${\bf texdoc~2.0}$ An update on creating LaTeX documents from within Stata

Example 1

Ben Jann University of Bern, ben.jann@soz.unibe.ch

2016 German Stata Users Group Meeting GESIS, Cologne, June 10, 2016

Contents

1	The texdoc source file	2
2	The resulting LATEX source file	6
3	The resulting PDF	9

1 The texdoc source file

```
— the-auto-data.texdoc —
texdoc init the-auto-data, replace logdir(log) ///
   gropts(optargs(width=0.8\textwidth))
set linesize 100
/***
\documentclass[12pt]{article}
\usepackage{fullpage}
\usepackage{hyperref,graphicx,booktabs,dcolumn}
\usepackage{stata}
\title{The Auto Data}
\author{Ben Jann}
\date{\today}
\begin{document}
\maketitle
\begin{abstract}
    I really like the auto data because it is so awesome. You can do all kinds
   of stuff with the auto data, like tabulating a variable or computing
   descriptive statistics. You can even use the auto data to estimate
   regression models. I am really amazed by the richness of this dataset.
   There is information on many different makes and models and you can learn,
   for example, about the gear ratio of a Dodge Diplomat (a stunning 2.47). In
   this article I will illustrate the auto data and I will show you what you
    can do with it. I am convinced that you will love this dataset as much as I
    do after having read this paper.
\end{abstract}
\tableofcontents
\section{Introduction}
What we want to do in the introductory section is to open the data and have a
look at what is inside of it. Since the auto data is shipped with Stata, we can
use the \stcmd{sysuse} command to open it (see \dref{sysuse}). Furthermore, the
\stcmd{describe} command will list the variables and display some other
information (see \dref{describe}). So let's start:
***/
texdoc stlog
sysuse auto
texdoc stlog cnp
describe
texdoc stlog close
```

```
/***
Wow! 74 observations! And what a wealth of variables! Make, price, miles per
gallon, and many more. I am very motivated to learn more about this amazing
data set.
\section{Descriptives}
Let's now look at some descriptive statistics. Maybe also let's
do a graph.
***/
texdoc stlog
summarize
pspline price weight
texdoc stlog close
texdoc graph, label(fig1) ///
   caption(What a crazy relation between price and weight)
/***
In figure \ref{fig1} we see that for some unknown reason expensive cars seem to
be heavier.
Actually, I really only want to print a graph without printing the code that
produced the code. Hm, how can we do that? Maybe the \stcmd{nolog} option will
do.
***/
texdoc stlog, nolog
pspline price mpg
texdoc stlog close
texdoc graph, label(fig2) ///
    caption(Another crazy relation)
/***
In figure \ref{fig2} we see that price is also related to miles per gallon. How
interesting!
\section{Varieties of logs}
The default is to include a log of the commands and their
output:
***/
texdoc stlog
display "2 + 2 = " 2 + 2
display "sqrt(2) = " sqrt(2)
```

```
texdoc stlog close
/***
\noindent
Use the \stcmd{cmdlog} option to only include a copy of the commands without
output:
***/
texdoc stlog, cmdlog
display "2 + 2 = " 2 + 2
display "sqrt(2) = " sqrt(2)
texdoc stlog close
/***
\noindent
Conversely, use \stcmd{cmdstrip} to print only the output, but not the commands:
***/
texdoc stlog, cmdstrip
display "2 + 2 = "2 + 2
display "sqrt(2) = " sqrt(2)
texdoc stlog close
/***
\noindent
Furthermore, use \stcmd{texdoc stlog oom} to omit output from selected commands:
***/
texdoc stlog
sysuse auto
texdoc stlog oom ///
list make
display make[1]
texdoc stlog close
/***
\section{Regression tables}
Finally we get to regressions! To include a table in the document, it is a good
idea to enclose the corresponding commands in a \stcmd{texdoc stlog}
environment and specify the \stcmd{nolog} option to suppress the output. This
```

In table~\ref{table1} we see that an additional pound of car costs around 3.5

allows you to use the \stcmd{nodo} option later on to skip computing the table.

```
dollars once we control for milage and origin.
***/
texdoc stlog, nolog
sysuse auto
regress price weight
estimates store m1
{\tt regress} \ {\tt price} \ {\tt weight} \ {\tt mpg}
estimates store m2
regress price weight mpg foreign
estimates store m3
esttab m1 m2 m3 using log/table1.tex, replace se label \ensuremath{///}
    nomtitles booktabs align(D{.}{.}{-1}) ///
    title(Some regression table\label{table1})
texdoc stlog close
texdoc write \input{log/table1.tex}
/***
\end{document}
***/
— end of file —
```

2 The resulting LATEX source file

Applying

```
. texdoc do the-auto-data.texdoc
generates to the following LATEX file.

— the-auto-data.tex —

\documentclass[12pt]{article}
\usepackage{fullpage}
\usepackage{hyperref,graphicx,booktabs,dcolumn}
\usepackage{stata}

\title{The Auto Data}
\author{Ben Jann}
\date{\today}

\begin{document}
```

\begin{abstract}

I really like the auto data because it is so awesome. You can do all kinds of stuff with the auto data, like tabulating a variable or computing descriptive statistics. You can even use the auto data to estimate regression models. I am really amazed by the richness of this dataset. There is information on many different makes and models and you can learn, for example, about the gear ratio of a Dodge Diplomat (a stunning 2.47). In this article I will illustrate the auto data and I will show you what you can do with it. I am convinced that you will love this dataset as much as I do after having read this paper.

\end{abstract}

\tableofcontents

\section{Introduction}

What we want to do in the introductory section is to open the data and have a look at what is inside of it. Since the auto data is shipped with Stata, we can use the \stcmd{sysuse} command to open it (see \dref{sysuse}). Furthermore, the \stcmd{describe} command will list the variables and display some other information (see \dref{describe}). So let's start:

```
\begin{stlog}
\input{log/1.log.tex}
\end{stlog}
```

Wow! 74 observations! And what a wealth of variables! Make, price, miles per gallon, and many more. I am very motivated to learn more about this amazing data set.

```
\section{Descriptives}
Let's now look at some descriptive statistics. Maybe also let's
do a graph.
\begin{stlog}
\input{log/2.log.tex}
\end{stlog}
\begin{figure}
    \centering
    \includegraphics[width=0.8\textwidth]{log/2.pdf}
    \caption{What a crazy relation between price and weight}
    \label{fig1}
\end{figure}
In figure \ref{fig1} we see that for some unknown reason expensive cars seem to
be heavier.
Actually, I really only want to print a graph without printing the code that
produced the code. Hm, how can we do that? Maybe the \stcmd{nolog} option will
\begin{figure}
    \centering
    \includegraphics[width=0.8\textwidth]{log/3.pdf}
    \caption{Another crazy relation}
    \displaystyle \begin{aligned} & \langle fig2 \rangle \end{aligned}
\end{figure}
In figure \ref{fig2} we see that price is also related to miles per gallon. How
interesting!
\section{Varieties of logs}
The default is to include a log of the commands and their
output:
\begin{stlog}
\input{log/4.log.tex}
\end{stlog}
\noindent
Use the \stcmd{cmdlog} option to only include a copy of the commands without
output:
\begin{stlog}
\input{log/5.log.tex}
\end{stlog}
\noindent
```

Conversely, use \stcmd{cmdstrip} to print only the output, but not the commands:

\begin{stlog}
\input{log/6.log.tex}
\end{stlog}

\noindent

Furthermore, use \stcmd{texdoc stlog oom} to omit output from selected commands:

\begin{stlog}
\input{log/7.log.tex}
\end{stlog}

\section{Regression tables}

Finally we get to regressions! To include a table in the document, it is a good idea to enclose the corresponding commands in a \stcmd{texdoc stlog} environment and specify the \stcmd{nolog} option to suppress the output. This allows you to use the \stcmd{nodo} option later on to skip computing the table.

In table \ref{table1} we see that an additional pound of car costs around 3.5 dollars once we control for milage and origin.

\input{log/table1.tex}

\end{document}

— end of file —

3 The resulting PDF

The following pages display the resulting PDF after compiling the \LaTeX source file.

The Auto Data

Ben Jann

June 11, 2016

Abstract

I really like the auto data because it is so awesome. You can do all kinds of stuff with the auto data, like tabulating a variable or computing descriptive statistics. You can even use the auto data to estimate regression models. I am really amazed by the richness of this dataset. There is information on many different makes and models and you can learn, for example, about the gear ratio of a Dodge Diplomat (a stunning 2.47). In this article I will illustrate the auto data and I will show you what you can do with it. I am convinced that you will love this dataset as much as I do after having read this paper.

Contents

1	Introduction	1
2	Descriptives	2
3	Varieties of logs	4
4	Regression tables	4

1 Introduction

What we want to do in the introductory section is to open the data and have a look at what is inside of it. Since the auto data is shipped with Stata, we can use the **sysuse** command to open it (see [D] **sysuse**). Furthermore, the **describe** command will list the variables and display some other information (see [D] **describe**). So let's start:

. sysuse auto (1978 Automobile Data)

. describe

Contains data from /Applications/Stata14/ado/base/a/auto.dta obs: 74 1978 Automobile Data

vars: 12 13 Apr 2014 17:45 size: 3,182 (_dta has notes)

variable name	storage type	display format	value label	variable label
make	str18	%-18s		Make and Model
price	int	%8.0gc		Price
mpg	int	%8.0g		Mileage (mpg)
rep78	int	%8.0g		Repair Record 1978
headroom	float	%6.1f		Headroom (in.)
trunk	int	%8.0g		Trunk space (cu. ft.)
weight	int	%8.0gc		Weight (lbs.)
length	int	%8.0g		Length (in.)
turn	int	%8.0g		Turn Circle (ft.)
displacement	int	%8.0g		Displacement (cu. in.)
gear_ratio	float	%6.2f		Gear Ratio
foreign	byte	%8.0g	origin	Car type

Sorted by: foreign

Wow! 74 observations! And what a wealth of variables! Make, price, miles per gallon, and many more. I am very motivated to learn more about this amazing data set.

2 Descriptives

Let's now look at some descriptive statistics. Maybe also let's do a graph.

. summarize					
Variable	Obs	Mean	Std. Dev.	Min	Max
make	0				
price	74	6165.257	2949.496	3291	15906
mpg	74	21.2973	5.785503	12	41
rep78	69	3.405797	.9899323	1	5
headroom	74	2.993243	.8459948	1.5	5
trunk	74	13.75676	4.277404	5	23
weight	74	3019.459	777.1936	1760	4840
length	74	187.9324	22.26634	142	233
turn	74	39.64865	4.399354	31	51
displacement	74	197.2973	91.83722	79	425
gear_ratio	74	3.014865	.4562871	2.19	3.89
foreign	74	.2972973	.4601885	0	1

. pspline price weight

(pilot goodness-of-fit chi2(16) = 32.38; p = 0.0089)
(using penalized model ...)

In figure 1 we see that for some unknown reason expensive cars seem to be heavier.

Actually, I really only want to print a graph without printing the code that produced the code. Hm, how can we do that? Maybe the nolog option will do.

In figure 2 we see that price is also related to miles per gallon. How interesting!

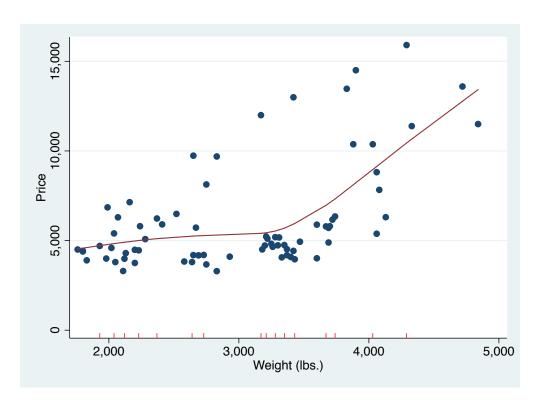


Figure 1: What a crazy relation between price and weight

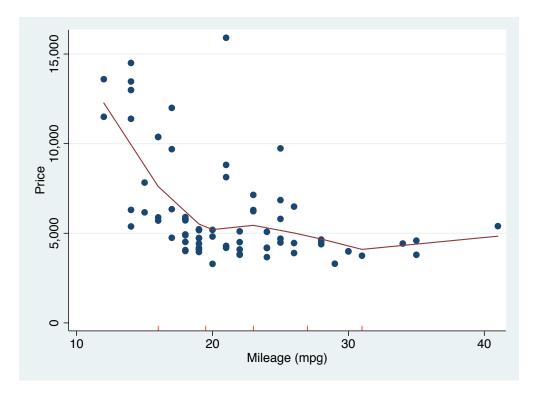


Figure 2: Another crazy relation

3 Varieties of logs

The default is to include a log of the commands and their output:

```
. display "2 + 2 = " 2 + 2
2 + 2 = 4
. display "sqrt(2) = " sqrt(2)
sqrt(2) = 1.4142136
```

Use the cmdlog option to only include a copy of the commands without output:

```
display "2 + 2 = " 2 + 2
display "sqrt(2) = " sqrt(2)
```

Conversely, use cmdstrip to print only the output, but not the commands:

```
2 + 2 = 4
sqrt(2) = 1.4142136
```

Furthermore, use texdoc stlog oom to omit output from selected commands:

```
. sysuse auto
(1978 Automobile Data)
. list make
(output omitted)
. display make[1]
AMC Concord
```

4 Regression tables

Finally we get to regressions! To include a table in the document, it is a good idea to enclose the corresponding commands in a texdoc stlog environment and specify the nolog option to suppress the output. This allows you to use the nodo option later on to skip computing the table.

In table 1 we see that an additional pound of car costs around 3.5 dollars once we control for milage and origin.

Table 1: Some regression table

	(1)	(2)	(3)
Weight (lbs.)	2.044*** (0.377)	$1.747^{**} \\ (0.641)$	3.465*** (0.631)
Mileage (mpg)		-49.51 (86.16)	21.85 (74.22)
Car type			3673.1*** (684.0)
Constant	-6.707 (1174.4)	1946.1 (3597.0)	-5853.7 (3377.0)
Observations	74	74	74

Standard errors in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001