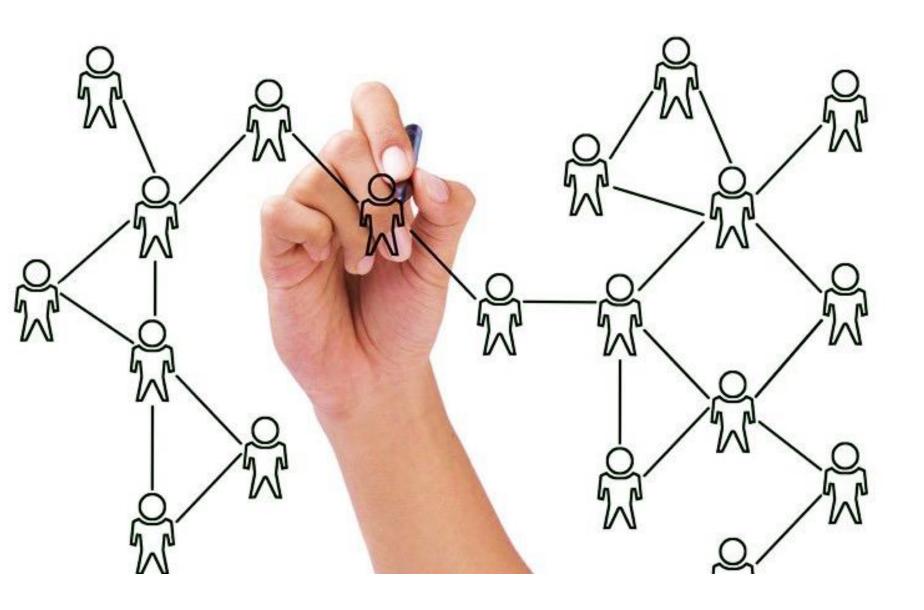
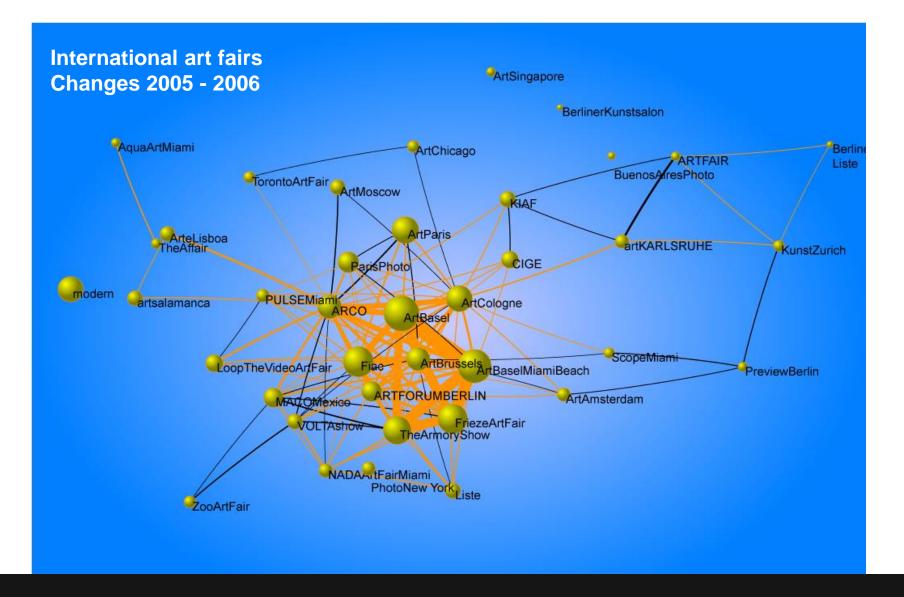
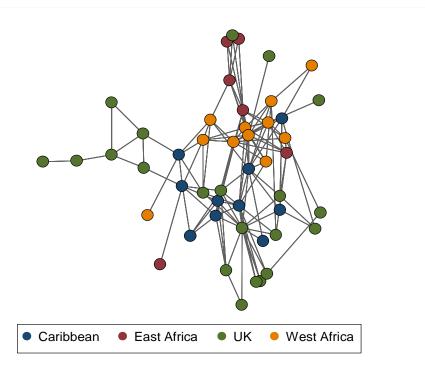

SOCIAL NETWORK ANALYSIS USING STATA


10 June 2016 German Stata User Meeting GESIS, Cologne

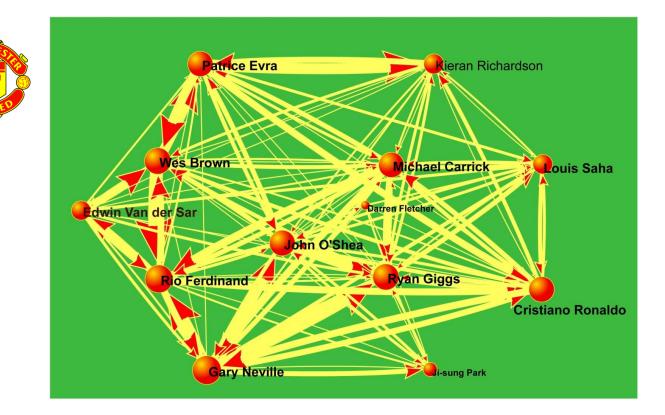

Thomas Grund University College Dublin <u>thomas.u.grund@gmail.com</u>

www.grund.co.uk



Yogev, T. and Grund, T. (2012) Structural Dynamics and the Market for Contemporary Art: The Case of International Art Fairs. *Sociological Focus*, 54(1), 23-40.

CO-OFFENDING IN YOUTH GANG

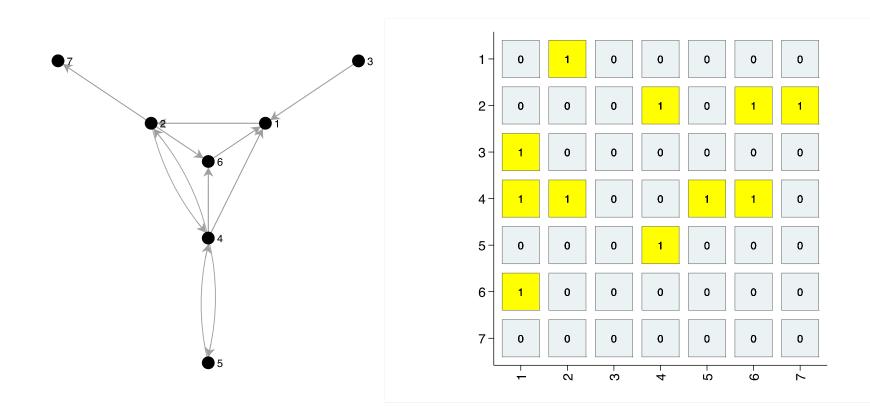


Grund, T. and Densley, J. (2012) Ethnic Heterogeneity in the Activity and Structure of a Black Street Gang. *European Journal of Criminology*, 9(3), 388-406.

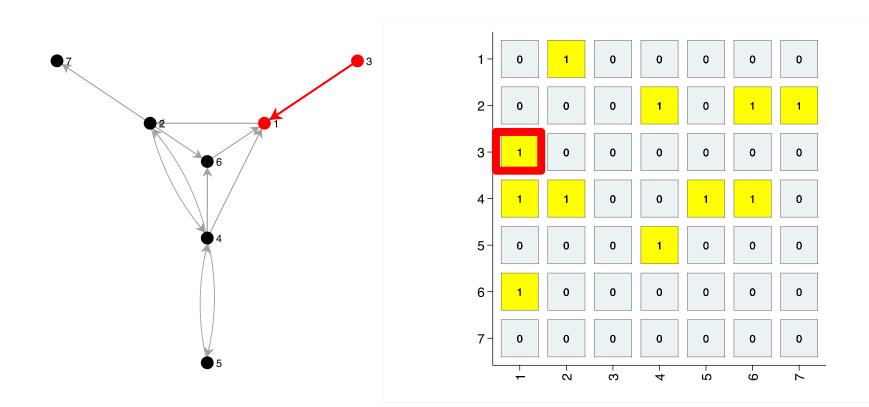
Grund, T. and Densley, J. (2015). Ethnic homophily and triad closure: Mapping internal gang structure using exponential random graph models. *Journal of Contemporary Criminal Justice*, 31(3), 354–370

MANCHESTER UTD – TOTTENHAM

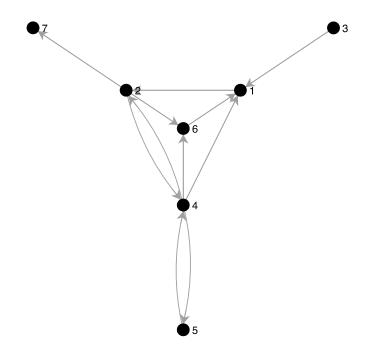
Grund, T. (2012) Network Structure and Team Performance: The Case of English Premier League Soccer Teams. *Social Networks*, 34(4), 682-690.


SOCIAL NETWORKS

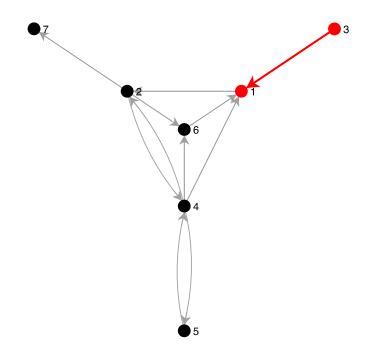
- Social
 - Friendship, kinship, romantic relationships
- Government
 - Political alliances, government agencies
- Markets
 - Trade: flow of goods, supply chains, auctions
 - Labor markets: vacancy chains, getting jobs
- Organizations and teams
 - Interlocking directorates
 - Within-team communication, email exchange


DEFINITION

- Mathematically, a (binary) network is defined as G = (V, E) where V = {1,2,..,n} is a set of "vertices" (or "nodes") and E ⊆ {(i, j) | i, j ∈ V} is a set of "edges" (or "ties", "arcs"). Edges are simply pairs of vertices, e.g. E ⊆ {(1,2), (2,5) ... }.
- We write y_{ij} = 1 if actors *i* and *j* are related to each other (i.e., if (*i*, *j*) ∈ *E*), and y_{ij} = 0 otherwise.
- In digraphs (or directed networks) it is possible that $y_{ij} \neq y_{ji}$.


ADJACENCY MATRIX

ADJACENCY MATRIX



ADJACENCY LIST

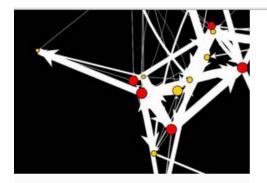
	ego	alter
1	1	2
2	2	4
3	2	6
4	2	7
5	3	1
6	4	1
7	4	2
8	4	5
9	4	6
10	5	4
11	6	1

ADJACENCY LIST

	ego	alter
1	1	2
2	2	4
3	2	6
4	2	7
5	3	1
6	4	1
7	4	2
8	4	5
9	4	6
10	5	4
11	6	1

NETWORK ANALYSIS

- Simple description/characterization of networks
- Calculation of node-level characteristics (e.g. centrality)
- Components, blocks, cliques, equivalences...
- Visualization of networks
- Statistical modeling of networks, network dynamics



http://nwcommands.org

. findit nwcommands

http://nwcommands.org

NETWORK ANALYSIS USING STATA

nwcommands.org

ABOUT

NEWS

INSTALLATION

GETTING STARTED

GLOSSARY

TUTORIALS AND SLIDES

About

Here you find the beta-version of the nwcommands – a collection of programs for social network analysis in Stata.

A more thorough description will follow.

Browse through the <u>tutorials</u> and the <u>alphabetical list</u> of the nwcommands to get a first idea about how you can do social network analysis in Stata.

Installation instructions are here.

If you have a question, you can ask it in the <u>forum</u> for the nwcommands. Alternatively, you can send an email to <u>thomas.u.grund@gmail.com</u>. You can also join the email list for the nwcommands here: <u>https://groups.google.com/forum/#!forum/nwcommands/join</u>. Once you are signed up you will receive information about updates, new releases and so on.

If you find any bugs in the software, please contact us by sending an email

GoogleGroup: nwcommands

Twitter: nwcommands

Search "nwcommands" to find a channel with video tutorials.

NWCOMMANDS

- Software package for Stata. Almost 100 new Stata commands for handling, manipulating, plotting and analyzing networks.
- Ideal for existing Stata users. Corresponds to the R packages "network", "sna", "igraph", "networkDynamic".
- Designed for small to medium-sized networks (< 10000).
- Almost all commands have menus. Can be used like Ucinet or Pajek. Ideal for beginners and teaching.
- Not just specialized commands, but whole infrastructure for handling/dealing with networks in Stata.
- Writing own network commands that build on the nwcommands is very easy.

LINES OF CODE

Туре	Files	LoC
.ado	94	14548
.dlg	57	5707
.sthlp	97	9954

Downloads

Over 13 000 (since Jan 2015)

Ś Stata/MP 14.0 File Edit	View Data Graphics Statistics User Window Help	
Open Save Print	Log Viewer Graph Do-file Network Analysis	Generate Network
Review	Results	Example Networks
Command _rc	nwcommands-dlg Social Network Analysis Using Sta	
1 net from "http://nwc 2 nwclear	nwcommands-ext Social Network Analysis Using Sta	Declare Network Data
3 nwinstall, all	checking nwcommands-ext consistency and verifying not a	Open Networks Save Networks As
	installing into /Users/thomasgrund/Library/Application	
	installation complete.	Import Networks Export Networks
		Convert To/From Edgelist
	http://nwcommands.org/ nwcommands Social Network Analysis Using Stata	
		Network Manipulation
	Program by Thomas Grund, Linkoping University, IAS	Summarize Networks
		Paths Between Nodes
	PACKAGES you could -net describe-: nwcommands-ado Social Network Analysis Using Sta	Node-Level Characteristics
	nwcommands-hlp Social Network Analysis Using Sta	Generate Context Variable
	nwcommands-dlg Social Network Analysis Using Sta	Tabulate Networks
	nwcommands-ext Social Network Analysis Using Sta	Correlate Networks
		Quadratic Assignment Procedure
	checking nwcommands-dlg consistency and verifying not a installing into /Users/thomasgrund/Library/Application	Exponential Random Graph Model
	installation complete.	Visualize Networks
		Help NWCOMMANDS

. nwinstall, all

OVERVIEW

• •	•			V	ewer — help nwcommands		
		C			help nwcommands	Q Search	
Back	Forward	Reload page	Print	Find	Command	Search	
					help nwcommands		+
					Dialog 🗸 Also	see	~

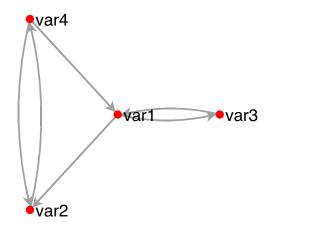
Section	Description
[NW-1]	Introduction and concepts
[NW-2]	Topical list of network commands
[NW-3]	Alphabetical list of network commands
[NW-4]	Getting started
[NW-5]	Network programming
[NW-6]	Install Stata menus/dialogs
<pre>*! Date *! Version *! Authors *! Contact *! Web</pre>	: 28 Sep 2015 : 1.5.2 : Thomas U. Grund : thomas.u.grund@gmail.com : http://nwcommands.org

. help nwcommands

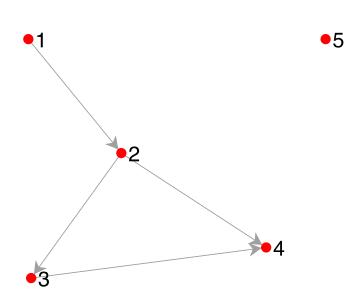
INTUITION

- Software introduces *netname* and *netlist*.
- Networks are dealt with like normal variables.
- Many normal Stata commands have their network counterpart that accept a *netname*, e.g. nwdrop, nwkeep, nwclear, nwtabulate, nwcorrelate, nwcollapse, nwexpand, nwreplace, nwrecode, nwunab and more.
- Stata intuition just works.

SETTING NETWORKS


- "Setting" a network creates a network quasi-object that has a netname.
- After that you can refer to the network simply by its *netname*, just like when refer to a variable with its *varname*.

Syntax:


nwset varlist[, edgelist directed undirected name(newnetname) labs(string)
labsfromvar(varname) vars(string) keeporiginal xvars]

nwset, mat(matamatrix) [directed undirected name(newnetname) labs(string)
labsfromvar(varname) vars(string) xvars]

Oata Edito Data Edito Data Edito T Edit Browse Filter Variables Properties							
	var4[5]						
	var1	var2	var3	var4			
1	0	1	1	0			
2	0	0	0	1			
3	1	0	0	0			
4	1	1	0	0			
Vars:	Vars: 4 Order: Dataset Obs: 4						

- . nwset _all
- . nwplot, lab

Edi	t Browse		Filter
	ego[1]	1	
	ego	alter	
1	1	2	
2	2	3	
3	2	4	
4	3	4	
5	5	5	
Vars	: 2 Order: Dataset		Obs: 5

- . nwset ego alter, edgelist
- . nwplot, lab

LIST ALL NETWORKS

. nwds

network network_1

These are the names of the networks in memory. You can refer to these networks by their name.

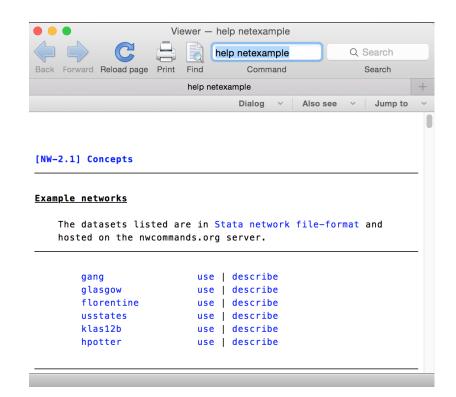
. nwset (2 networks)

> network network_1

Check out the return vector. Both commands populate it as well.

LOAD NETWORK FROM THE INTERNET

. webnwuse florentine


Loading successful (4 networks)

network

network_1

flobusiness

flomarriage

. help netexample

IMPORT NETWORK

- A wide array of popular network file-formats are supported, e.g. Pajek, Ucinet, by nwimport.
- Files can be imported directly from the internet as well.
- Similarly, networks can be exported to other formats with **nwexport**.

. nwimport http://vlado.fmf.uni-lj.si/pub/networks/data/ucinet/zachary.dat, type(ucinet)

Importing successful
(6 networks)

network network_1 flobusiness flomarriage ZACHE ZACHE

DROP/KEEP NETWORKS

• Dropping and keeping networks works almost exactly like dropping and keeping variables.

- . nwdrop flo*
- . nwkeep ZACHE ZACHC

. nwclear

DROP/KEEP NODES

You can also drop/keep nodes of a specific network.

. nwdrop flomarriage if _nodevar == "strozzi"

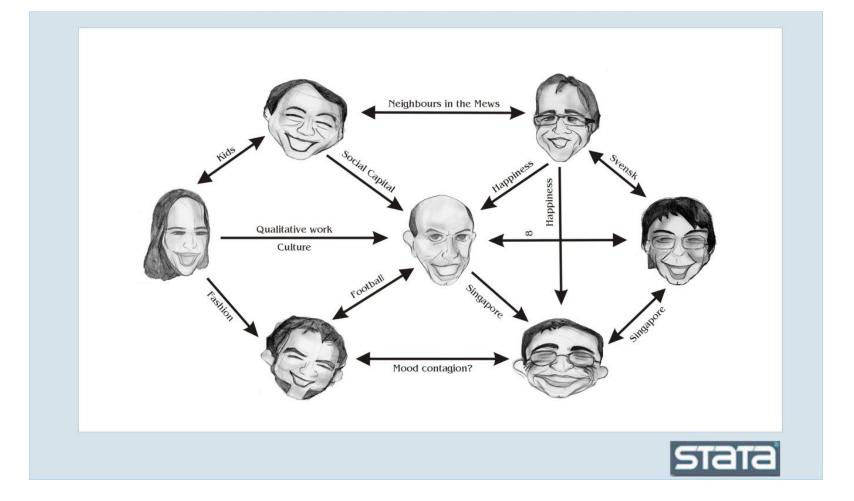
. nwdrop flomarriage if _n == 1

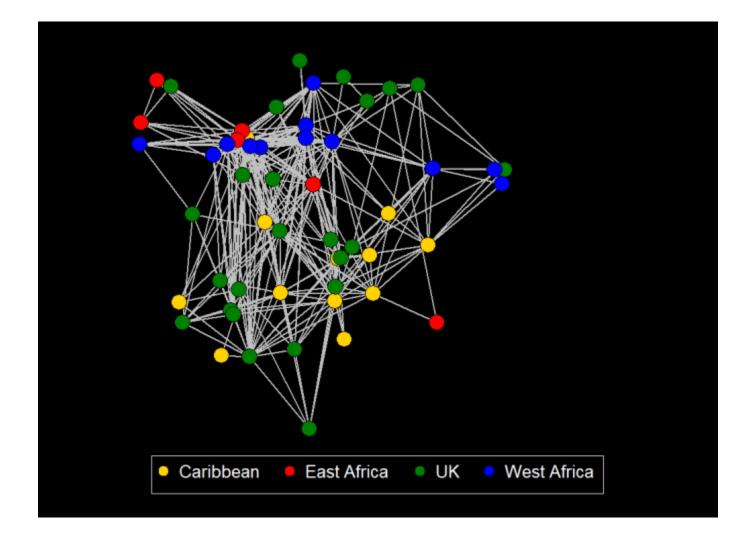
NODE ATTRIBUTES

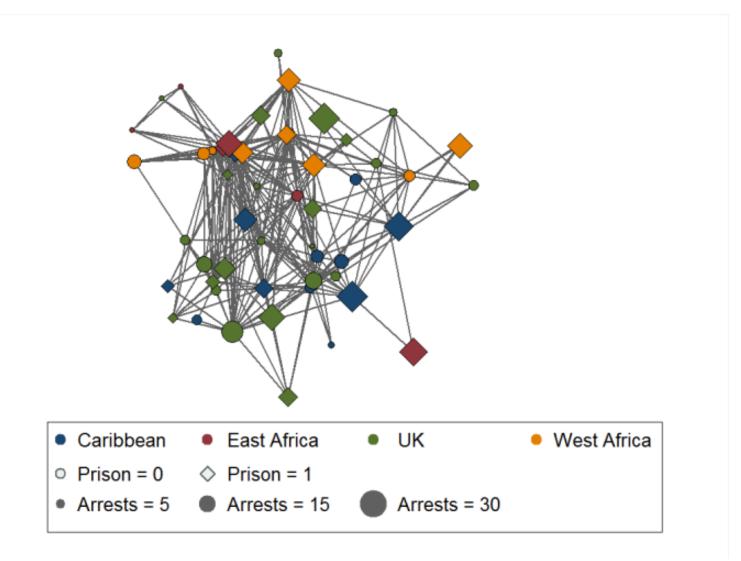
. webnwuse florentine, nwclear

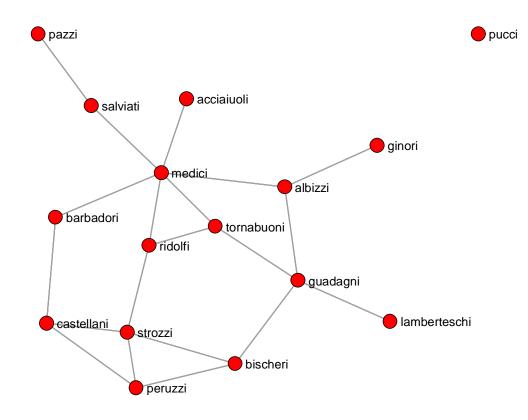
	wealth	priorates	seat	_nodelab	_nodevar	_nodeid
1	10	53	1	acciaiuoli	acciaiuoli	1
2	36	65	1	albizzi	albizzi	2
3	55	0	0	barbadori	barbadori	3
4	44	12	1	bischeri	bischeri	4
5	20	22	1	castellani	castellani	5
6	32	0	0	ginori	ginori	6
7	8	21	1	guadagni	guadagni	7
8	42	0	0	lamberteschi	lamberteschi	8

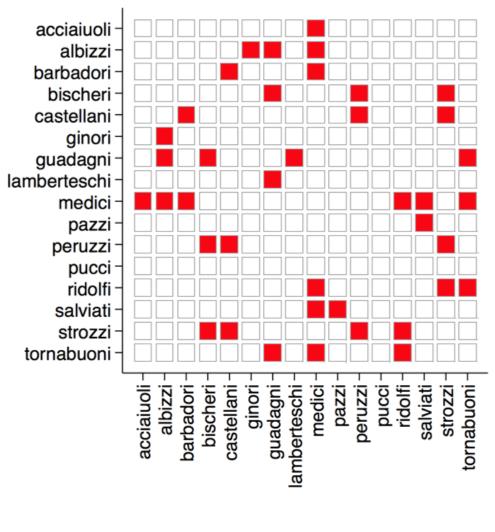
- Every node of a network has a *nodeid*, which is matched with the observation number in a normal dataset.
- In this case, the node with *nodeid* == 1 is the "acciaiuoli" family and they have a wealth of 10.

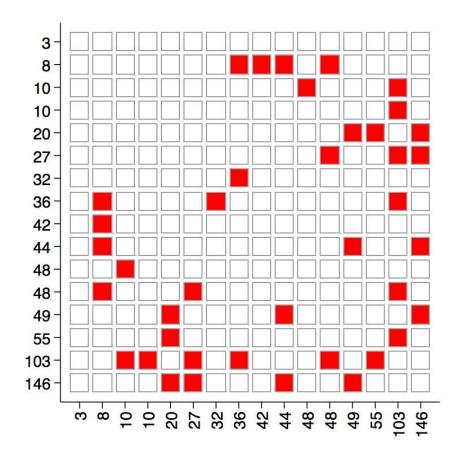

OVERVIEW


nwset nwds nwcurrent nwimport webnwuse nwdrop nwkeep

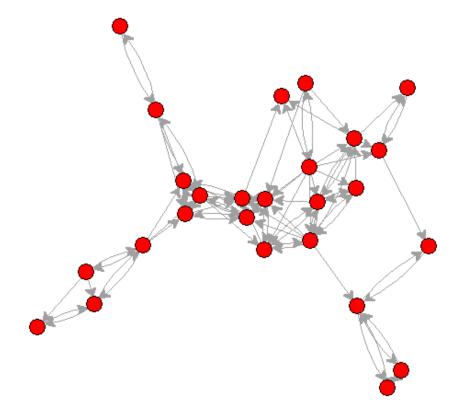

VISUALIZATION



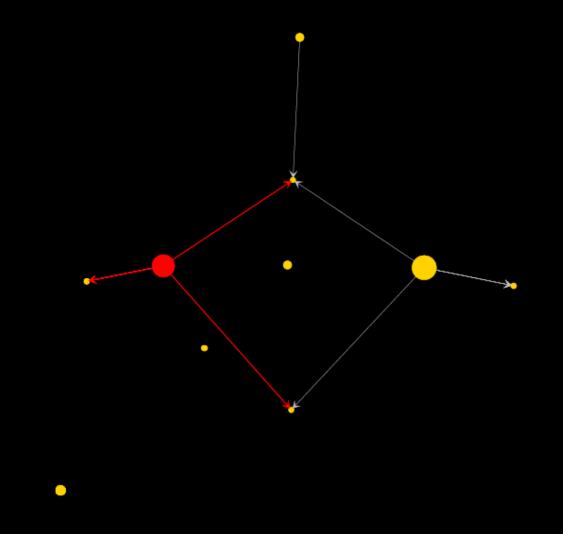

- . webnwuse gang
- . nwplot gang, color(Birthplace) scheme(s2network)

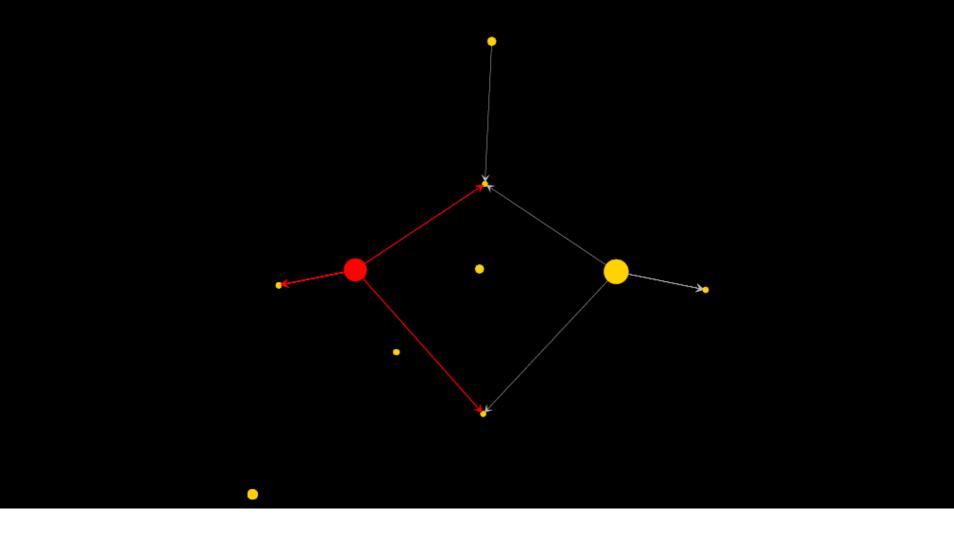


nwplot gang, color(Birthplace) symbol(Prison) size(Arrests)



- . webnwuse florentine
- . nwplot flomarriage, lab





. nwplotmatrix flomarriage, sortby(wealth) label(wealth)

- . webnwuse klas12
- . nwmovie klas12_wave1-klas12_wave4

. nwmovie _all, colors(col_t*) sizes(siz_t*) edgecolors(edge_t*)

VISUALIZATION

nwplot nwplotmatrix nwmovie

EXAMINE NETWORK

SUMMARIZE

. nwsummarize network_1

Network name: network_1 Network id: 1 Directed: true Nodes: 5 Arcs: 4 Minimum value: 0 Maximum value: 1 Density: .2

. nwsummarize glasgow1, detail

Network name: glasgow1
Network id: 1
Directed: true
Nodes: 50
Arcs: 113
Minimum value: 0
Maximum value: 1
Density: .0461224489795918
Reciprocity: .527027027027
Transitivity: .3870967741935484
Betweenness centralization: .0821793002915452
Indegree centralization:: .119533527696793
Outdegree centralization:: .0570595585172845

TABULATE NETWORK

. webnwuse florentine, nwclear

Loading successful (2 networks)

> flobusiness flomarriage

. nwtabulate flomarriage

Network:	flomarriage	Directed:	false
flomarriage	Freq.	Percent	Cum.
0	100	83.33	83.33
1	20	16.67	100.00
Total	120	100.00	

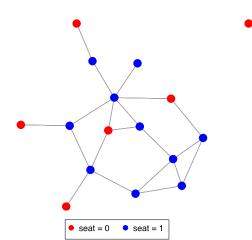
TABULATE TWO NETWORKS

. nwtabulate flomarriage flobusiness

.

Network	1:	flomarriage	Directed:	false
Network	2:	flobusiness	Directed:	false

flomarriag	flobusiness		
e	0	1	Total
0	93	7	100
1	12	8	20
Total	105	15	120

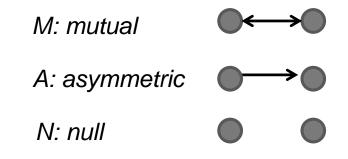

TABULATE NETWORK AND ATTRIBUTE

. nwtabulate flomarriage seat
(0 observations deleted)

Network: flomarriage Directed: false Attribute: seat

The network is undirected. The table shows two entries for each edge.

from_seat	to_seat 0	1	Total
0 1	0 8	8 24	8 32
Total	8	32	40


E-I Index: -.2 p-value: .22

DYAD CENSUS

. webnwuse glasgow

Loading successful (3 networks)

glasgow1 glasgow2 glasgow3

. nwdyads glasgow1

Dyad census: glasgow1


Mutual	Asym	Null
39	35	1151

Reciprocity: .527027027027027

. nwtriads glasgow1

Triad census: glasgow1

003	012	021D	021U
16243	1470	5	18
021C	030T	030C	102
21	5	0	1724
120D	120U	120C	111D
6	5	2	42
111U	201	210	300
30	15	9	5

Transitivity: .3870967741935484

EXAMINE NETWORKS

nwsummarize nwtabulate nwdyads nwtriads

CHANGE NETWORK

TABULATE NETWORK

- . webnwuse gang, nwclear
- . nwtabulate gang_valued

Network: gang_val	ued Directed:	false
-------------------	---------------	-------

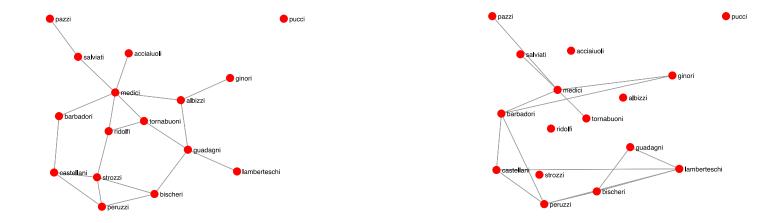
gang_valued	Freq.	Percent	Cum.
0	1,116	77.99	77.99
1	182	12.72	90.71
2	92	6.43	97.13
3	25	1.75	98.88
4	16	1.12	100.00
Total	1,431	100.00	

RECODE TIE VALUES

. nwrecode gang_valued (2/4 = 99)

(gang_valued: 266 changes made)

. nwtabulate gang_valued


Network:	gang_valued	Directed:	false
gang_valued	Freq.	Percent	Cum.
0	1,116	77.99 12.72	77.99 90.71
99	133	9.29	100.00
Total	1,431	100.00	

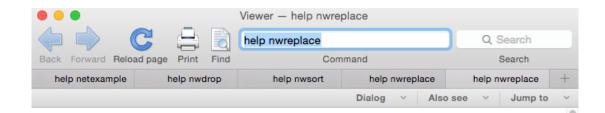
FLORENTINE FAMILIES

. webnwuse florentine, nwclear

Loading successful (2 networks)

> flobusiness flomarriage

Marriage ties


Business ties

REPLACE TIE VALUES

- . nwreplace flomarriage = 2 if flobusiness == 1 & flomarriage == 1
- . nwtabulate flomarriage

Network:	flomarriage	Directed:	false
----------	-------------	-----------	-------

flomarriage	Freq.	Percent	Cum.
0	100	83.33	83.33
1	12	10.00	93.33
2	8	6.67	100.00
Total	120	100.00	

[NW-2.5] Manipulation

<u>Title</u>

nwreplace — Replace network

<u>Syntax</u>

nwreplace netname[subnet] =netexp [ifego] [ifalter] [if]
 [in]

Description

Replaces whole networks, subnetworks or specific dyads. Similar in usage to replace. A network expression is very similar to a normal expression in Stata, but also accepts netnames.

One can also replace dyads in networks by 1) loading a network as Stata variables (see nwload), 2) changing the Stata variables (see replace) and 3) syncing Stata variables and network afterwards (see nwsync). However, replacing the

. help nwreplace

GENERATE NETWORKS

- . nwgen both = (flobusiness & flomarriage)
- . nwtabulate both
 - Network: both Directed: false

both	Freq.	Percent	Cum.
0 1	112 8	93.33 6.67	93.33 100.00
Total	120	100.00	

[NW-2.6] Analysis

<u>Title</u>

nwgen — Network extensions to generate

<u>Syntax</u>

nwgen newvar = netfcn1(arguments) [, options]

nwgen newnetname = netfcn2(arguments) [, options]

nwgen newnetname = netexp [if] [, options]

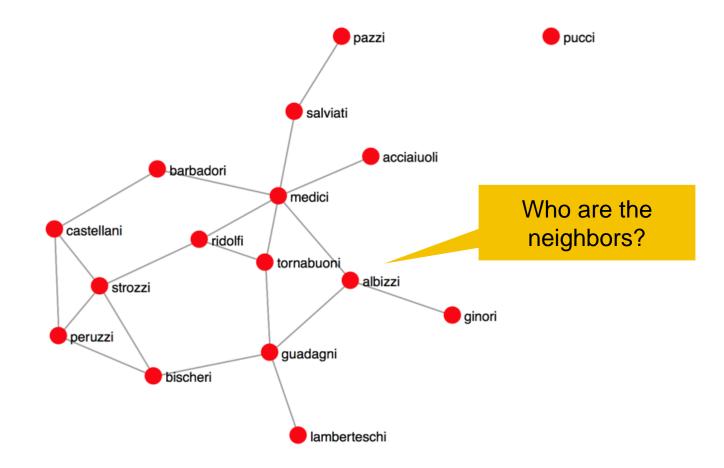
where the options are also fcn dependent.

Description

These are network extensions to generate. The command is very similar to egen and allows producing either variables or networks. There are basically three ways to use this commands: 1) produce Stata variables with some function *netfcn1*, 2) produce networks with some function *netfnc2*, 3) produce networks with an expression *netexp*. A network expression is very similar to normal expressions in Stata.

. help nwgen

nwrecode nwreplace nwsync nwtranspose nwsym nwgen



CHANGE NETWORK

NEIGHBORS AND CONTEXT

FLORENTINE FAMILIES

- . webnwuse florentine, nwclear
- . nwneighbor flomarriage, ego(albizzi)

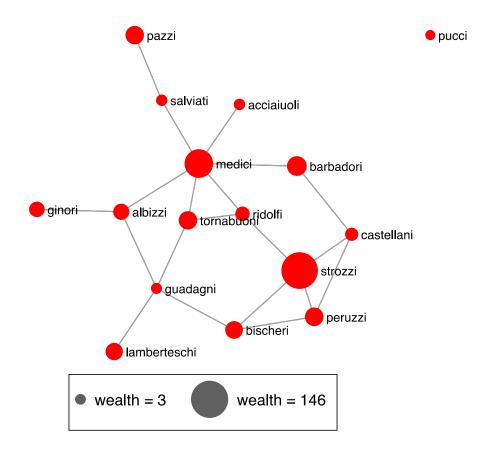
Network: flomarriage

Ego : **albizzi** Neighbors : **ginori , guadagni , medici**

NEIGHBORS

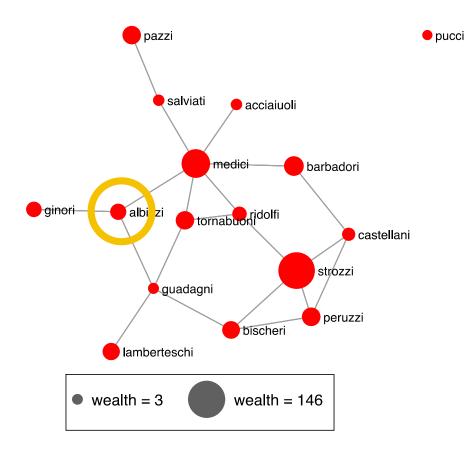
. return list

scalars:


r(ego) = 2 r(oneneighbor) = 6

```
macros:
    r(neighbors_list2) : " ginori guadagni medici"
    r(neighbors_list1) : " 6 7 9"
```

matrices:


r(neighbors) : 3 x 1

CONTEXT

. nwplot flomarriage, lab size(wealth)

CONTEXT

What is the average wealth of the "albizzi's" network neighbors?

CONTEXT

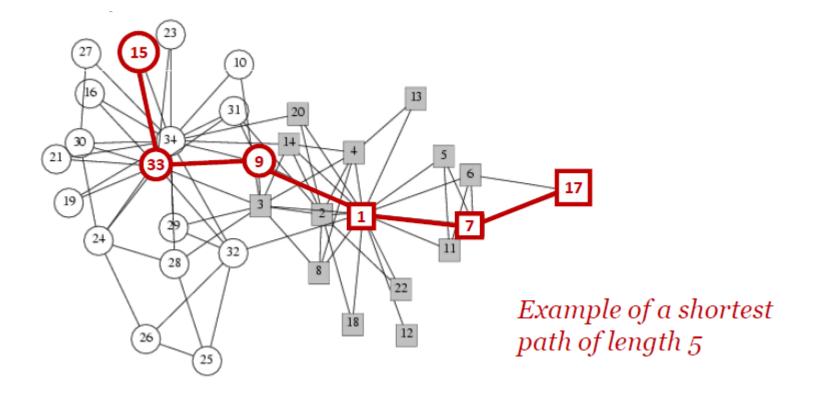
- . nwcontext flomarriage, attribute(wealth) stat(mean) generate(wmean)
- . nwcontext flomarriage, attribute(wealth) stat(max) generate(wmax)
- . nwcontext flomarriage, attribute(wealth) stat(min) generate(wmin)
- . list _nodelab w*

	_nodelab	wealth	wmean	wmax	wmin
ι. Γ	acciaiuoli	10	103	103	103
	albizzi	36	47.66667	103	8
.	barbadori	55	61.5	103	20
.	bischeri	44	67.66666	146	8
	castellani	20	83.33334	146	49

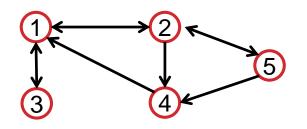
statistic	Description
mean	Mean of <i>varname</i> over network neighbors; defaul.
max	Maximum of <i>varname</i> over network neighbors.
min	Minimum of <i>varname</i> over network neighbors.
sum	Sum of <i>varname</i> over network neighbors.
sd	Standard deviation of <i>varname</i> over network neighbors.
meanego	Mean of varname over network neighbors and ego.
maxego	Maximum of varname over network neighbors and ego.
minego	Minimum of varname over network neighbors and ego.
sumego	Sum of varname over network neighbors and ego.
sdego	Standard deviation of <i>varname</i> over network neighbors and <i>ego</i> .

NETWORK CONTEXT

nwneighbor nwcontext



DISTANCE AND PATH



Length of a shortest connecting path defines the (geodesic) distance between two nodes.

$$distances = \begin{bmatrix} 0 & 1 & 1 & 2 & 2 \\ 1 & 0 & 2 & 1 & 1 \\ 1 & 2 & 0 & 3 & 3 \\ 1 & 2 & 2 & 0 & 3 \\ 2 & 1 & 3 & 1 & 0 \end{bmatrix}$$

avgerage shortest path length = 1.8

DISTANCE

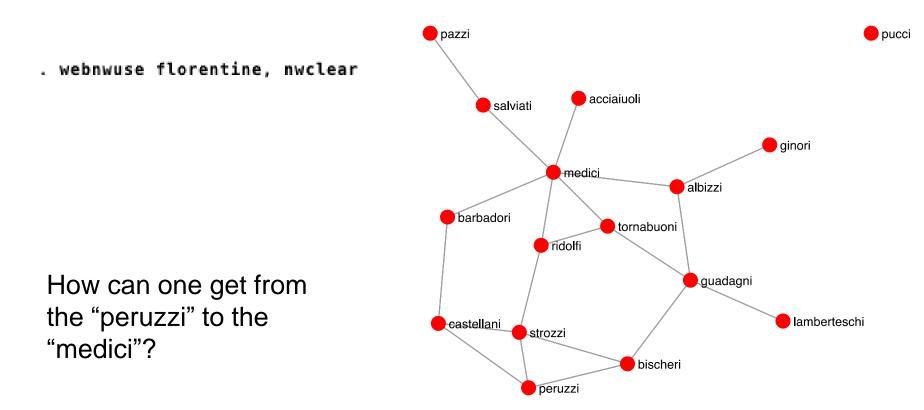
. webnwuse florentine, nwclear

. nwgeodesic flomarriage

Network name: flomarriage Network of shortest paths: geodesic

Nodes: 16 Symmetrized : 1

Paths (largest component) : 105 Diameter (largest component): 5 Average shortest path (largest component): 2.485714285714286

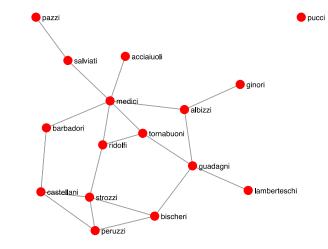

DISTANCE

. nwset

(3 networks)

et	. nwtabulate geodesic				
tworks)	Network:	geodesic	Directed:	false	
flobusiness flomarriage	geodesic	Freq.	Percent	Cum.	
geodesic	-1	15	12.50	12.50	
	1	20	16.67	29.17	
	2	35	29.17	58.33	
	3	32	26.67	85.00	
	4	15	12.50	97.50	
	5	3	2.50	100.00	
	Total	120	100.00		

PATHS



PATHS

. nwpath flomarriage, ego(peruzzi) alter(medici)

Network: flomarriage

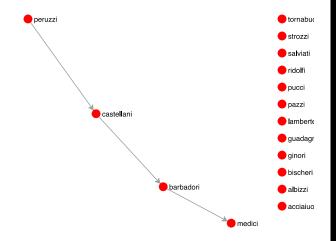
Ego	: 11 (peruzzi)
Alter	: 9 (medici)
Shortest path lengt	th : 3
Selected length	: 3


```
Path 1: peruzzi => castellani => barbadori => medici
Path 2: peruzzi => strozzi => ridolfi => medici
```

PATHS

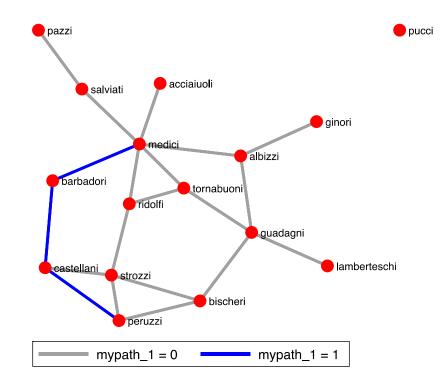
. nwpath flomarriage, ego(peruzzi) alter(medici) generate(mypath)

Network: flomarriage


Ego		:	11 (peruzzi)
Alter		:	9 (medici)
Shortest	path length	:	3
Selected	length	:	3

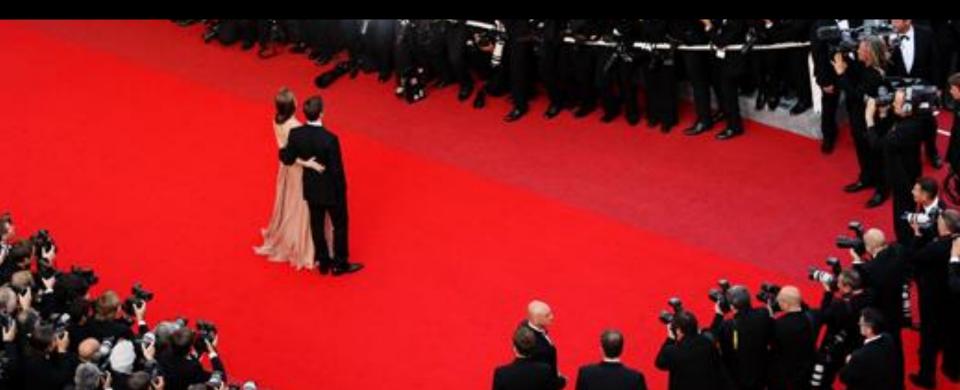
Path 1: peruzzi => castellani => barbadori => medici
Path 2: peruzzi => strozzi => ridolfi => medici

. nwset


(4 networks)

flobusiness flomarriage mypath_1 mypath_2

. nwplot flomarriage, lab edgecolor(mypath_1) edgefactor(3)



DISTANCE AND PATH

nwgeodesic nwpath nwplot

CENTRALITY

Well connected actors are in a structurally advantageous position.

- Getting jobs
- Better informed
- Higher status
- ...

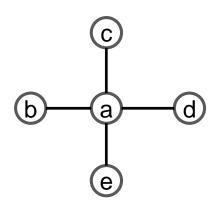
What is "well-connected?"

DEGREE CENTRALITY

Degree centrality

- Simply the number of incoming/outgoing ties => indegree centrality, outdegree centrality
- How many ties does an individual have?

$$C_{odegree}(i) = \sum_{j=1}^{N} y_{ij} \qquad C_{idegree}(i) = \sum_{j=1}^{N} y_{ji}$$

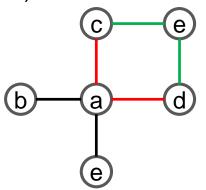

BETWEENNESS CENTRALITY

Betweeness centrality

• How many shortest paths go through an individual?

$$C_{betweenness}(a) = 6$$

$$C_{betweenness}(b) = 0$$


- - -

BETWEENNESS CENTRALITY

Betweeness centrality

• How many shortest paths go through an individual?

What about multiple shortest paths? E.g. there are two shortest paths from c to d (one via a and another one via e)

Give each shortest path a weight inverse to how many shortest paths there are between two nodes.

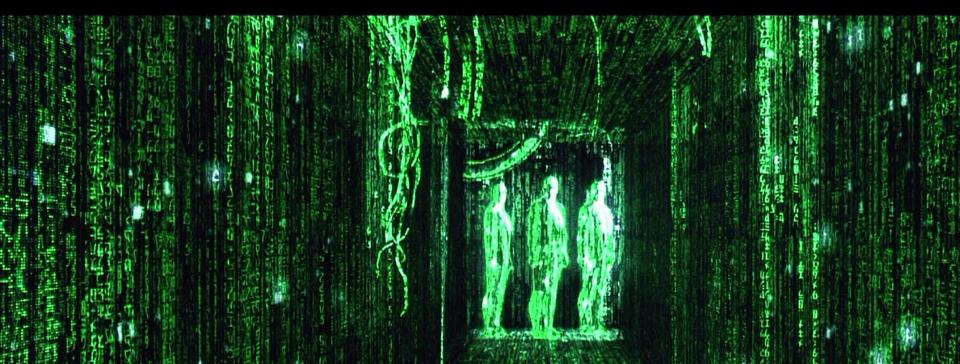
. nwbetween flomarriage

Network name: flomarriage

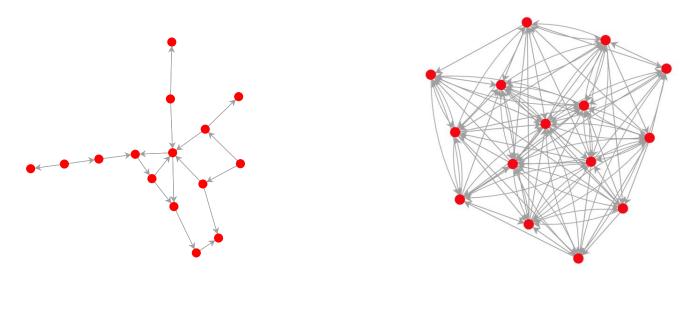
Betweenness centrality

Variable	Obs	Mean	Std. Dev.	Min	Max
_between	16	19.5	24.60111	0	95

. list _nodelab _between

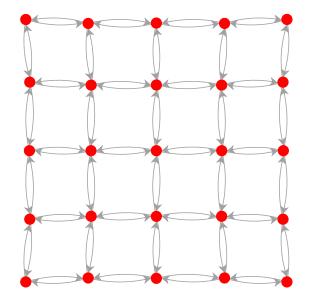

	_nodelab	_between	
1.	acciaiuoli	0	
2.	albizzi	38.66667	
3.	barbadori	17	
4.	bischeri	19	

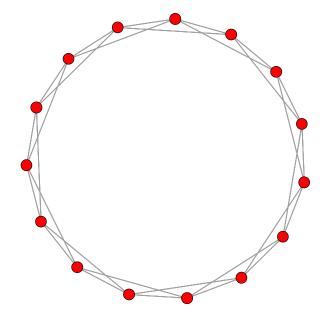
CENTRALITY


nwdegree nwbetween nwevcent nwcloseness nwkatz

SIMULATION

RANDOM NETWORK

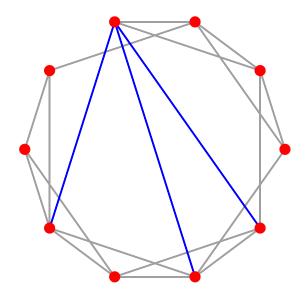



nwrandom 15, prob(.1) nwrandom 15, prob(.5)

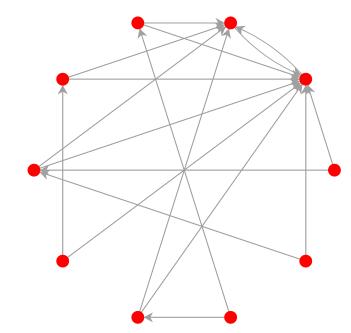
Each tie has the same probability to exist, regardless of any other ties.

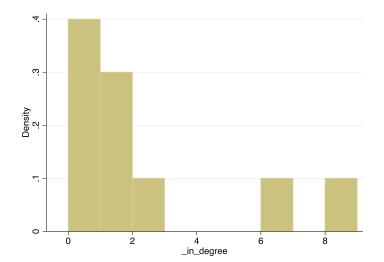
LATTICE

RING LATTICE

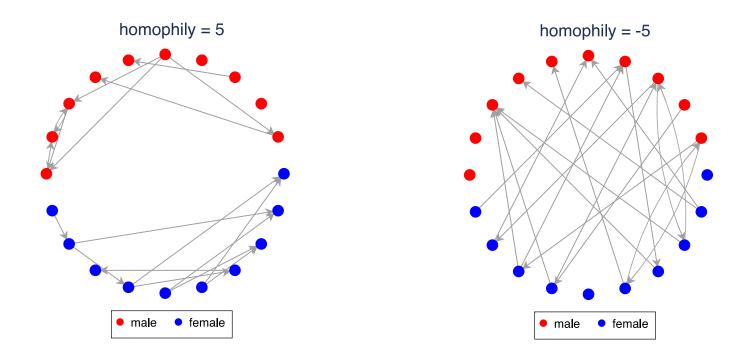


nwlattice 5 5


nwring 15, k(2) undirected


SMALL WORLD NETWORK

nwsmall 10, k(2) shortcuts(3) undirected


PREFERENTIAL ATTACHMENT NETWORK

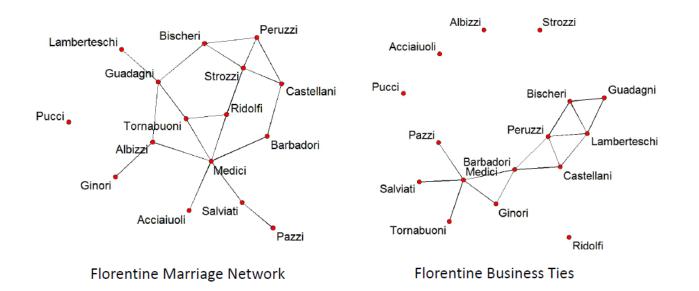
nwpref 10, prob(.5)

HOMOPHILY NETWORK

nwhomophily gender, density(0.05) homophily(5)

SIMULATION

nwrandom nwlattice nwsmall nwpref nwring nwhomophily nwdyadprob


HYPOTHESIS TESTING

Is a particular network pattern more (or less) prominent than expected?

Question: Is there more or less correlation between these two networks than expected?

 $corr_{obs} = 0.372$

<u>Test-statistic</u>

 $corr_{obs} = 0.372$

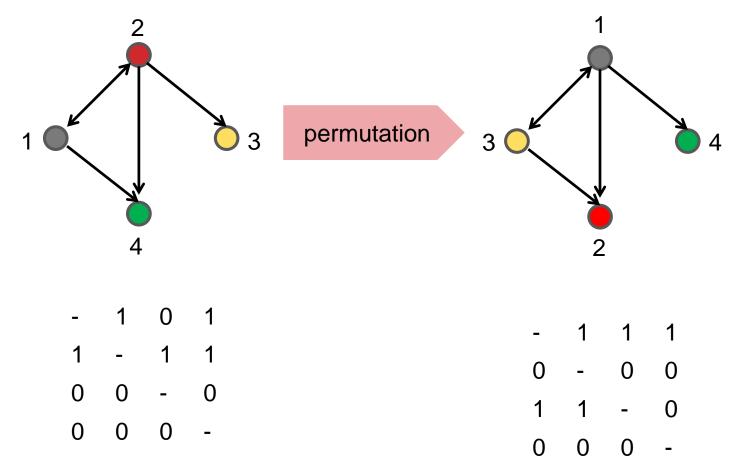
2

1

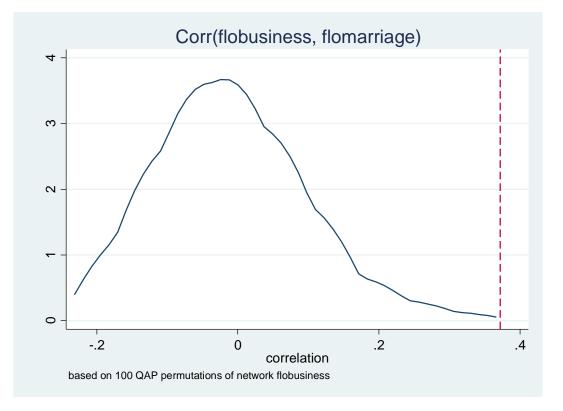
Distribution of teststatistic under null hypothesis

 $corr_{random} = ??$

QUADRATIC ASSIGNMENT PROCEDURE


- Scramble the network by permuting the actors (randomly re-label the nodes), i.e. the actual network does not change, however, the position each node takes does.
- Re-calculate the test-static on the permuted networks and compare it with test-statistic on the unscrambled network.

Network structure is 'controlled' for. Keeps dependencies.

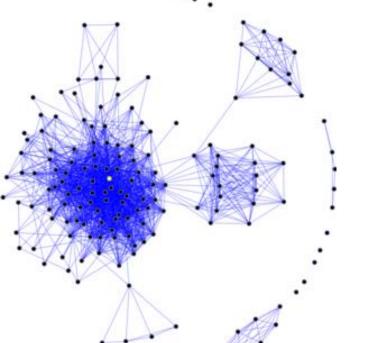


PERMUTATION TEST

GRAPH CORRELATION

nwcorrelate flobusiness flomarriage, permutations(100)

nwcorrelate nwpermute nwqap nwergm

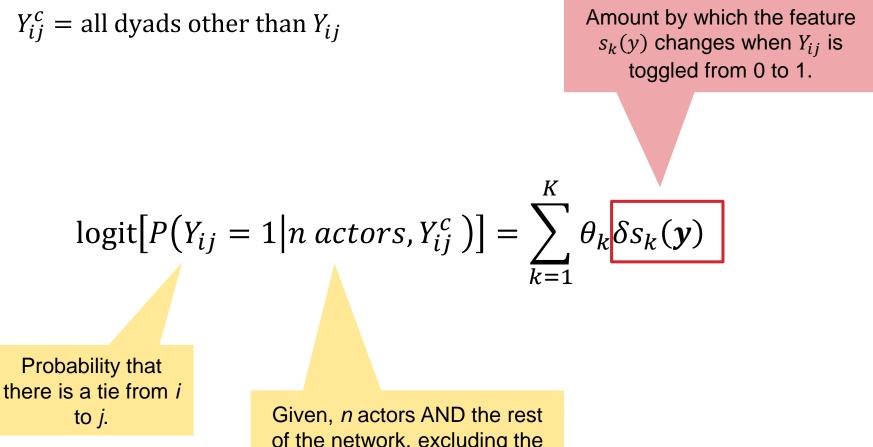

HYPOTHESIS TESTING

SOCIAL NETWORK ANALYSIS USING STATA

10 June 2016 German Stata User Meeting GESIS, Cologne

Thomas Grund University College Dublin <u>thomas.u.grund@gmail.com</u>

www.grund.co.uk



EXPONENTIAL RANDOM GRAPH MODELS

ERGM

of the network, excluding the dyad in question!

Y = random variable, a randomly selected network from the pool of all potential networks

y = observed variable, here observed network

 $\theta = parameters$, to be estimated

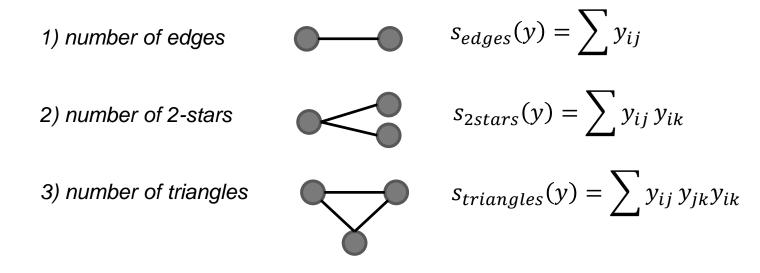
$$P(\boldsymbol{Y} = \boldsymbol{y}|\boldsymbol{\theta}) = \frac{e^{\left(\boldsymbol{\theta}^{T} s(\boldsymbol{y})\right)}}{c(\boldsymbol{\theta})}$$

A score given to our network **y** using some parameters θ and the network features **s** of **y**

Probability to draw 'our' observed network **y** from all potential networks A score given to all other networks we could have observed

ERGM: INTEPRETATION

ERGM's ultimately give you an estimate for various parameters θ_k , which mean...


If a potential tie $Y_{ij} = 1$ (between *i* and *j*) would change the network statistic s_k by one unit.

This changes the logodds for the tie Y_{ij} to actually exist by θ_k .

EXAMPLE

Consider an ERGM for an undirected network with parameters for these three statistics:

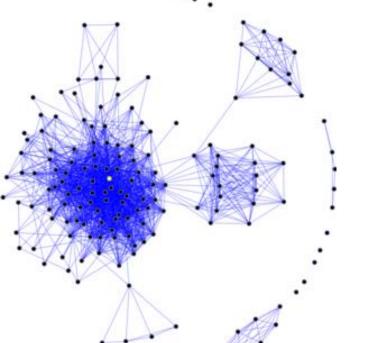
Then the 3-parameter ERG distribution function is:

 $P(\mathbf{Y} = \mathbf{y}|\theta) \propto e^{\left(\theta_{edges}s_{edges}(y) + \theta_{2stars}s_{2stars}(y) + \theta_{triangles}s_{triangles}(y)\right)}$

. nwergm gang, formula(edges + nodematch("Birthplace") + gwesp(0.5, fixed=T))

Exponential random graph analysis

Number of vertices	=	54
Number of edges/arcs	=	133
Directed	=	FALSE
Estimation	=	MLE
Iterations	=	3 out of 20
MCMC sample size	=	4096
AIC	=	741.4


network	0bserved	Coef.	Std.Err.	МСМС%	P> z
edges	133	-4.585	.235	0	0
nodematch.Birthplace	63	.518	.122	0	0
gwesp.fixed.0.5	165.121	1.434	.151	0	0

SOCIAL NETWORK ANALYSIS USING STATA

10 June 2016 German Stata User Meeting GESIS, Cologne

Thomas Grund University College Dublin <u>thomas.u.grund@gmail.com</u>

www.grund.co.uk

