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Brief overview of Bayesian analysis
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What is Bayesian analysis?

Bayesian analysis is a statistical paradigm that answers research
questions about unknown parameters using probability statements.
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What is Bayesian analysis?

What is the probability that a person accused of a crime is
guilty?

What is the probability that treatment A is more cost effective
than treatment B for a specific health care provider?

What is the probability that the odds ratio is between 0.3 and
0.5?

What is the probability that three out of five quiz questions
will be answered correctly by students?

And more.
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Why Bayesian analysis?

You may be interested in Bayesian analysis if

you have some prior information available from previous
studies that you would like to incorporate in your analysis. For
example, in a study of preterm birthweights, it would be
sensible to incorporate the prior information that the
probability of a mean birthweight above 15 pounds is
negligible. Or,

your research problem may require you to answer a question:
What is the probability that my parameter of interest belongs
to a specific range? For example, what is the probability that
an odds ratio is between 0.2 and 0.5? Or,

you want to assign a probability to your research hypothesis.
For example, what is the probability that a person accused of
a crime is guilty?

And more.
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Components of Bayesian analysis

Assumptions

Observed data sample y is fixed and model parameters θ are
random.

y is viewed as a result of a one-time experiment.

A parameter is summarized by an entire distribution of values
instead of one fixed value as in classical frequentist analysis.
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Components of Bayesian analysis

Assumptions

There is some prior (before seeing the data!) knowledge about
θ formulated as a prior distribution p(θ).

After data y are observed, the information about θ is updated
based on the likelihood f (y |θ).

Information is updated by using the Bayes rule to form a
posterior distribution p(θ|y):

p(θ|y) =
f (y |θ)p(θ)

p(y)

where p(y) is the marginal distribution of the data y .
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Components of Bayesian analysis

Inference

Estimating a posterior distribution p(θ|y) is at the heart of
Bayesian analysis.

Various summaries of this distribution are used for inference.

Point estimates: posterior means, modes, medians,
percentiles.

Interval estimates: credible intervals (CrI)—(fixed) ranges to
which a parameter is known to belong with a pre-specified
probability.

Monte-Carlo standard error (MCSE)—represents precision
about posterior mean estimates.
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Components of Bayesian analysis

Inference

Hypothesis testing—assign probability to any hypothesis of
interest.

Model comparison: model posterior probabilities, Bayes
factors.
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Advantages and disadvantages of Bayesian analysis

Advantages

Bayesian inference:

is universal—it is based on the Bayes rule which applies
equally to all models;

incorporates prior information;

provides the entire posterior distribution of model parameters;

is exact, in the sense that it is based on the actual posterior
distribution rather than on asymptotic normality in contrast
with many frequentist estimation procedures; and

provides straightforward and more intuitive interpretation of
the results in terms of probabilities.
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Advantages and disadvantages of Bayesian analysis

Disadvantages

Potential subjectivity in specifying prior
information—noninformative priors or sensitivity analysis to
various choices of informative priors.

Computationally demanding—involves intractable integrals
that can only be computed using intensive numerical methods
such as Markov chain Monte Carlo (MCMC).
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Motivating example: Beta-binomial model

Research problem

Study of the prevalence of a rare infectious disease in a small
city (Hoff 2009).

A sample of 20 subjects is checked for infection.

Parameter θ is the proportion of infected individuals in the
city.

Outcome y is the # of infected individuals in the sample.
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Motivating example: Beta-binomial model

Model

Likelihood, f (y |θ): Binomial.

Prior, p(θ): Infection rate ranged between 0.05 and 0.20, with
an average prevalence of 0.10, in other similar cities.

Bayesian model:

y |θ ∼ Binomial(20, θ)

θ ∼ Beta(2, 20)

Posterior: θ|y ∼ Beta(2 + y , 20+ 20− y).
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Motivating example: Beta-binomial model

Observed data

We sample individuals and observe none who have an
infection, y = 0.

Posterior: θ|y ∼ Beta(2, 40).

Prior mean: E (θ) = 2/(2+20) = 0.09.

Posterior mean: E (θ|y) = 2/(2+40) = 0.0476.

Posterior probability: P(θ < 0.10) = 0.926.
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Motivating example: Beta-binomial model
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Motivating example: Beta-binomial model

Analysis using Stata

Fit beta-binomial model using bayesmh.

Variable y has one observation equal to 0:

. set obs 1
number of observations (_N) was 0, now 1

. generate byte y = 0
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MCMC method: adaptive Metropolis-Hastings (MH).

. set seed 14

. bayesmh y, likelihood(dbinomial({theta},20)) prior({theta}, beta(2,20))

Burn-in ...
Simulation ...

Model summary

Likelihood:

y ~ binomial({theta},20)

Prior:
{theta} ~ beta(2,20)

Bayesian binomial model MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000

Number of obs = 1
Acceptance rate = .4399

Log marginal likelihood = -1.1636733 Efficiency = .1625

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

theta .0467621 .031854 .00079 .0397556 .0056963 .1282234

The estimated posterior mean for θ, 0.047, is close to the
theoretical value of 0.0476.
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Motivating example: Beta-binomial model

Analysis using Stata

Compute posterior probability:

. bayestest interval {theta}, upper(0.1)

Interval tests MCMC sample size = 10,000

prob1 : {theta} < 0.1

Mean Std. Dev. MCSE

prob1 .9314 0.25279 .0058726

The probability estimate of 0.93 is close to the theoretical
value of 0.926.
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Bayesian analysis in Stata
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Introduction to Stata’s Bayesian suite of commands

Commands

Stata’s Bayesian suite consists of the following commands.

Command Description

Estimation
bayesmh Bayesian regression using MH
bayesmh evaluators User-written Bayesian models using MH

Postestimation
bayesgraph Graphical convergence diagnostics

bayesstats ess Effective sample sizes and more
bayesstats summary Summary statistics
bayesstats ic Information criteria and Bayes factors

bayestest model Model posterior probabilities
bayestest interval Interval hypothesis testing
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Introduction to Stata’s Bayesian suite of commands

Built-in models and methods available in Stata

14 built-in likelihoods: normal, logit, ologit, Poisson, . . .

18 built-in priors: normal, gamma, Wishart, Zellner’s g , . . .

Continuous, binary, ordinal, and count outcomes.

Univariate, multivariate, and multiple-equation models.

Linear, nonlinear, and canonical generalized linear and
nonlinear models.

Continuous univariate, multivariate, and discrete priors.

User-defined models: likelihood and priors.

MCMC methods:

Adaptive MH.

Adaptive MH with Gibbs updates—hybrid.

Full Gibbs sampling for some models.
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Introduction to Stata’s Bayesian suite of commands

General syntax

Built-in models

bayesmh . . . , likelihood() prior() . . .

User-defined models

Posterior evaluator

bayesmh . . . , evaluator() . . .

Likelihood evaluator with built-in priors

bayesmh . . . , llevaluator() prior() . . .

Postestimation features are the same whether you use a built-in
model or program your own!
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Continuing beta-binomial example

Estimation: Beta-binomial model revisited

Recall the beta-binomial model from the motivating example.

. set seed 14

. bayesmh y, likelihood(dbinomial({theta},20)) prior({theta}, beta(2,20))

Burn-in ...
Simulation ...

Model summary

Likelihood:

y ~ binomial({theta},20)

Prior:
{theta} ~ beta(2,20)

Bayesian binomial model MCMC iterations = 12,500

Random-walk Metropolis-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs = 1
Acceptance rate = .4399

Log marginal likelihood = -1.1636733 Efficiency = .1625

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

theta .0467621 .031854 .00079 .0397556 .0056963 .1282234

Let’s talk about the specification and results in more detail.
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Continuing beta-binomial example

Estimation: Beta-binomial model revisited

By default, bayesmh uses an adaptive random-walk MH
method but you can also use Gibbs sampling or a combination
of the two algorithms, a hybrid method, for some of the
supported likelihood and prior combinations.

The default burn-in is 2,500 iterations and the default MCMC
sample size is 10,000. These numbers are arbitrary and will
likely need to be adjusted. Use options burnin() and
mcmcsize() to change the defaults.

In our beta-binomial example, we used the defaults for the
MCMC method, burn-in, and MCMC sample size.
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Continuing beta-binomial example

Estimation: Beta-binomial model revisited

Let’s compute an HPD CrI in our example.
We specify option hpd on replay to recompute CrIs without
refitting the model.

. bayesmh, hpd

Model summary

Likelihood:
y ~ binomial({theta},20)

Prior:
{theta} ~ beta(2,20)

Bayesian binomial model MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 1

Acceptance rate = .4399
Log marginal likelihood = -1.1636733 Efficiency = .1625

HPD

Mean Std. Dev. MCSE Median [95% Cred. Interval]

theta .0467621 .031854 .00079 .0397556 .0009822 .1093087

A 95% HPD interval for θ is [0.001, 0.109] and is differentYulia Marchenko (StataCorp) 26 / 61
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Continuing beta-binomial example

Storing estimation and MCMC results

Let’s store the estimation results for future comparison.

estimates store stores estimation results but requires first
saving bayesmh’s MCMC data.

Use option saving() with bayesmh during estimation or on
replay to save MCMC data in a Stata dataset:

. bayesmh, saving(betabin_mcmc)
note: file betabin_mcmc.dta saved

. estimates store betabin
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Check MCMC convergence visually:

. bayesgraph diagnostics {theta}
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Continuing beta-binomial example

Convergence diagnostics

Check MCMC sampling efficiency:

. bayesstats ess {theta}

Efficiency summaries MCMC sample size = 10,000

ESS Corr. time Efficiency

theta 1624.89 6.15 0.1625
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Continuing beta-binomial example

Hypothesis testing

The goal of interval hypothesis testing is to estimate the
posterior probability that a parameter lies in a certain interval.
For an interval hypothesis H: θ ∈ (a, b), what is p(H|y)?

A point hypothesis H: θ = a is only applicable to discrete
parameters. For continuous parameters, its probability is zero.

No distinction between the null and alternative hypotheses: if
P{H0: θ ∈ (a, b)} = p, then P{Ha: θ /∈ (a, b)} = 1− p. No
need to assume that the null hypothesis is true.

A conclusion is not an acceptance or rejection of the null
hypothesis but an explicit probability statement about the
tested hypothesis of interest.
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Continuing beta-binomial example

Hypothesis testing

Test an interval hypothesis H: θ < 0.1:

. bayestest interval {theta}, upper(0.1)

Interval tests MCMC sample size = 10,000

prob1 : {theta} < 0.1

Mean Std. Dev. MCSE

prob1 .9314 0.25279 .0058726

The estimate of the posterior probability that θ is less than
0.1 is 0.93 with an MCSE of 0.006.
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Continuing beta-binomial example

Hypothesis testing

Test multiple interval hypotheses in one statement:

. bayestest interval ({theta}, upper(0.1)) ({theta}, upper(0.2))

Interval tests MCMC sample size = 10,000

prob1 : {theta} < 0.1
prob2 : {theta} < 0.2

Mean Std. Dev. MCSE

prob1 .9314 0.25279 .0058726

prob2 .9988 0.03462 .0008111
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Continuing beta-binomial example

Sensitivity analysis: Power priors

Motivating example used a beta prior for θ.

Sensitivity analysis to the choice of the priors is very
important in Bayesian analysis.

Consider an alternative prior—a power prior.
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Continuing beta-binomial example

Sensitivity analysis: Power priors

Power priors are based on similar historical data y0.

Idea: raise the likelihood function of the historical data to the
power α0, where 0 ≤ α0 ≤ 1.

α0 quantifies the uncertainty in y0 by controlling the
heaviness of the tails of the prior distribution.

α0 = 0 means no information from the historical data and
α0 = 1 means that the historical data have as much weight as
the observed data.
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Continuing beta-binomial example

Sensitivity analysis: Power priors

Suppose that in another similar city, a random sample of 15
subjects was selected and 1 subject had a disease.

Let’s consider a competing power prior:

p(θ) ∼ {BinomialPMF(15, 1, θ)}α0

Let α0 = 0.5.

Yulia Marchenko (StataCorp) 35 / 61



Bayesian analysis using Stata

Continuing beta-binomial example

Sensitivity analysis: Power priors

bayesmh does not have built-in power priors but we can use
prior()’s suboption density() to specify our own prior.

. set seed 14

. bayesmh y, likelihood(dbinomial({theta},20)) ///
> prior({theta}, density(sqrt(binomialp(15,1,{theta})))) ///

> saving(powerbin_mcmc)

Burn-in ...
Simulation ...

Model summary

Likelihood:
y ~ binomial({theta},20)

Prior:

{theta} ~ density(sqrt(binomialp(15,1,{theta})))
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Continuing beta-binomial example

Sensitivity analysis: Power priors

Bayesian binomial model MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000

Number of obs = 1
Acceptance rate = .3991

Log marginal likelihood = -3.4613334 Efficiency = .1196

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

theta .0503336 .0393522 .001138 .0409455 .0036139 .1528106

file powerbin_mcmc.dta saved

. estimates store powerbin

The posterior mean estimate of θ, 0.05, under this power prior
is slightly larger.
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Continuing beta-binomial example

Model comparison

Compute model posterior probabilities to see which model is
more likely given the observed data.

. bayestest model powerbin betabin

Bayesian model tests

log(ML) P(M) P(M|y)

powerbin -3.4613 0.5000 0.0913
betabin -1.1637 0.5000 0.9087

Note: Marginal likelihood (ML) is computed using
Laplace-Metropolis approximation.

The beta-binomial model appears to be more likely given the
data than the model using the power prior.

We can compare any models as long as they have proper
posterior distributions and use the same data for fitting.
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Continuing beta-binomial example

Model comparison

Let’s compare our models using the Bayes factor:

. bayesstats ic powerbin betabin

Bayesian information criteria

DIC log(ML) log(BF)

powerbin 2.137519 -3.461333 .
betabin 1.96168 -1.163673 2.29766

Note: Marginal likelihood (ML) is computed
using Laplace-Metropolis approximation.

The natural logarithm of the estimated Bayes factor is 2.3.

Using the rule of Kass and Raftery (1995), there is some
evidence that the beta-binomial model is better because
2× 2.3 = 4.6 is between 2 and 6.
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Point-and-click interface

Perform Bayesian analysis by using the command line.

Or, use a powerful point-and-click interface.

You can access the interface by typing:

. db bayesmh

or from the Statistics menu.

(NEXT SLIDE)
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User-written Bayesian models
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Hurdle model

One of the questions we received shortly after releasing
bayesmh is “How do I fit Bayesian hurdle models?”

A hurdle model (Cragg model) is used to model a bounded
dependent variable. It combines a selection model that
determines the boundary points of the dependent variable with
an outcome model that determines its nonbounded values.

Hurdle models are not currently among the built-in bayesmh

models.

But, we can program them using bayesmh’s user-defined
evaluators.

Below I provide two types of log-likelihood evaluators: one
using Stata’s command churdle (new in Stata 14) to
compute the log likelihood and the other programming the log
likelihood from scratch.
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Hurdle model

Hurdle model using churdle

We consider a subset of the fitness data from [R] churdle.

We consider a simple linear hurdle model.

We model the decision to exercise or not as a function of an
individual’s average commute to work.

Once a decision to exercise is made, we model the number of
hours an individual exercises per day as a function of age.
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Hurdle model

Hurdle model using churdle

Likelihood model:

hoursi = (β0 + β1agei + νi )× hours0i

hours0i =
{ 1 if (γ0 + γ1commutei + ǫi )

0 otherwise

νi ∼ TruncatedNormal(0,σ2,−β0 − β1agei ,∞)

ǫi ∼ Normal(0,1)

Prior distributions:

β0, β1, γ0, γ1 ∼ 1

ln(σ) ∼ 1
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Hurdle model

Hurdle model using churdle

Data:

. webuse fitness10

. describe

Contains data from fitness10.dta
obs: 1,983

vars: 4 14 Feb 2016 16:27

size: 19,830

storage display value
variable name type format label variable label

age byte %9.0g person´s age
commute float %9.0g hours commuted

hours float %9.0g hours exercised daily
hours0 byte %8.0g (hours==0)

Sorted by:
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Hurdle model

Hurdle model using churdle

We use churdle (line 5 of the program) to compute the
log-likelihood values at each MCMC iteration:

. program mychurdle1
1. version 14.1
2. args llf

3. tempname b
4. mat `b´ = ($MH_b, $MH_p)

5. cap churdle linear $MH_y1 $MH_y1x1 if $MH_touse, ///
> select($MH_y2x1) ll(0) from(`b´) iterate(0)

6. if _rc {

7. if (_rc==1) { // handle break key
8. exit _rc

9. }
10. scalar `llf´ = .

11. }
12. else {
13. scalar `llf´ = e(ll)

14. }
15. end
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Hurdle model

Hurdle model using churdle

Model fitting:

. set seed 14

. gen byte hours0 = (hours==0)

. bayesmh (hours age) (hours0 commute), ///
> llevaluator(mychurdle1, parameters({lnsig})) ///
> prior({hours:} {hours0:} {lnsig}, flat) dots

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaa. done

Simulation 10000 .........1000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
hours hours0 ~ mychurdle1(xb_hours,xb_hours0,{lnsig})

Priors:

{hours:age _cons} ~ 1 (flat) (1)
{hours0:commute _cons} ~ 1 (flat) (2)

{lnsig} ~ 1 (flat)

(1) Parameters are elements of the linear form xb_hours.

(2) Parameters are elements of the linear form xb_hours0.
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Hurdle model

Hurdle model using churdle

Bayesian regression MCMC iterations = 12,500

Random-walk Metropolis-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000
Number of obs = 1,983

Acceptance rate = .2752
Efficiency: min = .04197

avg = .06659
Log marginal likelihood = -2772.4136 max = .08861

Equal-tailed

Mean Std. Dev. MCSE Median [95% Cred. Interval]

hours
age .0051872 .0027702 .000093 .0052248 -.0002073 .0104675

_cons 1.163384 .1219417 .005135 1.16685 .9203519 1.388663

hours0

commute -.0716184 .1496757 .005623 -.0758964 -.3733355 .2181717
_cons .1454332 .084041 .003066 .1451574 -.0222543 .3128047

lnsig .1341657 .034162 .001668 .1336526 .0634106 .2021694

This model took about 25 minutes to run.
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Hurdle model

Hurdle model programmed from scratch

The corresponding log likelihood programmed from scratch:

. program mychurdle2

1. version 14.1
2. args lnf xb xg lnsig
3. tempname sig

4. scalar `sig´ = exp(`lnsig´)
5. tempvar lnfj

6. qui gen double `lnfj´ = normal(`xg´) if $MH_touse
7. qui replace `lnfj´ = log(1 - `lnfj´) if $MH_y1 <= 0 & $MH_touse

8. qui replace `lnfj´ = log(`lnfj´) - log(normal(`xb´/`sig´)) ///
> + log(normalden($MH_y1,`xb´,`sig´)) ///
> if $MH_y1 > 0 & $MH_touse

9. summarize `lnfj´ if $MH_touse, meanonly
10. if r(N) < $MH_n {

11. scalar `lnf´ = .
12. exit
13. }

14. scalar `lnf´ = r(sum)
15. end
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Hurdle model

Hurdle model programmed from scratch

Model fitting:

. set seed 14

. bayesmh (hours age) (hours0 commute), ///
> llevaluator(mychurdle2, parameters({lnsig}) ) ///

> prior({hours:} {hours0:} {lnsig}, flat) dots

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaa. done

Simulation 10000 .........1000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:

hours hours0 ~ mychurdle2(xb_hours,xb_hours0,{lnsig})

Priors:
{hours:age _cons} ~ 1 (flat) (1)

{hours0:commute _cons} ~ 1 (flat) (2)

{lnsig} ~ 1 (flat)

(1) Parameters are elements of the linear form xb_hours.
(2) Parameters are elements of the linear form xb_hours0.
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Hurdle model

Hurdle model programmed from scratch

Bayesian regression MCMC iterations = 12,500

Random-walk Metropolis-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000
Number of obs = 1,983

Acceptance rate = .2752
Efficiency: min = .04197

avg = .06659
Log marginal likelihood = -2772.4136 max = .08861

Equal-tailed

Mean Std. Dev. MCSE Median [95% Cred. Interval]

hours
age .0051872 .0027702 .000093 .0052248 -.0002073 .0104675

_cons 1.163384 .1219417 .005135 1.16685 .9203519 1.388663

hours0

commute -.0716184 .1496757 .005623 -.0758964 -.3733355 .2181717
_cons .1454332 .084041 .003066 .1451574 -.0222543 .3128047

lnsig .1341657 .034162 .001668 .1336526 .0634106 .2021694

This model took only 20 seconds!
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Conclusion
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Summary

Bayesian analysis is a powerful tool that allows you to
incorporate prior information about model parameters into
your analysis.

It provides intuitive and direct interpretations of results by
using probability statements about parameters.

It provides a way to assign an actual probability to any
hypothesis of interest.
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Summary

Use bayesmh for estimation: choose one of the built-in
models or program your own.

Use postestimation features for checking MCMC convergence,
estimating functions of model parameters, and performing
hypothesis testing and model comparison.

Work interactively using the command line or use the
point-and-click interface.

Check out the [BAYES] Bayesian analysis manual for more
examples and details about Bayesian analysis.
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What’s new?

New features added to bayesmh since Stata 14 shipped.

Option reffects() for more efficient simulation of two-level
random-effects models;

Suboption reffects within option block() for more efficient
simulation of multilevel models;

More convenient fitting of probability distributions using
dexponential(), dbernoulli(), dbinomial(), and
dpoisson();

Option initrandom, which is useful for generating multiple
chains;

And more.

Type

. update all

in Stata 14 to get free access to these new features.
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Additional resources

The Stata blog Bayesian entries:

Bayesian modeling: Beyond Stata’s built-in models

http://blog.stata.com/2015/05/26/bayesian-modeling-
beyond-statas-built-in-models/
Bayesian binary item response theory models using bayesmh

http://blog.stata.com/2016/01/18/bayesian-binary-item-
response-theory-models-using-bayesmh/
Gelman–Rubin convergence diagnostic using multiple chains

http://blog.stata.com/2016/05/26/gelman-rubin-convergence-
diagnostic-using-multiple-chains/
Type

. net install grubin, from("http://www.stata.com/users/nbalov")

to install a user-written command, grubin, that computes the
Gelman–Rubin diagnostic using multiple chains.
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Additional resources

The Stata News Bayesian articles:

Bayesian analysis

http://www.stata.com/stata-news/news30-1/bayesian-
analysis/
Bayesian “ranom-effects” models

http://www.stata.com/stata-news/news30-2/bayesian-
random-effects/
Bayesian IRT—4PL model

http://www.stata.com/stata-news/news31-1/bayesian-irt/
(forthcoming)
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Additional resources

The Stata YouTube channel:

Introduction to Bayesian analysis, part 1: The basic concepts

https://www.youtube.com/watch?v=tHlZMJJT4fY
Introduction to Bayesian analysis, part 2: MCMC and the

Metropolis-Hastings algorithm

https://www.youtube.com/watch?v=IAAZwh6PSNM
Bayesian analysis in Stata

https://www.youtube.com/watch?v=-8StHqIaUeY
Graphical user interface for Bayesian analysis in Stata

https://www.youtube.com/watch?v=zno7iU6WHtY
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