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Example 1 : Bone marrow transplantation for leukemia

Sibling donor bone marrow transplants matched on human
leukocyte antigen.

The data includes information on 137 transplant patients on
« time to death, relapse or lost to follow-up (t df s),
 indicators of relapse and death (r el apse,trm,
 Indicator of treatment failure (df s=r el apse|t r m.

. death or
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relapse
death Iin
/ remission
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Three factors that may be related to the prognosis:
e di sease;
1-Acute Lymphocytic Leukemia (ALL),

2-Low risk Acute Myeloid Leukemia (AML) and
3-High risk AML,

» the French-American-British Disease grade for AML
(f ab =1 if AML and Grade 4 or 5, 0 otherwise), and

e recipient age at transplant (age).



Time-to-event data

Survival analysis : At most one event per individual.
Examples: Mortality, disease incidence.

Alive > | Dead

Data in standard setting:

X X

T T >
0 end of study
Right censoring: We observe either

- the event before the end-of-study.

- or the individ is event free at the end-of-study.



Independent right censoring:

A basic requirement,
those still at risk at time t in our study should be
representative for the population at time t.

or, equivalently,

those being censored at time t should be representative
for the population at risk at time t.

Note,

e Some denote the condition non-informative censoring

* In a regression analysis the independent censoring
should be though of as for given covariates.



Describing the prognosis

Because of incomplete follow-up cause by the censoring, we
rarely use basic descriptive and analytic methods such as
simple averages for time-to-event data.

3 basic methods are often used to quantify the prognosis

e The survival function ; S(t) = P(T>t), the probability of
being event-free (alive) at time t, or equivalently
F(t)=CIP(t)=1-S(t) = P(T=<t), the risk of event before time t.

 The hazard function ; h(t)=P(T <t+d | T=t)/d, the probability
of event (death) before t+d given alive at t, for a small time
unit d.

e The restricted mean ; E[min(T,t,)] for at fixed time t,,
or the expected number of years lost  before time t,



Example 2 — Evaluating a new drug

An analytic strategy often seen in the epidemiological and
clinical literature.

Setting : Comparing a new drug to a control drug.
Data: time to event.

Cumulative incidence

Probability

New drug
——— Control




The analytic strategy involves, all available in Stata:

Step 1. Estimating the cumulative incidence proportions:
stset time, failure(failure==1)
sts list, at(0 1) by(group) failure
CIP(new): 32% (95% CI: 28% - 36%)
CIP(control): 62% (95% CI: 58% - 66%).

Step 2. Testing for a difference between the two groups.
sts test group

Log-rank test: p<0.001.

Step 3. Quantifying the difference.
stcox i.group

HR: 2.9 (95% CI: 2.4 - 3.6).

The analysis in step 1 focus on CIP, whereas the analyses
In step 2-3 focus on rates. The analyses in step 2-3 are
based on the assumption of proportional rates.

Why this analytic strategy?



Let's take a closer look of the sts list command.

. sts list, at(0 1) by(group) failure

Beg. Failure Std.
Time Total Fail Function Error [95% Conf. Int.]
group=1
O O O 0.0000 : : :
1 361 139 0. 2780 0. 0200 0.2409 0.3195
group=2

O O O 0.0000 : : :
1 182 318 0. 6360 0. 0215 0.5939 0.6781

The standard error (se) is Greenwood’s formula for the CIP,
although the confidence intervals are based on the log-log
transformation. So

se,, (CIP, —CIP,) = \/se(CIP,)? +se(CIP,)?

=/0.0200? +0.02152 = 0.0294 9




The confidence based on the Kaplan-Meier estimate
Cl., (CIP, —-CIP,) =0.6360 -0.2780 +1.96 [0.0294
=0.3580, CI=(0.3004,0.4156)
Comments

* The confidence interval for the relative risk is not easily
estimated using the information from sts list

command. The user have to apply the 6-method.

 Difficult to adjust for effect of covariates.
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We may compute a confidence interval for the risk
difference using the pseudo-observation method

The pseudo value method creates a transformation of the
time-to-event data given by the change in the Kaplan-Meier
estimate when leaving out a single observation from the
data set.

We then use these pseudo observations in a regression
analysis — Generalized estimation equations (GEE) or
Generalized linear models (GLM) - as if we had time-to-
event data with no censoring.
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. stpsurv , at(1) failure
Computing pseudo observations (progress dots indicate percent

completed)

—memtemm ] oeeetes 2 eetees Bt 4 4= 5
.................................................. 50
.................................................. 100
Generated pseudo variable: pseudo

.glm pseudo i.group, link(id) vce(robust) noheader

Iteration O: log pseudolikelihood = -652.95466
| Robust
pseudo | Coef. Std. Err.  z  P>|z| [95% Conf.Interval]
________ e
2.group | .358 .0294161 12.17 0.000 .3003456 .4156544
_cons| .278 .0200458 13.87 0.000 .238711 .317289

Cl.,(CIP, -CIP,) =0.3580, Cl =(0.3004,0.4156)

Almost the same as calculation by hand from the Kaplan-
Meier estimate.

12




Comment .

Based on simulations, the pseudo value method is newer
worse in terms of coverage and mean square error than
the Kaplan-Meier for comparing two groups?!. One
example;

Sample size: 90

97

95

Pseudo observation

93 - r\,

Cl coverage (%)

N Kaplan-Meier

89 —

87 /

5 10 15 20 25
Average number of events

!Reference: Hansen, Andersen, Parner. Events per variable for risk

differences and relative risks using pseudo-observations. Lifetime Data
Analysis 2014. 13



So why this analytic strategy in Example 27

Analyses of CIP have not been available in standard
statistical packages.

Most analyst censor at around 2000;

Pseudo observations
Kaplan and Meier Cox Andersen, Klein, et al

X X X
0 1958 1972 ond of study 2003

>
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The pseudo value method

Let T,,..., T, denote time-to-event outcomes with explanatory
variables X,,..., X

nl

We are interested in a parameter of the form
6 =E[f(T,)]
The function could be multivariate, for example
f(T) = (B(T),efy (1)) = (T, >1,),...,1(T, >t,)
for a series of time points t,,..., ty, iIn which case
8=(,..,68,) =(s(t,),...,.S(t,))

where S(+) is the survival function of T..
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We are interested in a regression analysis of 6=EJ[f(T;)] on X
of the form

g(ELF(T) | X]) =B X
where g is a link function.
Right-censoring prevents us from observing all the T,.

Suppose that 6 is an approximately unbiased estimator of
the marginal mean 6 = E[f(T;)] which may be computed from
the sample of right censored observations.

If f(T,) = I(T, > t) then 6 = S(t) may be estimated using the
Kaplan-Meier estimator.

The ith pseudo-observation is now defined as
6 =nlB-(n-1)8,

Where 4. is the “leave-one-out” estimator for 8 based on all
observation but the ith. 10



Estimates of the (’s are obtained using the estimating
equation

Z[a 9 (f" X)] (8 -8 X)) =2 U (B V(B =0.

0B°

Vi is a working covariance matrix.
A sandwich estimator is used to estimate the variance

(3) = Z[ag‘(ﬁ X)) I_l[ag‘g/; xi)j

Var(U(5)) = 2 U (8)U;(8)

Var (B) = 1(B)Var(U(BHI(B)™

The presented variance estimate is slightly conservative.
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Ccomments :

 When V, is a independence working covariance matrix
the estimation procedure corresponds to fitting a
generalized linear model with robust variance
estimation.

* Events per variable rule of thumb?;
RD: event per variable=10,

RR: event per variable=15.
Hansen, Andersen, Parner. (2014).

 We need not understand why it work.
Its rather complicated. As for the Cox regression.
We need to understand how it works.

A good reference is

Klein JP, Logan B, Harhoff M, Andersen PK. Analyzing survival
curves at a fixed point in time. Stat Med. 2007;26(24):4505-19.
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« When f(T,)) =I(T,>1)
g(E[f (T) | X;D)=9(P(, >t] X))
=a(p;)
=5 B 0K+ + B TXK

and in practice we often consider the two link functions
g9(p)=p and g(p)=log(p).

19



Stata syntax

Pseudo-values for the survival function, the mean survival
time and the cumulative incidence function for competing
risks.

stpsurv [if] [in] , at(humlist)
[generate(string) failure]

stpmean [if] [in] , at(numlist)
[generate(string) conditional]

stpci varname [if] [in] , at(humlist)
[generate(string)]

You must stset  your data first.
Frequency weights are allowed in stset command.

In stpci  an indicator variable for the competing risks
should always be specified.
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Example 1 : Bone marrow transplantation for leukemia
Disease free survival probabilities for the single prognostic
factor FAB at 530 days.

death or
relapse

Alive —>

Survival

Probability

—— Fab=1
-—— Fab=0

0 500 1000 1500 2000
Time (days)



. use bmt, clear
. stset tdfs, failure(dfs==1)
*** gutput omitted ***

. stpsurv , at(530)
*** gutput omitted ***

. * GLM analysis of the pseudo values at 530 days.
. glm pseudo i.fab , fam(gauss) link(id) vce(robust) noheader

Iteration O: log pseudolikelihood =-96.989802
| Robust
pseudo| Coef. Std. Err. z P>|z| [95% Conf.Interval]
_______ e
1.fab | -.2080377 .0881073 -2.36 0.018 -.3807248 -.0353506
_cons | .5406774 .0522411 10.35 0.000 .4382867 .6430681

Model: p, = S,(530) = B, + B, - FAB,
We estimate the risk difference for FAB by RD=-0.208
(95% CI:-0.381,-0.035).
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. glm pseudo i.fab , fam(gauss) | i nk(1 og) vce(robust) eform

Iteration O: log pseudolikelihood =-123.14846
Iteration 1. log pseudolikelihood =-101.53512
Iteration 2. log pseudolikelihood =-96.991808
Iteration 3: log pseudolikelihood =-96.989802
Iteration 4. log pseudolikelihood =-96.989802

| Robust
pseudo | exp(b) Std. Err. z P>|z] [95% Conf.Interval]
_______ e
1.fab | .6152278 .1440588 -2.07 0.038 .3887968 .9735298
_cons | .5406774 .0522411 -6.36 0.000 .4473978 .6534053

Model: log(p,) = £, + 5, [FAB,
We estimate the the relative risk for FAB by RR=0.615
(95% CI: 0.389,0.974).
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Suppose we wish to compute the relative risk for FAB,
adjusting for disease as a categorical variable and age as
a continuous variable.

Using the same pseudo-values we fit the generalized linear
model.

. glm pseudo i.fab i.disease age, fam(gauss) link(log) ///

vce(robust) eform
*** gutput omitted ***

| Robust
pseudo | exp(b) Std. Err. z P>|z| [95% Conf.Interval]
_____________ e —————
1.fab | .6322634 .1665066 -1.74 0.082 .3773412 1.059405
disease |
2 11.951343 .412121 3.17 0.002 1.289914 2.951931
3 | 1.005533 .3586364 0.02 0.988 .4998088 2.022965
age | .9856265 .0080274 -1.78 0.075 .970018 1.001486
_cons | .5873784 .1602365 -1.95 0.051 .3441207 1.002594




The survival function at several time points

We compute pseudo-values at 5 data points roughly
equally spaced on the event scale: 50, 105, 170, 280 and
530 days.

Often the interest would be to see if risk difference or
relative risks change over time.

Here, for illustration, we will use another link cloglog,
f(p)=log[-log[1-p]], to fit the model

log[— log{S(t|X)}] = log(Ag(1))+BX;
l.e. a Cox regression model for the 5 time points
simultaneously.

This model can also fitted by the Stata procedure st cox.

25



. drop pseudo
. stpsurv , at(50 105 170 280 530) failure
*** output omitted ***
Generated pseudo variables: pseudol-pseudo5

.genid=_n
. reshape long pseudo, i(id) j(times)
(note:]=12345)

Data wide -> long
Number of obs. 137 -> 685
Number of variables 35 > 32
| variable (5 values) -> times
Xij variables:

pseudol pseudo? ... pseudo5 -> pseudo

26




. glm pseudo ibn.times i.fab i.disease age, fam(gauss)
link(cloglog) vce(cluster id) nohead noconst eform
*** gutput omitted ***
(Std. Err. adjusted for 137 clusters in id)
| Robust
pseudo | exp(b) Std. Err. z P>|z| [95%Conf.Interval]
________ e ——————
times |
1 ].0507125 .0307638 -4.91 0.000 .0154436 .1665255
2 |.1545363 .0662937 -4.35 0.000 .066662 .3582473
3 1.2578417 .1078469 -3.24 0.001 .1135855 .5853067
4 |.3763201 .1493346 -2.46 0.014 .1728925 .8191031
5| .614925 .2347745 -1.27 0.203 .2909637 1.299587
1.fab| 2.14246 .7601898 2.15 0.032 1.068781 4.29474
disease |
2 |.3025399 .1392244 -2.60 0.009 .1227644 .7455777
3 11.003641 .3805293 0.01 0.992 .4773603 2.110136
age | 1.013154 .0148558 0.89 0.373 .984452 1.042694

The rate of treatment failure for FAB patients are 2-fold that
of non-FAB patients when adjusting for disease and age. 27




Without re-computing the pseudo-values we can examine
the effect of FAB over time.

. gen fab50=(fab==1 & times==1)
. gen fab105=(fab==1 & times==2)
. gen fab170=(fab==1 & times==3)
. gen fab280=(fab==1 & times==4)
. gen fab530=(fab==1 & times==5)
. glm pseudo i.times fab50-fab530 i.disease age, fa(gauss) ///
lin(cloglog) vce(cluster id) eform
*** output omitted ***
| Robust
pseudo | exp(b) Std. Err. z P>|z| [95% Conf.Interval]
________ e ——————
*** output omitted ***
fab50 | 4.047315 3.227324 1.75 0.080 .8480474 19.31586
fabl105 | 2.866106 1.433666 2.11 0.035 1.07525 7.639677
fabl70 | 2.008426 .795497 1.76 0.078 .9240856 4.365155
fab280 | 2.022028 .7258472 1.96 0.050 1.000533 4.086419
fab530 | 2.048864 .7838364 1.87 0.061 .9679838 4.33669
*** output omitted ***




. test fab50=fab105=fab170=fab280=fab530

(1) [pseudo]fab50 - [pseudo]fabl05 =0
(2) [pseudo]fab50 - [pseudo]fabl70 =0
( 3) [pseudo]fab50 - [pseudo]fab280 =0
(4) [pseudo]fab50 - [pseudo]fab530 =0

chi2( 4) = 1.73
Prob > chi2 = 0.7855

Similar analysis could be made for the relative risk using
the log-link function.
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The restricted mean
E[min(T,t,)] = [ " S(u)du

To illustrate we look at a regression model for the mean
time to treatment failure restricted to 1500 days. Here we
use the identity link function.

. use bmt, clear

. stset tdfs, failure(dfs==1)

*** gutput omitted ***

. Stpmean , at(1500)

*** gutput omitted ***

Generated pseudo variable: pseudo
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. glm pseudo i.fab i.disease age, fam(gauss) li(id) vce(robust)
*** gutput omitted ***
| Robust
pseudo| Coef. Std. Err. z P>|z| [95%Conf.Interval]
________ e ——————
1.fab | -352.0442 123.311 -2.85 0.004 -593.7293-110.359
disease |
2 | 461.1214 134.0932 3.44 0.001 198.3036 723.9391
3 | 78.00616 158.8357 0.49 0.623 -233.3061 389.3184
age | -8.169236 5.060915 -1.61 0.106 -18.08845 1.749976
_cons| 895.118 159.1586 5.62 0.000 583.173 1207.063

Here we see that AML low risk patients have the longest
restricted mean life, namely 461.1 days longer than ALL
patients within 1500 days.
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Competing risk

Death In

/ remission (1)
\

Relapse (2)

Alive

We need to generalize the 3 ways to quantify the prognosis.

e The CIP function ; F(t)=CIP(t)=P(T<t, cause 1), the risk
of event of cause 1 before time t.

 The cause specific hazard function ;
h,(t)=P(T st+d , cause 1| T=t)/d, the probability of event of
cause 1 before t+d given alive at t, for a small time unit d.

» Life years lost according to causes of death
[
|, F(udu 2



Cause-specific cumulative risk

Often the interest would be to analyse risk difference or
relative risks for the cause specific cumulative risk.

First, for illustration, we will however use the cloglog link
function to cumulative incidence of death in remission
evaluated at 50, 105, 170, 280 and 530 days.

. use bmt, clear

. stset tdfs, failure(trm==1)

*** output omitted ***

. gen compet=(trm==0 & relapse==1)

. stpci compet, at(50 105 170 280 530)
*** output omitted ***

.genid=_n

. reshape long pseudo, i(id) j(times)
*** output omitted ***
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Here we are modeling

CIP,(t|X) = 1-exp{-Ao(t)exp(BX) }.
Positive values of 3 for a covariate suggest a larger
cumulative incidence for patients with X = 1.

This is the Fine-Gray model that is fitted by the Stata
procedure stcrreg.
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. glm pseudo ibn.times i.fab i.disease age, fam(gauss) ///
link(cloglog) vce(cluster id) noconst eform
*** output omitted ***
| Robust
pseudo | exp(b) Std. Err. z P>|z| [95%Conf.Interval]
_________ e ——————
times |
1 ].0286012 .0292766 -3.47 0.001 .0038467 .21266
2 |.0791623 .0547411 -3.67 0.000 .0204131 .306993
3 1.1261608 .0823572 -3.17 0.002 .0350965 .4535083
4 |.1781601 .1117597 -2.75 0.006 .0521017 .6092124
5 1.2383869 .1488814 -2.30 0.022 .0700932 .8107537
1.fab | 3.104153 1.52811 2.30 0.021 1.182808 8.146518
disease |
2 |.1708985 .1154623 -2.61 0.009 .0454622 .6424309
3 |.7829133 .466016 -0.41 0.681 .2438093 2.514068
age | 1.014382 .0258272 0.56 0.575 .9650037 1.066286

The model suggests that the AML low risk patients have
the smallest risk of death in remission and the AML FAB
4/5 the highest risk of death in remission.
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The interpretation of the 3’'s are generally difficult. The
exp(B) are subhazard ratios relates to the subdistribution
hazards

P(T <t+d, cause 1 | T=t or {T<t and relapse} )

the instantaneous rate of failure per time unit from cause |
among those who are either alive or have had a competing
event at time t.

The individuals are then followed after they a competing
event, some of these have died from relapse.
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Let us model the cause specific cumulative risk directly

CIP,(t|X) = BX

glm pseudo i.fab i.disease age if(times==5), fam(gauss) ///
link(id) vce(robust)
*** output omitted ***

| Robust
pseudo| Coef. Std. Err. z P>|z| [95% Conf.
Interval]
________ e ——————
1.fab | .2600768 .0912255 2.85 0.004 .0812781 .4388754
disease |

2 ]-.2363511 .0888625 -2.66 0.008 -.4105184 -.0621837
3 |.0079055 .1172756 0.07 0.946 -.2219504 .2377615
age | .0024241 .0039748 0.61 0.542 -.0053663 .0102145
_cons | .2075862 .1139077 1.82 0.068 -.0156688 .4308411
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Life years lost according to causes of death

The overall survival function S(t) and the cause specific CIP
functions satisty

S() + Fyt) + Fy(t) = 1

Hence the expected number of years lost  before time t,
can be decomposed

t —E[min(T,t,)] = j;"l—S(u)du
= ["F(u)du + [ "F,(u)du

A decomposition of number of life years lost according to
causes of death.

It cannot be analysed by the Stata functions stpsurv
stpmean or stpci
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Coming extensions

 The number of life years lost according to causes of
death.

o Extensions to delayed entry.

« A faster implementation by making the Mata code more
vectorized and limiting the number of calculations carried
out. Individuals affecting the Kaplan-Meier between the
same event times will always have the same Kaplan-
Meier based pseudo-observation.
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