Modeling Interactions in Count Data Regression
Principles and Implementation in Stata

Heinz Leitgöb

Johannes Kepler University of Linz, Austria

German Stata Users Group Meeting
Table of contents

1. Theoretical & analytical principles
2. Interaction effects in nonlinear models
3. Introduction to count data models
4. Interaction effects in count data models
5. Example with artificial data
6. Next steps
"By interactions we mean an interplay among predictors that produces an effect on the outcome Y that is different from the sum of the effects of the individual predictors." (Cohen et al. 2003, 255)

"Two explanatory variables are said to interact in determining a response variable when the partial effect of one depends on the value of the other." (Fox 2008, 131)

→ From an analytical point of view, an interaction effect can be defined as the marginal effect of a marginal effect.
Identification of interaction effects in the linear model

- Linear model with interaction term $x_1 x_2$:

$$E(y|x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_M x_1 x_2 + \sum_{j=3}^{k} \beta_j x_j \quad (1)$$

- Interaction effects (if x_j is dichotomous, then $x_j = d_j$):

$$\frac{\partial^2 E(y|x)}{\partial x_1 \partial x_2} = \frac{\partial \Delta E(y|x)}{\partial x_1 \Delta d_2} = \frac{\Delta^2 E(y|x)}{\Delta d_1 \Delta d_2} = \beta_M \quad (2)$$

→ In the linear model, the interaction effect is in any case equal to the product term coefficient β_M

Significance testing: Wald-test for β_M
Interaction effects in nonlinear models

Current state of research

- ... within the GLM framework (Tsai & Gill 2013)

- To date, no explicit contributions covering the identification of interaction effects in count data models are available
In contrast to the linear model (see Eq. (2)), the interaction effect does not equal β_M.

A significant interaction effect is possible even when $\beta_M = 0$ (model inherent interaction effect).

→ Statistical significance cannot be tested by applying a Wald-test for β_M.

The interaction effect is dependent on covariates and thus subject to variation across individuals.

The interaction effect may have different signs for different individuals.

→ The sign of β_M does not necessarily indicate the direction of the interaction effect.

The total interaction effect is composed additively of a model inherent interaction effect and a product term induced interaction effect.
Introduction to count data models

- Inverted link function:

\[E(y|x) = \exp(x\beta) = \mu \]

- Poisson model (stochastic component)

\[f(y|\mu) = Pr(Y = y) = \frac{\exp(-\mu)\mu^y}{y!}; y = 0, 1, 2, \ldots; \mu > 0 \]

- Negative binomial model (stochastic component)

\[f(y|\mu, \alpha) = Pr(Y = y) = \frac{\Gamma(y + \alpha^{-1})}{\Gamma(y + 1)\Gamma(\alpha^{-1})} \left(\frac{\alpha^{-1}}{\alpha^{-1} + \mu} \right)^{\alpha^{-1}} \left(\frac{\mu}{\alpha^{-1} + \mu} \right)^y; y = 0, 1, 2, \ldots; \mu > 0; \alpha \geq 0 \]
Interaction effects in count data models

- Count data model with interaction term x_1x_2:

$$E(y|x) = \exp \left(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_M x_1 x_2 + \sum_{j=3}^{k} \beta_j x_j \right)$$ \hspace{1cm} (6)

- Total interaction effect (ι_t)

$$\iota_t = \frac{\partial^2 E(y|x)}{\partial x_1 \partial x_2} = \left[(\beta_1 + \beta_M x_2) (\beta_2 + \beta_M x_1) + \beta_M \right] E(y|x)$$ \hspace{1cm} (7)

- Rearranging terms uncovers the model inherent (ι_m) and the product term induced (ι_p) interaction effect

$$\iota_t = \underbrace{\beta_1 \beta_2 E(y|x)}_{\iota_m} + \underbrace{\beta_M (\beta_1 x_1 + \beta_2 x_2 + \beta_M x_1 x_2 + 1)}_{\iota_p} E(y|x)$$ \hspace{1cm} (8)
According to Ai & Norton (2003), standard errors for the interaction effects can be obtained by applying the Delta method for variance estimation:

- **total interaction effect**
 \[
 \hat{\sigma}_{\iota t}^2 = \left(\frac{\partial \iota_t}{\partial \beta} \right)^\prime \hat{\mathbf{V}} \left(\frac{\partial \iota_t}{\partial \beta} \right) \tag{9}
 \]

- **model inherent interaction effect**
 \[
 \hat{\sigma}_{\iota m}^2 = \left(\frac{\partial \iota_m}{\partial \beta} \right)^\prime \hat{\mathbf{V}} \left(\frac{\partial \iota_m}{\partial \beta} \right) \tag{10}
 \]

- **product term induced interaction effect**
 \[
 \hat{\sigma}_{\iota p}^2 = \left(\frac{\partial \iota_p}{\partial \beta} \right)^\prime \hat{\mathbf{V}} \left(\frac{\partial \iota_p}{\partial \beta} \right) \tag{11}
 \]
Example with artificial data ($\beta_1 < 0; \beta_2 > 0; \beta_M > 0$)

- Simulation of a Poisson model with $\eta = -6 - 2x_1 + 2x_2 + .5x_1x_2$
 $x_1, x_2 \sim N(0; 1); n = 10,000$

- Estimation results (poisson command)

<table>
<thead>
<tr>
<th>variable</th>
<th>coef.</th>
<th>se</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>-6.148</td>
<td>.172</td>
<td><.001</td>
</tr>
<tr>
<td>x_1</td>
<td>-2.038</td>
<td>.073</td>
<td><.001</td>
</tr>
<tr>
<td>x_2</td>
<td>1.990</td>
<td>.086</td>
<td><.001</td>
</tr>
<tr>
<td>x_1x_2</td>
<td>.493</td>
<td>.042</td>
<td><.001</td>
</tr>
</tbody>
</table>

$LL = -935.011$; LR-Test (Nullmodell): $\chi^2 = 1,424.69; df = 3; p < .001$; $PseudoR^2 = .432$; $AIC = 1,878.022$; $BIC = 1,906.82$

- Calculation of interaction effects and standard errors via predictnl command

H. Leitgöb
Interactions in Count Data Models
Hamburg, June 2014
Calculation of ℓ_t, ℓ_m, ℓ_p & standard errors with `predictnl`

- Estimate Poisson model
  ```stata```
  poisson y x1 x2 x1x2
  ```
- Calculate predicted count
  ```stata```
  predict expcount
  ```
- Calculate total, model inherent & product term induced interaction effects and corresponding standard errors
  ```stata```
  predictnl total = ((_b[x1] + _b[x1x2]*x2)*(_b[x2] + _b[x1x2]*x1) + _b[x1x2])*expcount, se(setotal)
  ```stata```
 predictnl inherent = _b[x1]*b[x2]*expcount, se(seinherent)
  ```stata```
  nlpredict product = _b[x1x2]*(_b[x1]*x1 + _b[x2]*x2 + _b[x1x2]*x1*x2 + 1)*expcount, se(seproduct)
Total interaction effect
Model interaction interaction effect
Product-term induced interaction effect

[Graph showing the relationship between expected count $E(y|x)$ and product term interaction effect.]
All interaction effects
Next steps

- Calculate average interaction effects & corresponding standard errors (analogous to AMEs)
- Calculate interaction effects & corresponding standard errors for dichotomous covariates
- Allow for more than one two-way and for three-way interactions?!?
- Put all these features into a Stata program
- Simulate distributions of interaction effects from a theoretical perspective (e.g. exploring the relevance of \( \iota_m \)) → Learn how to adequately interpret these interaction effects in nonlinear models
Mail to

heinz.leitgoeb@jku.at
Reference list can be requested via email