simarwilson:
DEA based Two-Step Efficiency Analysis

Harald Tauchmann
Friedrich-Alexander-Universität Erlangen-Nürnberg
Professur für Gesundheitsökonomie

June 26, 2015

2015 German Stata Users Group Meeting
Nuremberg, IAB
Introduction

Efficiency Measurement

- Efficiency measurement industry in empirical research
 - Thousands of applications
- Two major methodological approaches
 1. Parametric approaches
 - Most important: stochastic frontier (SF; Aigner et al., 1977) → frontier, xtfrontier (real Stata); sfcross and sfpanel (user written programs implementing additional model variants; Belotti et al., 2013)
 2. Non-parametric approaches
 - Most important: DEA (Data Envelopment Analysis; Charnes et al., 1978) → dea (user written Stata command implementing most common DEA models; Ji and Lee, 2010)
 - Less often applied: FDH (Free Disposal Hull; Deprins et al., 1984), partial frontier (Cazals et al., 2002; Aragon et al., 2005) → orderm, orderalpha (user written Stata commands implementing FDH and partial frontier models; Tauchmann, 2012)
Stochastic Frontier Models

- SF embedded in familiar regression framework
 \[y_i = x_i'\beta + \varepsilon_i - \nu_i \] with \(i \) indexing DMUs (decision making unit)
- \(y_i \): log-output from production
- \(x_i \): log-inputs to production
- \(\varepsilon_i \): conventional normal error
 - ✓ Unexplained heterogeneity in production possibility frontier
- \(\nu_i \) support on the \([0, \infty) \) interval (exponential, half-normal, truncated normal)
 - ✓ Deviation from production possibility frontier (\(\rightarrow \) inefficiency)
- Efficiency measured as \(E(\exp(-\nu_i) | \varepsilon_i - \nu_i) \)
- \(E(\nu_i) \) or \(\text{Var}(\nu_i) \) can be specified as a function of DMU specific characteristics \(z_i \)
- Stochastic Frontier model allows for both
 1. Estimating individual efficiency
 2. Identifying effects DMU characteristics exert on (in)efficiency
Methods DEA

Data Envelopment Analysis

- DEA not a regression model
- Estimation of production possibility frontier by non-parametrically enveloping a given sample of data
- Major advantages as compared to SF-Models
 - No distributional assumptions required
 - Straight forward modeling of multi-output processes (→ no cost-efficiency approach required)
 - Not a causal model (→ endogeneity of inputs no issue)
- Various different DEA variants available
 - Assumptions about frontier (→ return to scale)
 - Efficient counterpart of observed DMU at frontier (→ orientation, treatment of slacks)
- Solving linear program yields eff. score θ_i for each DMU i
 1. $\theta_i^{in} \in (0, 1]$: possible prop. input reduction (input orient.)
 2. $\theta_i^{out} \in [0, \infty)$: possible prop. output increase (output orient.)
Graphical Illustration of DEA

- observed combinations of input 1 and input 2
Graphical Illustration of DEA

- **Observed data**
- **DEA-isoquant**
Graphical Illustration of DEA

- Observed data
- DEA-isoquant

Points: A, B, C
Graphical Illustration of DEA
Graphical Illustration of DEA
Graphical Illustration of DEA

- Observed data: Black dots
- DEA-isoquant: Red line

Points: A, B, C, D, D*
Graphical Illustration of DEA

\[\hat{\theta}_D = \frac{OD^*}{OD} \]
DEA & Explaining Efficiency Differentials

- DEA focussed on **measuring** efficiency
 - ✓ Distance to estimated frontier
 - ✓ Benchmarking major field of applications
- DEA **does not explain** efficiency differentials
- Two-step approach intuitive
 1. Estimating θ_i using DEA (\rightarrow yields certain share M/N of DMUs for which $\hat{\theta}_i = 1$ holds)
 2. Regressing $\hat{\theta}_i$ (or transformation of $\hat{\theta}_i$) on DMU characteristics z_i (OLS, censored regression, ...)
- Numerous applications of such two-step approaches
The argument of Simar and Wilson (2007)

Conventional two-step approaches inappropriate

1. Two-step approaches lack a well defined data generating mechanism

 ✓ Censored regression model not appropriate
 ✓ Probability mass at $\theta = 1$ artifact of efficiency measurement by DEA (finite sample problem)
 ✓ No strictly positive probability for DMU being located on true production possibility frontier (\neq estimated DEA frontier)

2. DEA generates complex (unknown) pattern of correlation between the estimated efficiency scores

 ✓ $\hat{\theta}_i$ with $i = 1, \ldots, N$ by construction not independent
 ✓ Misleading inference based on two-step approaches
 ✓ Naive bootstrap no solution because of boundary estimation nature of DEA

1. Constructing and simulating a ‘sensible’ data generating process
2. Generating artificial iid bootstrap samples from artificial data generating process
3. Construction standard errors and confidence through bootstrapping/simulation

1. Estimate θ_i with $i = 1, \ldots, N$ using DEA
2. Fitting $\hat{\theta}_i = \beta' z_i + \epsilon_i$ using truncated regression (ML) (\rightarrow obtain estimates $\hat{\beta}$ and $\hat{\sigma}_\epsilon$)
 - Efficient DMUs j ($\hat{\theta}_j = 1, j = 1, \ldots, M$) excluded
 - $\epsilon_i \equiv \epsilon_i + \zeta_i$ with $\zeta_i \equiv \hat{\theta}_i - \theta_i$
 - $\hat{\theta}_i^{\text{in}} \in (0, 1]$ (input orient.): right-truncation at 1
 - $\hat{\theta}_i^{\text{out}} \in [0, \infty)$ (output orient.): left-truncation at 1

3. **Loop** over the next three steps B times ($b = 1, \ldots, B$)
 3.1 **Draw** ε_i^b from $N(0, \hat{\sigma}_\varepsilon)$ with **left-truncation** (output orient.)
 or **right-truncation** (input orient.) at $(1 - \hat{\beta}' z_i)$ for $i = M + 1, \ldots, N$
 3.2 **Compute** $\theta_i^b = \hat{\beta}' z_i + \varepsilon_i^b$ for $i = M + 1, \ldots, N$
 3.3 Estimate $\hat{\beta}^b$ and $\hat{\sigma}_\varepsilon^b$ by **truncated regression** using the
 artificial efficiency scores θ_i^b as lhs-variable

4. **Construct standard errors** for $\hat{\beta}$ and $\hat{\sigma}_\varepsilon$ (conf. interv. for β
 and σ_ε) from **simulated distribution** of $\hat{\beta}^b$ and $\hat{\sigma}_\varepsilon^b$
The simarwilson command

- simarwilson implements above procedure in Stata
 - Except for step 1
 - Efficiency scores have to be obtained prior to running simarwilson (e.g. using dea)
 - Implemented procedure is ‘algorithm #1’ (Simar and Wilson, 2007)
 - Alternative (more involved) ‘algorithm #2’ requires looping over DEA
- simarwilson requires user written mata modul RTNORM
 Belotti and Ilardi (2010) to draw from the truncated normal distribution
Syntax of `simarwilson`

```
simarwilson depvar indepvars [if] [in], [ nounit reps(#) dots level(#) ]
```

- **`depvar`** is assumed to be an efficiency score estimated in a preceding step. `depvar` needs to be a numeric nonnegative variable.
- **`nounit`** indicates that `depvar > 1` holds for inefficient dmus, **`unit`** indicates that for indicates that `depvar < 1` holds for inefficient dmus. If `depvar` is is well coded, `simarwilson` recognizes if efficiency scores originate form an input or an output-oriented DEA. Specifying **`nounit`** is required for poorly coded data or if the data contain superefficient dmus.
- With **`dots`** specified one dot character is displayed for each bootstrap replication.
- **`reps(#)`** specifies the number of bootstrap replications to be performed. The default is 50. For simulating meaningful confidence intervals a much larger number of replications is required.
- **`level(#)`** set confidence level; default is `level(95)`.
Application & Data

- Regional efficiency of health care provision in Bavaria
 - simarwilson originates from project analyzing efficiency of nursing homes
 - Protected data (→ not well suited for illustrating the command)

- County level data (N = 96) for year 2006

- Output from health production
 - Regional survival rate (→ corrected for demographic composition; normalized to national average)

- Input to health production
 1. General practitioners (per 100 000 inhabitants)
 2. Medical specialists (per 100 000 inhabitants)
 3. Hospital beds (per 10 000 inhabitants)
Descriptives for Input & Outputs

```
. tabstat survival gps specialists beds, columns(statistics) statistics
> (mean sd median min max) format(%7.0g)
```

<table>
<thead>
<tr>
<th>variable</th>
<th>mean</th>
<th>sd</th>
<th>p50</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>survival</td>
<td>1.0075</td>
<td>.08002</td>
<td>.9978</td>
<td>.84532</td>
<td>1.2205</td>
</tr>
<tr>
<td>gps</td>
<td>77.829</td>
<td>11.603</td>
<td>74.392</td>
<td>57.792</td>
<td>109.98</td>
</tr>
<tr>
<td>specialists</td>
<td>93.127</td>
<td>62.39</td>
<td>66.709</td>
<td>16.497</td>
<td>245.78</td>
</tr>
<tr>
<td>beds</td>
<td>66.402</td>
<td>51.808</td>
<td>49.156</td>
<td>1.7513</td>
<td>227.16</td>
</tr>
</tbody>
</table>

- Variables that enter `dea`

- Substantial heterogeneity across counties
Empirical Application

Data

Results from DEA

. foreach direction in i o {
2. quietly: dea gps specialists beds = survival, rts(vrs) ort > (`direction´)
3. mat deascores = r(dearslt)
4. mat deascores = deascores[1...,"theta"]
5. sort dmu
6. cap drop deal
7. svmat deascores, names(dea)
8. rename deal deascore_`direction´
9. gen efficient_`direction´ = deascore_`direction´ == 1
10. }
options: RTS(VRS) ORT(IN) STAGE(2)
options: RTS(VRS) ORT(OUT) STAGE(2)

. tabstat deascore_i deascore_o efficient_i efficient_o, columns(statistics) st > atistics(mean sd median min max) format(%7.0g)

<table>
<thead>
<tr>
<th>variable</th>
<th>mean</th>
<th>sd</th>
<th>p50</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>deascore_i</td>
<td>.81203</td>
<td>.12388</td>
<td>.82317</td>
<td>.52548</td>
<td>1</td>
</tr>
<tr>
<td>deascore_o</td>
<td>1.1421</td>
<td>.09806</td>
<td>1.1424</td>
<td>1</td>
<td>1.3611</td>
</tr>
<tr>
<td>efficient_i</td>
<td>.125</td>
<td>.33245</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>efficient_o</td>
<td>.125</td>
<td>.33245</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Explanatory Variables

- County unemployment rate (*unemployment*)
- Women’s share in county population (*female*)
- Indicator for urban county (single town constituting a county, *urban*)
- Share of private hospitals in county hospital beds (*privatehosp*)

```
. tabstat `reglist´, columns(statistics) statistics(mean sd median min > max) format(%7.0g)

<table>
<thead>
<tr>
<th>variable</th>
<th>mean</th>
<th>sd</th>
<th>p50</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unemployment</td>
<td>.07069</td>
<td>.02311</td>
<td>.0675</td>
<td>.034</td>
<td>.132</td>
</tr>
<tr>
<td>female</td>
<td>.51058</td>
<td>.00881</td>
<td>.50778</td>
<td>.49683</td>
<td>.53575</td>
</tr>
<tr>
<td>urban</td>
<td>.26042</td>
<td>.44117</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>privatehosp</td>
<td>.16448</td>
<td>.29363</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```
(Naive) Censored Regression Analysis

▶ Estimated input oriented efficiency ($deascore_i$) at lhs

. tobit deascore_i `reglist`, ul(1)
Tobit regression

| Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|-----------|---|------|------------------------|
| unemployment | -1.498905 | .6192545 | -2.42 | 0.017 | -2.728798 | -.269012 |
| female | -4.483155 | 1.677094 | -2.67 | 0.009 | -7.814008 | -1.152302 |
| urban | -.0657136 | .0364946 | -1.80 | 0.075 | -.1381952 | .0067679 |
| privatehosp | .0188993 | .0358417 | 0.53 | 0.599 | -.0522853 | .090084 |
| _cons | 3.226821 | .8407472 | 3.84 | 0.000 | 1.557024 | 4.896618 |
| /sigma | .0976889 | .0078113 | | | .0821749 | .1132029 |

Obs. summary: 0 left-censored observations
84 uncensored observations
12 right-censored observations at deascore_i>=1
Conventional Truncated Regression Analysis

```
. truncreg deascore_i `reglist`, ul(1)
(note: 12 obs. truncated)

Fitting full model:
Iteration 0:  log likelihood = 102.21542
Iteration 1:  log likelihood = 102.32083
Iteration 2:  log likelihood = 102.32114
Iteration 3:  log likelihood = 102.32114

Truncated regression
Limit:   lower =  -inf  Number of obs =  84
        upper =  1  Wald chi2(4) =  91.26
Log likelihood = 102.32114  Prob > chi2 = 0.0000

|                     | Coef.  | Std. Err. | z     | P>|z|  | [95% Conf. Interval] |
|---------------------|--------|-----------|-------|------|----------------------|
| deascore_i          |        |           |       |      |                      |
| unemployment        | -1.120479 | .5156737 | -2.17 | 0.030 | -2.13118 -1.097767   |
| female              | -5.377884 | 1.407259  | -3.82 | 0.000 | -8.136062 -2.619706  |
| urban               | -.0403955 | .0289685  | -1.39 | 0.163 | -.0971728 .0163818   |
| privathosp          | -.0257407 | .0314323  | -0.82 | 0.413 | -.0873468 .0358655   |
| _cons               | 3.634028  | .7056814  | 5.15  | 0.000 | 2.250918 5.017138    |
| /sigma              | .0753927 | .0064815  | 11.63 | 0.000 | .0626893 .0880962    |

▪ Qualitatively similar results as from `tobit`

Harald Tauchmann (FAU) simarwilson June 26, 2015

. simarwilson deascore_i `reglist`, reps(500)

Simar & Wilson (2007) truncated regression
DMUs inefficient if deascore_i < unity

Number of obs. = 96
Number of truncated obs. = 12
Number of bootstr. reps. = 500
Wald-test (p-value) = 5.0e-18
Log-likelihood = 102.321

|          | Coef.  | Std. Err. | z     | P>|z|   | [95% Conf. Interval] |
|----------|--------|-----------|-------|-------|---------------------|
| deascore_i |        |           |       |       |                     |
| unemployment | -1.120479 | 0.4943829 | -2.27 | 0.023 | -2.089451 -1.1515059 |
| female     | -5.377884 | 1.289016  | -4.17 | 0.000 | -7.904308 -2.85146  |
| urban      | -0.0403955 | 0.0284727 | -1.42 | 0.156 | -0.096201 0.0154099 |
| privatehosp| -0.0257407 | 0.0275043 | -0.94 | 0.349 | -0.0796481 0.0281667 |
| _cons      | 3.634028  | 0.6554127 | 5.54  | 0.000 | 2.349443 4.918613  |
| sigma      |        |           |       |       |                     |
| _cons      | 0.0753927 | 0.0073111 | 10.31 | 0.000 | 0.0610632 0.0897223 |

▶ Only standard errors differ from `truncreg` (alg. #1)
▶ (In this application) just small deviation from `truncreg`
Empirical Application  Results

**simarwilson: output-oriented**

```
. simarwilson deascore_o `reglist´, reps(500)
warning: all efficiency scores deascore_o outside unit-interval, option unit ch
> angened to nounit
Simar & Wilson (2007) truncated regression
DMUs inefficient if deascore_o > unity
Number of obs. = 96
Number of truncated obs. = 12
Number of bootstr. reps. = 500
Wald-test (p-value) = 1.1e-08
Log-likelihood = 108.830

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|-------|-----------|------|-----|---------------------|
| deascore_o | | | | | |
| unemployment | 3.315517 | .5375734 | 6.17 | 0.000 | 2.261893 4.369142 |
| female | -1.191438 | 1.384378 | -0.86 | 0.389 | -3.90477 1.521893 |
| urban | -.0518028 | .0269731 | -1.92 | 0.055 | -.1046692 .0010636 |
| privatehosp | -0.0301374 | .0292012 | -1.03 | 0.302 | -.0873707 .0270958 |
| _cons | 1.543875 | .6942935 | 2.22 | 0.026 | .1830849 2.904665 |
| sigma | | | | | |
| _cons | .0739952 | .0070933 | 10.43 | 0.000 | .0600927 .0878977 |
```

- Results differ from input-oriented analysis
- Estimated effect for *female*, *urban*, and *privatehosp* change direction
- *urban* becomes significant (10% level)
**simarwilson**: output-oriented (inverted score)

```
. gen deascore_oi = 1/deascore_o
. simarwilson deascore_oi `reglist’, reps(500)
```

Simar & Wilson (2007) truncated regression
DMUs inefficient if deascore_oi < unity

|                | Coef.    | Std. Err. | z      | P>|z|    | [95% Conf. Interval] |
|----------------|----------|-----------|--------|--------|----------------------|
| deascore_oi    | -2.349899| .3703527  | -6.35  | 0.000  | -3.075777 -1.624021  |
| unemployment   | .8053843 | .9966054  | 0.81   | 0.419  | -1.147926 2.758695   |
| female         | .0374269 | .02103    | 1.78   | 0.075  | -.0037912 .078645    |
| urban          | .0247856 | .0212903  | 1.16   | 0.244  | -.0169425 .0665137   |
| privatehosp    | .6116713 | .4991997  | 1.23   | 0.220  | -.3667421 1.590085   |
| _cons          | .0530765 | .0051011  | 10.40  | 0.000  | .0430784 .0630745    |

Results qualitatively equivalent to using not inverted scores at *lhs*
Conclusions

- Using DEA-scores as *lhs*-variable in regression model questionable
- Simar & Wilson (2007) propose procedure that is not ad hoc but has a basis in statistical theory
  - Very influential in applied efficiency analysis
- `simarwilson` implements the procedure (alg. #1) in Stata
  - Also implementing alg. #2 worth considering
  - Complicated by alg. #2 requiring looping over DEA
- In many application results (inference) do not differ much from simple truncated regression


