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Multiprocess models. Motivation

• Multiprocess models are 

– extensions of simultaneous equation models to survival processes

– used by demographers who are concerned by issues of endogeneity and self-
selection. 

• In a series of influential papers, Lillard and his colleagues made a distinction between 
two forms of simultaneity (Lillard 1993, Lillard and Waite 1993)

– the hazard of an event depends on the hazard of another event (for instance, women
expecting their marriage to be short-lived should postpone motherhood)

– the hazard of an event depends on the outcome of another related survival process 
(endogeneity - for instance, divorce risks depend on the presence or number of 
children; but having children is the outcome of the timing of births, which might 
depend on expected divorce risks)

• Lillard and Panis (2003) developed the aML software for the purpuse of estimating 
systems of multilevel equations with correlated random intercepts.
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Multiprocess models

• Multiprocess models were originally invented as simultaneous equation models in 
which

– at least one of the equations is a hazard equation;  

– all equations include a random intercept (or heterogeneity term)

– the equation-specific random intercepts are correlated

• Note that survival models with shared frailty components are not multiprocess models, 
even when they have a multilevel structure.

– The multilevel structure is not important if cross-equation correlation of residuals 
can be modeled without the help of random intercepts (Bartus and Roodman 2014).

– Models with shared frailty for repeated events are of course important tools to 
control for sample-selection bias arising from the present of unobserved personality
traits (Kravdal 2001)
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Two classes of MLMP models

• Simultaneous equations for hazards:

ln h1 = λ1 ln h2 + β1 X 1 + u1

ln h2 = λ2 ln h1 + β2 X 2 + u2

• Hazard models with endogenous dummy explanatory variable(s):

ln h = α1 y + β1 X 1 + u1

y* =   β2 X 2 + u2

where y is the observed realization of the latent continuous variable y*

• In both models, 

– the random effects (the us) might be correlated (this will be discussed later)

– values of X might change over spells within individuals, and the us are random 
effects (subscripts for individuals and spells are omitted)

– identification of structural parameters require the presence of excluded instruments 
(this will be discussed later)
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Why these two classes?  

• The most general model of systems of equations including both observed qualitative or
censored endogenous variables and the underlying latent endogenous variables is given
by:

ln y1
* = λ1 y2

* + α y2 + …

ln y2
* = λ2 y1

* + α y1 + …

which formalizes the idea that a latent outcome might depend on another latent 
outcome and the observed realization thereof.

• However, the general model is logically inconsistent. Logically consistent models 
satisfy the following restrictions (see Maddala 1983):

R1: λ1 α2 = λ2 α1 = 0
R2: α1 α2 = 0

• The simultaneous equation model obtains if the αs are restricted to zero.

• The other model obtains if the λs  and one of the αs are restricted to zero.
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Estimation with Stata

• The official gsem

– allows one to estimate multilevel equations with correlated random intercepts

– supports several parametric survival models

– supports logit, mlogit, and cloglog links, which enable one to estimate discrete-time
models, competingr-risk models, and models with endogenous qualitative 
predictors

• The user-written cmp command

– allows one to estimate systems of seemingly unrelated recursive equations with 
jointly distributed Gaussian error terms

– supports interval-censored regression models, which are just lognormal survival 
models

– supports probit and multinomial probit models, which enable one to estimate 
discrete-time models and models with endogenous qualitative regressors
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Simultaneous equations for hazards

• The structural model for two equations is given by:

ln h1 = λ1 ln h2 + β1 X 1 + u1

ln h2 = λ2 ln h1 + β2 X 2 + u2

• Suppose there are excluded instruments z1 and z2 in X1 and X2. Then the structural 
model can be rewritten as

ln h1 = λ1 ln h2 + β1 X + γ1 z1 + u1

ln h2 = λ2 ln h1 + β2 X + γ2 z2 + u2

• The reduced-form model, which can consistently be estimated, is

ln h1 = π10 X + π11 z1 + π12 z2 + v1

ln h2 = π20 X + π21 z1 + π22 z2 + v2

• The vs are linear combination of all us. Hence, the vs are correlated.
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Identification of structural parameters

• Ideally, the estimation of the reduced-form model should be followed by the estimation
of structural parameters. 

• In the presence of excluded instruments, the effect of latent hazards can be estimated as
follows:

λ̂1 = π̂12 / π̂22

λ̂2 = π̂21 / π̂11

• Using these estimates, the structural parameters can be recovered as

β̂1 = π̂10− λ̂1 π̂20

β̂2 = π̂20 − λ̂2 π̂10

• These nonlinear combinations and the standard errors thereof can easily be computed 
with the nlcom command. 

11 / 52



Example

• We will use a sample dataset on American women, which is shipped with the statistical
software aML  (Lillard and Panis 2003). 

• The data contains information on marital births and marriage durations. The slightly 
modified and Stata-compatible version is obtained as follows:

use "http://web.uni-corvinus.hu/bartus/stata/divorce.dta"

• The data has a multilevel structure: conception episodes are nested within marriages, 
and marriages are nested within individuals. 

• We select the second conception episode from within first marriages.

• Objective: joint modeling of conception and marital dissolution processes
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Multispell data structure 

• The hazard of conception and separation might change over conception episodes. We 
split conception episodes into smaller intervals within which these hazards might be 
assumed to be constant.

• Note that mardur measures the duration of the marriage at the beginning of each 
conception episode, and time is the duration of marriage when an event happens

gen dur = time-mardur
stset dur , fail(sep==1) id(id)
stsplit bdur , at(1 2 5 10)

// Corrections
replace dur = _t - _t0
replace mardur =  mardur + _t0
replace birth  = 0 if sep==.
replace sep    = 0 if sep==.

// rename sep, to avoid confusions
rename sep divorce
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Multispell and multiprocess data structure

• mardur and bdur measures time at the beginning of each spell

• dur measures the length of the spell

• The process specific survival times are mardur+dur and bdur+dur for the divorce and 
birth processes, respectively

id mardur bdur dur birth divorce

1164 3.083 0 1 0 0

1164 4.083 1 2 0 0

1164 5.083 2 2.083 1 0

1166 7.912 0 1 0 0

1166 8.912001 1 1.123 0 1
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The model

• We study the following structural model:

ln hBirth = λ1 ln hDivorce + β1 hereduc + γ1 age + u1

ln hDivorce = λ2 ln hBirth + β2 hereduc + γ2 mardur + u2

• Variables

– hereduc is women's level of education (computed from years of schooling)

– age is the age at the beginning of a spell, centered around 30

– mardur is the duration of the marriage at the beginning of a spell
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Syntax of gsem I.

• Let time and t0 denote the surival time and the entry time. Let y be the failure variable 
indicating the occurrence of events. Finally, d denotes a distribution.  

• The essence of gsem syntax for multilevel survival model is:

gsem ( time <- varlist U, family( d , lt(t0) fail(y) ) ) ///
[ , options ]

• The gsem syntax for systems of multilevel survival models is then

gsem ///
( time1 <- varlist1 U1, family( d1 , lt(t02) fail(y1) ) ) ///
( time2 <- varlist2 U2, family( d2 , lt(t01) fail(y2) ) ) ///
[ , options ]
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Estimation with gsem

• In this example, we chose the exponential distribution. (We thus assume that hazards 
are constants within the spells, after controlling for age and marriage duration)

• Exponential hazard models are just Poisson models of events, provided that the 
duration of the spell is added as an exposure variable.

• The gsem syntax for systems of exponential survival models is then

gsem ///
( y1 <- varlist1 U1, poisson exposure(dur1) ) ///
( y2 <- varlist2 U2, poisson exposure(dur2) ) ///
....

where dur1, dur2, …. measure the process-specific durations.
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Estimation with gsem

• Model specification with the help of macros:

global xvars ib2.hereduc age mardur
global model poisson exposure(dur)

• First, we estimate the two equations separately, that is, we constraint the covariance of 
the random effects to zero:

gsem ( birth   <- $xvars U[id] , $model ) ///
     ( divorce <- $xvars V[id] , $model ) ///
     ,   vce(cluster id) cov( U[id]*V[id]@0 )
est store sep

• Then, we estimate the true multiprocess models wih correlated random effects:

gsem ( birth   <- $xvars U[id] , $model ) ///
     ( divorce <- $xvars V[id] , $model ) ///
     ,   vce(cluster id) 
est store joint

18 / 52



gsem results I. Coefficients

------------------------------------------------
            Variable |    sep         joint     
---------------------+--------------------------
birth                |
             hereduc |
          <12 years  |  -0.389***    -0.391***  
          16+ years  |   0.066        0.068     
                 age |  -0.095***    -0.095***  
              mardur |  -0.073***    -0.076***  
               _cons |  -1.969***    -1.972***  
---------------------+--------------------------
divorce              |
             hereduc |
          <12 years  |  -0.331**     -0.336**   
          16+ years  |  -0.184       -0.203     
                 age |  -0.064***    -0.062***  
              mardur |   0.085***     0.091***  
               _cons |  -4.520***    -4.722***  
---------------------+--------------------------

 legend: * p<0.05; ** p<0.01; *** p<0.001

This is an edited output. Coefficients of the latent variables are 1s and omitted
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gsem results II. Random effects

------------------------------------------------
            Variable |    sep         joint     
---------------------+--------------------------
var(U[id])           |
               _cons |   1.007***     1.018***  
---------------------+--------------------------
var(V[id])           |
               _cons |   1.109***     1.515**   
---------------------+--------------------------
     cov(V[id],U[id])|
               _cons |               -0.216*    
------------------------------------------------

 legend: * p<0.05; ** p<0.01; *** p<0.001

• Random effects are negatively correlated

• The negative correlation suggests that the effects of the latent hazards have opposite 
signs….. 
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Estimation of the effect of latent variables

Effect of the separation hazard on the conception hazard

nlcom _b[birth:mardur] / _b[divorce:mardur]

----------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|    
-------------+--------------------------------------------------------
       _nl_1 |  -.8309784   .2362941    -3.52   0.000   
----------------------------------------------------------------------

Effect of the conception hazard on the separation hazard

nlcom _b[divorce:age] / _b[birth:age]

----------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z| 
-------------+--------------------------------------------------------
       _nl_1 |   .6587895   .1337735     4.92   0.000    
----------------------------------------------------------------------
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Estimation of structural coefficients

Structural effect of higher education on birth risks

nlcom _b[birth:3.hereduc] - ///
( _b[birth:mardur] / _b[sep:mardur] ) * _b[sep:3.hereduc]

--------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     
-------------+------------------------------------------------------------
       _nl_1 |   -.1000164   .1629748    -0.61   0.539
--------------------------------------------------------------------------

Structural effect of higher education on divorce risk

nlcom _b[sep:3.hereduc] - ///
( _b[divorce:age] / _b[birth:age] ) ) * _b[birth:3.hereduc]

       
-------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|    
-------------+---------------------------------------------------------
       _nl_1 |   -.2478165    .184713    -1.34   0.180 
--------------------------------------------------------------------------
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Flexibility of gsem

• We could have estimated Weibull or gamma or lognormal survival models.

• These models require process-specific survival times as dependent variables. In our 
example, these variables are

gen tbirth   = bdur   + dur
gen tdivorce = mardur + dur

• A model in which lognormal and Weibull duration dependence characterizes the 
respective birth and separation processes would be:

global birth   family( lognormal , fail(birth)   lt(bdur)    )
global divorce family( weibull   , fail(divorce) lt(mardur) )
gsem ( tbirth   <- $xvars U[id] , $birth   ) ///
     ( tdivorce <- $xvars V[id] , $divorce ) ///
     ,   vce(cluster id) 
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System of lognormal survival models. cmp 

• Lognormal survival models assume that the hazard first sharply increases then slowly 
decreases with survival time. Models of this sort can easily be estimated with  cmp .

• Lognormal models are just interval-censored regressions. Interval regression models 
require two dependent variables, labeled the lower and upper limits, which define the 
intervals within which the true value of log duration lies.

• For the birth process, the lower and upper limits are generated as follows:

gen blo = ln(bdur+dur)
gen bhi = blo if birth==1

• For the marital disruption process, the lower and upper limits are

gen mlo = ln(mardur+dur)
gen mhi = mlo if divorce==1
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Syntax of cmp. A selective intro I.

• Single equation lognormal survival model using single-spell data 

cmp ( label : tlo thi = varlist  ) ///
, ind  icators(7)  [ options ]

– label :  is optional but useful: it instructs cmp to use birth to label the equation.

– tlo and thi indicate the lower and upper limits of survival time. 

– The indicators(7) option means that this equation is interval regression

• Single equation lognormal survival model using multi-spell data 

cmp ( label : tlo thi = varlist , trunc(ln(t0) .) ) ///
, ind  icators(7)  [ options ]

– t0 is the variable recoding the entry time and the trunc( ) option handles left-
truncation of survival times
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Syntax of cmp.  A selective intro II.

• The syntax for estimating two lognormal models jointly using multi-spell data is

cmp ( label1 : tlo1 thi1 = varlist1 , trunc(ln(t01) .) ) ///
    ( label2 : tlo2 thi2 = varlist2 , trunc(ln(t02) .) ) ///
    , ind  icators(7 7)  [ options ]

• The indicators(7  7) option specifies that the first and second equations are lognormal 
ones.

• The dependent and explanatory variables, as well as truncation limit experssions are 
equation-specific.
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Syntax of cmp in our example 

• First, we estimate the two equations separately, that is, we constraint the covariance of 
the random effects to zero:

cmp  (birth:   blo bhi = $xvars , trunc(ln(bdur) .)  ) ///
     (divorce: mlo mhi = $xvars , trunc(ln(mardur) .)) ///
     , ind(7 7) vce(cluster id)  cov(indep)
est store sep

• Then, we estimate the true multiprocess models wih correlated random effects:

cmp  (birth:   blo bhi = $xvars , trunc(ln(bdur) .)  ) ///
     (divorce: mlo mhi = $xvars , trunc(ln(mardur) .)) ///
     , ind(7 7) vce(cluster id)
est store joint
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cmp results

------------------------------------------------
            Variable |    sep         joint     
---------------------+--------------------------
birth                |
             hereduc |
          <12 years  |  -0.049       -0.036     
          16+ years  |  -0.255***    -0.270***  
                     |
                 age |   0.032***     0.033***  
              mardur |   0.112***     0.115***  
               _cons |   1.775***     1.794***  
---------------------+--------------------------
divorce              |
             hereduc |
          <12 years  |  -0.022        0.020     
          16+ years  |   0.210*       0.289*    
                     |
                 age |   0.032***     0.036**   
              mardur |   0.072***     0.072***  
               _cons |   3.074***     3.442***  
---------------------+--------------------------
(output omitted)
---------------------+--------------------------
atanhrho_12          |
               _cons |               -0.580***  
------------------------------------------------
        legend: * p<0.05; ** p<0.01; *** p<0.001
        

28 / 52



Estimation of the effect of latent variables

Effect of latent time to divorce on the time to conception

. nlcom _b[birth:mardur] / _b[divorce:mardur]

--------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     
-------------+------------------------------------------------------------
       _nl_1 |   1.593011   .5752617     2.77   0.006   
--------------------------------------------------------------------------

Effect of latent time to conception on the time to divorce

. nlcom _b[divorce:age] / _b[birth:age]

--------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|    
-------------+------------------------------------------------------------
       _nl_1 |   1.076084   .4313306     2.49   0.013 
--------------------------------------------------------------------------
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Estimation of structural coefficients

Structural effect of higher education on the time to birth

nlcom _b[birth:3.hereduc] - ///
(  _b[birth:mardur] / _b[divorce:mardur] ) * _b[divorce:3.hereduc]

--------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     
-------------+------------------------------------------------------------
       _nl_1 |  -.7307283   .2926678    -2.50   0.013 
--------------------------------------------------------------------------

Structural effect of higher education on the time to divorce

nlcom _b[divorce:3.hereduc] - ///
(  _b[divorce:age] / _b[birth:age] ) * _b[birth:3.hereduc]

--------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|    
-------------+------------------------------------------------------------
       _nl_1 |   .5799594    .187107     3.10   0.002
--------------------------------------------------------------------------
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Summary of cmp results

• Higher education reduces the time to second births, and increases the time to divorce.

• These effects are understated in the reduced-form models

• The correlation between the residuals is negative (like in the gsem output)

• There is a positive relationship between the latent waiting times

– This is counter-intuitive, and cannot explain the negative correlation of the 
residuals

– Remember these effects are estimates, based on the reduced form coefficients of 
marriage duration.

– The problem is that marriage duration decreases the risk of divorce in the cmp 
model – in contrast, marriage duration increases divorce risks in the gsem model.

– The negative effect of marriage duration on the hazard of divorce might be an 
artefact of imposing lognormal duration dependence on the divorce process.
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What about estimating discrete-time survival models jointly?

• The example presented above makes use of parametric continuous-time models.

• In theory, both gsem and cmp are able to estimate discrete-time survival models: both 
support the probit link function, and gsem also supports the logit link function.

• However, the discrete-time modeling framework is not the best choice for 
simultaneous survival processes:

– Different processes rarely or never terminate at the same time (empty cell problem)

– The problem is that the estimated correlation between the residuals will be close to 
-1, whatever the true correlation is.

– Even when there are no empty cells, some simulation evidence suggests that 
bivariate probit estimates are not numerically reliable if events are rare.
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The model

• The model:

ln h = α1 y + β1 X + u1

y* = γ z  β2 X + u2

where 

– y is a dummy variable, which is the observed realization of the latent variable y*

– the random effects (the us) are correlated 

– z is the excluded instrument, which enables identification, provided that the random
effects are allowed to be correlated, 
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Example

• We use the child mortality dataset shipped with aML.  Data has multilevel structure: 
observations about children are nested within mothers.

• Outcome we wish to study: death hazard

• Endogenous dummy variable: hospital delivery

• Common explanatory variables (the Xs): mother's education.

• Excluded instrument in the equation explaining hospital delivery: distance to nearest 
hospital

• The slightly modified and Stata-compatible version is obtained as follows:

use "http://web.uni-corvinus.hu/bartus/stata/children.dta"
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Relevance of this example for labor economists

When you read.. … you might think of...

 Mother  Unemployed person

 Child  Unemployment spell

 Death  Finding employment

 Time to death  Length of unemployment spell

 Hospital delivery  Participation in a program

 Distance to nearest hospital  Distance to the place of  the program 

 Mother's education  Persons's education

The effect of hospital delivery on 
death risk should be negative

The effect of program participation on the 
hazard of finding a job should be positive
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Estimating a Weibull model with gsem

• We wish to estimate a Weibull model of time to death. The model specification:

global death     hospital i.edu 
global hospital  distance i.edu 
global model     family( weibull  , fail(death)  )

• First, we fit the two equations separately :

gsem    (age      <-  $death    U[id] , $model  ) ///
        (hospital <-  $hospital V[id] , probit )  ///
        , vce(cluster id) cov( U[id]*V[id]@0 ) 
est store sep

• Then, we estimate the true multiprocess models wih correlated random effects:

gsem    (age      <-  $death    U[id] , $model  ) ///
        (hospital <-  $hospital V[id] , probit )  ///
        , vce(cluster id) 
est store joint
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gsem results I. Coefficients

------------------------------------------------
            Variable |    sep         joint     
---------------------+--------------------------
age                  |
            hospital |  -0.421*      -0.719**   
                educ |
        high school  |  -0.325       -0.247     
            college  |  -2.125**     -1.983**   
                     |
               U[id] |   1.000        1.000     
                     |
               _cons |  -2.471***    -2.441***  
---------------------+--------------------------
hospital             |
            distance |  -0.034       -0.034     
                educ |
        high school  |   1.051***     1.045***  
            college  |   1.639***     1.639***  
                     |
               V[id] |   1.000        1.000     
                     |
               _cons |  -1.091***    -1.089***  
---------------------+--------------------------
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gsem results II. Ancillary parameters and random effects

------------------------------------------------
            Variable |    sep         joint     
---------------------+--------------------------
age_ln_p             |
               _cons |  -1.235***    -1.230***  
---------------------+--------------------------
var(U[id])           |
               _cons |   0.595*       0.666*    
---------------------+--------------------------
var(V[id])           |
               _cons |   0.462**      0.471**   
---------------------+--------------------------
     cov(V[id],U[id])|
               _cons |                0.247     
------------------------------------------------
        legend: * p<0.05; ** p<0.01; *** p<0.001
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Interpretation

• Even when the correlation of random effects is not significant, hospital delivery has a 
larger negative effect in the joint model. Similar finding can be found in the aML 
manual.

• Interpretation:

– Hospital delivery has a large negative effect on the hazard of death

– Women who are aware that the baby has a high death risk have large propensity to 
chose hospital over home delivery.

– The self-selection of problematic births into hospitals has the consequence of 
understating the negative effect of hospital delivery in the separate model. 
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Estimating a discrete-time model with cmp

• The main advantage of discrete-time models over continuous-time parametric models 
is that the functional form for duration dependence might be modeled.

• Changing the dataset into a discrete-time dataset. Each observation refers to a person-
year. Age is age at the beginning of a person-year.

replace age = ceil(age)
gen double tid = _n
expand age
sort tid
qui by tid : replace age = _n-1
qui by tid : replace death = 0 if  _n<_N
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Discrete-time model with an endogenous dummy. cmp

• We experiment with a curvilinear duration dependence. The model specification:

global death     hospital i.edu c.age##c.age
global hospital  distance i.edu 

• First, we estimate the two equations separately, that is, we constraint the correlation of 
the underlying residuals to zero:

cmp  (death = $death )  (hospital = $hospital ) ///
     , ind(4 4) vce(cluster id)  cov(indep)
est store sep

Here the indicator(4 4) option means that both equations are probit

• Then, we estimate the true multiprocess models wih correlated residuals:

cmp  (death = $death )  (hospital = $hospital ) ///
     , ind(4 4) vce(cluster id)
est store joint
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cmp results 

------------------------------------------------
            Variable |    sep         joint     
---------------------+--------------------------
death                |
            hospital |  -0.137       -0.068     
                educ |
        high school  |  -0.124       -0.142     
            college  |  -0.862***    -0.893*    
                 age |  -0.233***    -0.233***  
         c.age#c.age |   0.006***     0.006***  
               _cons |  -1.407***    -1.418***  
---------------------+--------------------------
hospital             |
            distance |  -0.043*      -0.043*    
                educ |
        high school  |   0.814***     0.814***  
            college  |   1.312***     1.312***  
               _cons |  -0.785***    -0.785***  
---------------------+--------------------------
atanhrho_12          |
               _cons |               -0.040     
------------------------------------------------
        legend: * p<0.05; ** p<0.01; *** p<0.001
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Interpretation

• Again, the correlation of the residuals lack statistical significance

• In contrast to the previous gsem results, we do not find evidence that hospital delivery 
would reduce the probability of dying in a given year.

• This presentation is not about a serious research into mortality, thus I do not discuss 
this problem further....
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Survival models with sample selection

• Suppose we are interested in examining the relationship between mother's education 
and child mortality using a sample of children who were born in hospitals.

• The sample of those children is selective. Sample selection bias can be controlled by 
estimating the survival model jointly with the probit model of hospital choice.

gen ageh = age if hospital==1
gsem    (ageh     <-  $death    U[id] , $model  ) ///
        (hospital <-  $hospital V[id] , probit )  

cmp  (death = $death )  (hospital = $hospital ) ///
     , ind("hospital*4" 4)

• Determination of the relevant estimation sample is automatic in gsem. In contrast, it is 
the task of the user with cmp. The indicators() option allows expressions; observations
where an expression evaluates to zero will be not used when estimating the equation to 
which the expression belongs.
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Survival models and panel attrition

• Suppose the data on survival of children is collected in a panel survey including three 
waves. You need the third wave to observe a sufficient number of deaths.

• There is panel attrition which is not random. Dummies w3 and w2 indicate 
participation in waves 2 and 3, respectively. Participation in that waves is predicted 
using variables from wave 1 and  wave 2, respectively. 

• Survival models might be estimated jointly with probit models of panel continuation 
(Lillard and Panis 1998). A model might be

gsem    (age <-  $death         U[id] , $model  ) ///
        (w3  <-  varlist_wave2 V2[id] , probit )  ///     
        (w2  <-  varlist_wave1 V1[id] , probit )  ///

cmp     (death = $death )   ///
        (w3  = varlist_wave2 )  ///     
        (w2  = varlist_wave1 )  ///
        , ind("w3*4" "w2*4" 4)
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Models with endogenous qualitative variables

• Suppose there are both public and private hospitals. Now hospital has three categories: 
0 if home delivery; 1 if delivery in a public hospital; and 2 if delivery in a private 
hospital.

• The mortality model with an endogenous multinomial variable has the following 
structure:

gsem (age        <-  $death    U[id]  , $model  ) ///
     (1.hospital <-  $hospital V1[id] , mlogit )  ///
     (2.hospital <-  $hospital V2[id] , mlogit )  

cmp  (death = $death )  (hospital = $hospital , iia ) ///
     , ind(4 6)

• In the cmp sytax, 

– suboption iia enforces the independence of irrelevant alternatives assumption

– 6 in the indicator options refers to multinomial probit.
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Survival models with endogenous switching

• Suppose that the effect of explanatory variables depend on the type of delivery. 

• The examples assume if hospital had three categories: home delivery (0), delivery in a 
public hospital (1), and delivery in a private hospital (2).

• Estimation of the swithing model with gsem would look like:

separate age , by(hospital)
gsem (age0 age1 age2  <-  $death U[id] , $model  ) ///
     (1.hospital  <-  $hospital V1[id] , mlogit )  ///
     (2.hospital  <-  $hospital V2[id] , mlogit )  

• This model is very demanding computationally..... it might be the case that gsem will 
not find the ML solution.
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Survival models with endogenous switching

• Estimation with cmp:

cmp  (death = $death ) (death = $death ) (death = $death ) ///
     (hospital = $hospital , iia )                         ///
,ind("(hospital==0)*4" "(hospital==1)*4" "(hospital==2)*4" 6) 

• The first three equations seems to be the same – they are, but they will be estimated in 
three different samples, identified by the values of hospital (mind the indicators() 
option!)

• The three survival equations are estimated jointly with a multinomial probit of hospital 
choice.

• cmp can estimate the swithing model, but one should control the simulated likelihood 
estimation procedure, in general, and the number of GHK draws, in particular. (One 
should specify the ghkdraws(#) option, using a relatively small number.)
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Conclusions

• Recently, Stata became able to estimate various forms of multiprocess models:

– Both cmp and gsem in Stata 14 can handle truncated dependent variables

– gsem in Stata 14 supports various parametric survival models

• There is, however, room for improvement

– there are multiprocess models which include more than two equations

– I experienced serious „initial values not feasible” and convergence issues when I 
tried to estimate such models with gsem.

– cmp has less problems with systems including three or even more equations

• Can complicated models be estimated with the bayesmh command? 

Multiprocess models including several equations were successfuly estimated with 
MLwiN software, which implements MCMC (Steele etal. 2005)
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