Twin data analysis with ACE-decomposed explanatory variables using Stata

German Stata Users Group Meeting, 06/23/2017, Humboldt University Berlin

Volker Lang
Bielefeld University
volker.lang@uni-bielefeld.de
Outline

1. TwinLife

2. Univariate ACE-decompositions: The „classical“ twin design

3. **acelong**: gsem-wrapper for ACE-decompositions using Stata

4. ACE-\(\beta\) models: Causal analysis based on twin design

ACE-(variance) decomposition: Partitions the variance of an outcome varying within twin pairs into three latent components associated with

- additive genetic effects (A),
- environmental effects shared by both twins (C)
- and environmental effects unique to each twin (E)
TwinLife

- **German twin family panel** (Diewald et al. 2016)
- Multidimensional social stratified random sample of 4,097 monozygotic (MZ) & same-sex dizygotic (DZ) twin pairs & their families
- Extended twin family design: twins, parents, if applicable sibling & partners
- Available for the scientific community free of charge at GESIS data catalogue; current release: http://dx.doi.org/10.4232/1.12665

- All examples in this talk use data of the oldest birth cohort (1990-1993)
Univariate ACE-decomposition

- In behavioral genetics typically estimated using structural equation models (SEM) & twin data formatted one data row per twin pair ("wide format")

- Additional assumptions:
 - no non-additive genetic effects
 - no assortative mating
 - equal environment effects for MZ & DZ twins (EEA)

(Figure used from Tan et. al (2015))
Multilevel mixed-effect (MME) ACE-decomposition

- Twin data formatted **one data row per twin** (“long format”, more common in social sciences)
- Different implementations:
 - McArdle & Prescott (2005)
 - Rabe-Hesketh et al. (2008)
- Same additional assumptions like “wide format SEM”

Rabe-Hesketh, Skrondal & Gjessing (2008)-model:
MME ACE-decomposition using Stata: acelong

Necessary information:
1) zygosity of twins: MZ (1) vs. DZ (2) (zyg);
2) twin pair identifier (jid); 3) twin identifier (iid)

Implementation of Rabe-Hesketh et al. (2008)-model using gsem:

```stata
generate double aj = 1
replace aj = sqrt(.5) if zyg == 2
generate double ai = 0
replace ai = sqrt(1 - .5) if zyg == 2
gsem outcome <- C[jid]@1 c.aj#AJ[jid]@1 c.ai#AI[jid]>iid]@1, ///
var(AJ[jid]@a AI[jid]>iid]@a AJ[jid]*AI[jid]@0) vce(cluster jid)
gsem instead of meglm used due to more flexibility in specifying constraints
```

Alternative implementation using acelong (gsem-wrapper, Lang 2017):

```stata
acelong outcome zyg jid iid, vce(cluster jid)
```
MME ACE-decomposition using Stata: acelong

acelong (*gsem*-wrapper, Lang 2017) currently supports:

- Univariante MME ACE, AE & ADE-decompositions
- Linear, censored, binary & ordinal outcomes supported
- Absolute & relative ACE-decompositions
- Inclusion of explanatory variables for the mean of the outcome possible
- Flexible specification of DZ twin correlation; e.g., useful for sensitivity tests of no non-additive genetic effects- & no assortative mating-assumptions
- *Currently in beta-testing; available soon!*
Example 1: ACE-decomposition of birth weight

- Birth weight of twins (bw) is measured in kg and centered (mean: 2.41 kg)
- Often used as indicator of developmental potential

```
lang ace

. acelong bw zyg jid iid, vce(cluster jid) nolog

Generalized structural equation model                                  Number of obs  =  1,494
Response      : bw
Family         : Gaussian
Link           : identity
Log pseudolikelihood = -948.00598

|            | Coef.   | Std. Err. |    z  |   P>|z| | 95% Conf. Interval |
|------------|---------|-----------|-------|--------|-------------------|
|            |         |           |       |        |                   |
| mean:      |         |           |       |        |                   |
|          _cons |  -0.00003544 | 0.01957597 | -0.00 | 0.999  | -0.03840363 to 0.03833274 |
| variance:  |         |           |       |        |                   |
| A          |  0.01449923 | 0.01196318 | 1.21  | 0.226  | 0.00287757 to 0.07305723 |
| C          |  0.23674748 | 0.01587852 | 14.91 | 0.000  | 0.20758489 to 0.27000697 |
| E          |  0.07266993 | 0.00639637 | 11.36 | 0.000  | 0.06115506 to 0.08635292 |
| A+C+E      |  0.32391663 | 0.01918034 | 16.89 | 0.000  | 0.28842331 to 0.36377777 |
| A %        | 4.4762226 | 3.6932886 | 1.21  | 0.226  | 0.92142848 to 19.101197 |
| C %        | 73.089015 | 4.9020402 | 14.91 | 0.000  | 70.426476 to 75.594909  |
| E %        | 22.434763 | 1.9746959 | 11.36 | 0.000  | 19.575774 to 25.578501  |
```
Example 2: ACE-decomposition of adult height

- Adult height of twins (ah) is measured in dm and centered (mean: 17.28 dm)

```
.acellong ah zyg jid iid, vce(cluster jid) nolog
```

<table>
<thead>
<tr>
<th>Response</th>
<th>ah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family</td>
<td>Gaussian</td>
</tr>
<tr>
<td>Link</td>
<td>identity</td>
</tr>
</tbody>
</table>

Log pseudolikelihood = -1494.2299

| ah | Coef. | Std. Err. | z | P>|z| | [95% Conf. | Interval] |
|--------|---------|-----------|-------|------|----------------|-----------|
| mean: | _cons | 0.001461 | 0.03502533 | 0.04 | 0.967 | -0.06718738 | 0.07010938 |
| variance: | | | | | | |
| A | 0.4105211 | 0.04441517 | 9.24 | 0.000 | 0.33207956 | 0.50749157 |
| C | 0.53005424 | 0.05218543 | 10.16 | 0.000 | 0.43703576 | 0.64287075 |
| E | 0.04804335 | 0.00613614 | 7.83 | 0.000 | 0.03740391 | 0.06170915 |
| A+C+E | 0.9886187 | 0.0406705 | 24.31 | 0.000 | 0.91203495 | 1.0716332 |
| A % | 41.524716 | 4.4926494 | 9.24 | 0.000 | 36.485156 | 46.748032 |
| C % | 53.61564 | 5.2786207 | 10.16 | 0.000 | 48.798086 | 58.366643 |
| E % | 4.8596441 | 0.62067838 | 7.83 | 0.000 | 3.8246119 | 6.1568496 |
ACE-β model (MME formulation)

- ACE-β model: Bivariate extension of ACE-decomposition (Kohler et al. 2011)
- Here: MME version of ACE-β model (based on Rabe-Hesketh et al. 2008)

equivalent to
MZ twin fixed effects model
MME ACE-β model using Stata

- Work in progress
- Estimation strategies:
 a) One-stage maximum likelihood (ML) estimator or
 b) Two-stage ML estimator based on plausible values:
 One-stage estimator is statistically more efficient but
 has more convergence issues (due to large number of random effects) &
 is less flexible regarding extensions (e.g., genXenvironment-interactions)
- Two-stage ML estimator based on plausible values using `acelong`:
 1) Estimate univarite MME ACE-decomposition for the explanatory variable
 2) Generate P plausible values for the A and C components using `predict`
 3) Estimate P univarite MME ACE-decompositions for the outcome including
 the plausible values for the A and C components as explanatory variables
 4) Combine the P results using coefficient & standard error formulas for
 multiple imputed data (Little & Rubin 1989)
Example 3: ACE-β model: Adult height on birth weight

Comparison of different models & estimators:

<table>
<thead>
<tr>
<th></th>
<th>ACE-β with PV</th>
<th>ACE-β without PV</th>
<th>MZ twin fixed effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b(A2)</td>
<td>2.35 / 2.23**</td>
<td>2.34 / 2.65***</td>
<td></td>
</tr>
<tr>
<td>b(C2j)</td>
<td>0.37 / 3.65***</td>
<td>0.38 / 3.95***</td>
<td></td>
</tr>
<tr>
<td>b(Δw_{net}^i)</td>
<td>0.29 / 6.81***</td>
<td>0.28 / 6.94***</td>
<td>0.28 / 6.92***</td>
</tr>
<tr>
<td>_cons</td>
<td>0.00 / 0.03</td>
<td>0.00 / 0.05</td>
<td>-0.02 / -0.00</td>
</tr>
<tr>
<td>variance:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A+Cj+E_i</td>
<td>0.92 / 24.21***</td>
<td>0.92 / 24.40***</td>
<td></td>
</tr>
<tr>
<td>A %</td>
<td>40.12 / 9.56***</td>
<td>40.68 / 9.82***</td>
<td></td>
</tr>
<tr>
<td>Cj %</td>
<td>54.97 / 10.57***</td>
<td>54.70 / 10.91***</td>
<td></td>
</tr>
<tr>
<td>E_i %</td>
<td>4.91 / 7.89***</td>
<td>4.61 / 7.99***</td>
<td>4.31</td>
</tr>
<tr>
<td>n(twin pairs)</td>
<td>747</td>
<td>747</td>
<td>408</td>
</tr>
</tbody>
</table>
Concluding remarks

• For the Stata “wish list”: **mi** support for **gsem**
 → would make using plausible value estimators easier

• **acelong** is currently in a beta-test cycle;
 if you like to be a beta-tester, please contact me: **vlang@diw.de**

• If you like to use the TwinLife-data for your research,
 please follow instructions on GESIS data catalogue:
 http://dx.doi.org/10.4232/1.12665

Thank you!

