

Conclusions

- As expected, for the CFI the longitudinal baseline appears to be actually slightly worse-fitting (i.e. CFI improves minimally)
- **However**, increase in *df*'s by a factor of 1,67 due to the added constraints and their greater impact on the TLI results in a substantially <u>decreased fit</u> for the longitudinal baseline:
 - Default:
 TLI = ((1565.905/6) (61.220/1)) / ((1565.905/6) 1)
 = .76836885
 Longitudinal:
 - TLI = ((1580.508/10) (61.220/1)) / ((1580.508/10) 1) = .61655454
- That is, given the apparent high stability in means and variances over time! (χ^2 values *very* similar between the two baselines)

Conclusions

- As the purpose of this talk was primarily instructional, we should be careful not to over-interpret the results of a poor model...
- ...however, due to differences in df's and temporal (in-)stability the general unpredictability of the effect of longitudinal versus the default independence baseline model on fit indices remains
- So, should we bother with hassle of custom longitudinal baselines?
 - In general default baseline performs reasonably well
 - Additionally, differences become smaller the better a target model performs (i.e. the closer fit indices get to 1)
 - Nevertheless, if you (or your reviewer ©) agree that for longitudinal (or MGCFA) models particular assumptions for a reasonable baseline apply you should do it "the right way"

References:

- Little, T. D. (2013). Longitudinal structural equation modeling.
 Guilford press.
- Little, T. D., Preacher, K. J., Selig, J. P., & Card, N. A. (2007). New developments in latent variable panel analyses of longitudinal data. *International journal of behavioral development*, 31(4), 357-365.
- Widaman, K. F., & Thompson, J. S. (2003). On specifying the null model for incremental fit indices in structural equation modeling. *Psychological methods*, 8(1), 16.