Some Stata commands for endogeneity in nonlinear panel-data models

David M. Drukker
Director of Econometrics
Stata

2014 German Stata Users Group meeting
June 13, 2014
Two approaches to endogeneity in nonlinear models

- **Nonlinear instrumental variables, and control functions**
 - Only impose conditional moment restrictions

- **Maximum likelihood**
 - Wooldridge (2010), Cameron and Trivedi (2005), Skrondal and Rabe-Hesketh (2004), Rabe-Hesketh et al. (2004), Heckman (1978), and Heckman (1979)
 - Impose restrictions on the entire conditional distributions; less robust
Specific Stata solutions

- Stata has many commands to estimate the parameters of specific models
 - `ivregress`, `ivpoisson`, `ivprobit`, and `ivtobit`
 - `heckman`, `heckprobit`, and `heckoprobit`
- Two Stata commands that offer more general solutions are `gsem` and `gmm`
A GSEM solution for endogeneity

- Generalized structural equations models (GSEM) encompass many nonlinear triangular systems with unobserved components
 - A GSEM is a triangular system of nonlinear or linear equations that share unobserved random components
 - The gsem command can estimate the model parameters
 - gsem is new in Stata 13
 - The unobserved components can model random effects
 - Including nested effects, hierarchical effects, and random-coefficients
 - The unobserved components can also model endogeneity
 - Include the same unobserved component in two or more equations
 - Set up and estimation by maximum likelihood
 - Random-effects estimators and correlated-random-effects estimators
A GMM solution for endogeneity or missing data

- Stata’s `gmm` command can be used to stack the moment conditions from multistep estimators
 - Many control-function estimators for the parameters of models with endogeneity are described as multistep estimators
 - Many inverse-probability-weighted estimators, regression adjustment estimators, and combinations thereof, for the population-averaged effects from samples with missing data are described as multistep estimators
 - Converting multistep estimators into one-step estimators produces a consistent estimator for the variance-covariance of the estimator (VCE); see Newey (1984) and Wooldridge (2010) among others
 - Setup and estimation by GMM: Only the specified moment restrictions apply
GSEM examples

GSEM structure

- GSEM handles endogeneity by including common, unobserved components into the equations for different variables.

For example:

\[
\begin{pmatrix}
\eta \\
\epsilon
\end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & \sigma^2 \end{pmatrix}\right)
\]

\[
E[y_1|x, y_2, \eta] = F(x\beta + y_2\alpha + \eta\delta)
\]

\[
y_2 = x\beta + w\gamma + \eta + \epsilon
\]

where:
- \(F()\) is smooth, nonlinear function
- \(x\) are exogenous covariates
- \(\eta\) is the common, unobserved component that gives rise to the endogeneity
- \(w\) are “instruments”
- \(\epsilon\) is an error term
Bivariate probit with endogenous variable

- Two binary dependent variables, *school* and *work* for young people (20-30)
- Each is a function of *age* and parental socio-economic score (*ses*)
 - *age* is exogenous
 - *ses* is endogenous
 - *ses* is affected by an unobserved component that also affects each of the binary variables.
 - We believe that parental education *ped* affects *ses* but neither *school* nor *work*

 \[
 ses_i = \alpha_0 + \alpha_1 ped_i + \alpha_2 \eta_i + \epsilon_1
 \]

 \[
 work_i = \left((\beta_0 + \beta_1 ses_i + \beta_2 age_i + \beta_3 \eta_i + \epsilon_2) > 0 \right)
 \]

 \[
 school_i = \left((\gamma_0 + \gamma_1 ses_i + \gamma_2 age_i + \gamma_3 \eta_i + \epsilon_3) > 0 \right)
 \]

\[
\begin{pmatrix}
\eta_i \\
\epsilon_1 \\
\epsilon_2 \\
\epsilon_3
\end{pmatrix}
\sim \mathcal{N}
\begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix},
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \sigma_1^2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
. gsem (work <- ses age L, probit) ///
> (school <- ses age L, probit) ///
> (ses <- ped L), ///
> var(L@1) nolog
Generalized structural equation model Number of obs = 5000
Log likelihood = -14078.848
(1) [var(L)]_cons = 1

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------------------|--------|-----------|-------|------|----------------------|
| work <- | | | | | |
| ses | -.2405712 | .0968634 | -2.48 | 0.013| -.4304199 -.0507224 |
| age | .1923723 | .0148124 | 12.99 | 0.000| .1633406 .221404 |
| L | .9237883 | .1901529 | 4.86 | 0.000| .5510954 1.296481 |
| _cons | -4.297587 | .3235778 |-13.28 | 0.000| -4.931748 -3.663425 |
| school <- | | | | | |
| ses | .3839591 | .084104 | 4.57 | 0.000| .2191182 .5488 |
| age | -.1968823 | .0156442 |-12.58 | 0.000| -.2275444 -.1662201 |
| L | .9276381 | .2028112 | 4.57 | 0.000| .5301355 1.325141 |
| _cons | 3.934125 | .5295485 | 7.43 | 0.000| 2.896229 4.972021 |
| ses <- | | | | | |
| ped | .2083431 | .0145523 | 14.32 | 0.000| .1798212 .2368651 |
| L | .923848 | .0911936 | 10.13 | 0.000| .7451118 1.102584 |
| _cons | .8938526 | .1422065 | 6.29 | 0.000| .615133 1.172572 |
| var(L) | 1 | (constrained) | | | |
| var(e.ses) | 1.088828 | .1668318 | | | .8063745 1.470217 |
Fixed effects versus correlated random effects

- In the econometric parlance of panel data, fixed effects are generally defined to be individual-specific, unobserved random components that depend on observed covariates in an unspecified way.

- Fixed effects are removed from the estimator to avoid the incidental parameters problem, so analysis is conditional on the unobserved fixed effects.

- There is still some discussion as to whether fixed effects are random or fixed, but the modern approach views them as random (Wooldridge, 2010, page 286).

- Correlated random effects are a parametric approach to the problem of fixed effects. The dependence between individual-specific effects and the covariates is modeled out, leaving common unobserved components (Cameron and Trivedi, 2005, pages 719 and 786) (Wooldridge, 2010, page 286).
Fixed effects versus correlated random effects

- At the cost of more parametric assumptions, correlated-random-effect (CRE) models identify average partial effects and many more functional forms for nonlinear dependent variables.
Fixed-effects logit

- Main “job” is either work or school for young people aged 20–30
 - Variable $work_{it}$ is coded 0 for school, 1 for work
- We have 5 observations on each individual
- Logit probabilities that $work_{it} = 1$ are functions of age_{it}, and parental socio-economic score ses_{it}, and an unobserved individual-level component
 - age_{it} is exogenous
 - ses_{it} is endogenous, it is related to the unobserved individual-level component η_i

$$\epsilon_{it} \sim \text{Logistic}(0, \pi^2/3)$$

$$work_{it} = (\beta_0 + ses_{it}\beta_1 + age_{it}\beta_2 + \eta_i + \epsilon_{it}) > 0$$

- Except for regularity conditions, and $\eta_i \perp \epsilon_{it}$ no assumption is made about the distribution of η_i
- The distribution of η_i may depend on ses_{it} in an unspecified fashion
Conditional maximum-likelihood estimation

- The standard econometric approach is to maximize the log-likelihood function conditional on the sum $\sum_{t=1}^{T} y_{it}$
- This conditional log-likelihood function does not depend on the unobserved η_i, it is transformed out
- The estimator obtained by maximizing this conditional log-likelihood function is consistent for the coefficients on the time-varying covariates and it is asymptotically normal
. xtlogit w ses age, fe
note: multiple positive outcomes within groups encountered.
note: 185 groups (925 obs) dropped because of all positive or
all negative outcomes.
Iteration 0: log likelihood = -1513.9791
Iteration 1: log likelihood = -1444.5811
Iteration 2: log likelihood = -1444.4195
Iteration 3: log likelihood = -1444.4195
Conditional fixed-effects logistic regression
Group variable: id
Number of obs = 4075
Number of groups = 815
Obs per group: min = 5
avg = 5.0
max = 5
LR chi2(2) = 295.99
Prob > chi2 = 0.0000
Log likelihood = -1444.4195

| work | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------|---------|-----------|-------|-------|----------------------|
| ses | -.5825966 | .0392365 | -14.85 | 0.000 | -.6594987 to -.5056946 |
| age | .083444 | .011576 | 7.21 | 0.000 | .0607555 to .1061325 |
A GSEM CRE logit

- A GSEM CRE logit specifies a distribution for η_i and how it enters the model for the related covariates
 - This estimator is better termed, a correlated-random-effects (CRE) estimator
 - Inference is not conditional on unobserved fixed effects and average partial effects, after averaging out CRE, are identified

- For example,

 $work_{it} = (\beta_0 + ses_{it}\beta_1 + age_{it}\beta_2 + \eta_i + \epsilon_{it}) > 0$

 $ses_{it} = \alpha_0 + \alpha_1 ped_i + \eta_i\alpha_2 + \xi_{it}$

 $\eta_i \sim N(0, 1)$

 $\epsilon_{it} \sim \text{Logistic}(0, \pi^2/3)$

 $\xi_{it} \sim N(0, \sigma^2)$

 $(\eta_i, \epsilon_{it}, \xi_{it})$ mutually independent
. gsem (work <- ses age L[id]@1, logit) ///
> (ses <- ped L[id]), vsquish nolog

Generalized structural equation model
Number of obs = 5000
Log likelihood = -11172.491
(1) [work]L[id] = 1

| Coef. | Std. Err. | z | P>|z| | 95% Conf. Interval |
|--------|-----------|------|------|-------------------|
| work <- ses | -.5902971 | .0385655 | -15.31 | 0.000 | -.665884 to -.5147101 |
| | age | .0875979 | .0104571 | 8.38 | 0.000 | .0671024 to .1080934 |
| | L[id] 1 (constrained) | | | | |
| | _cons | -2.047273 | .2705777 | -7.57 | 0.000 | -2.577595 to -1.51695 |
| ses <- ped | .0813543 | .0118188 | 6.88 | 0.000 | .0581898 to .1045188 |
| | L[id] | 1.48718 | .1062063 | 14.00 | 0.000 | 1.27902 to 1.695341 |
| | _cons | 1.151305 | .1245313 | 9.25 | 0.000 | .9072278 to 1.395381 |
| var(L[id]) | 1.043044 | .1547474 | | | .7798608 to 1.395044 |
| var(e.ses) | .9936687 | .0221993 | | | .9510978 to 1.038145 |
Now suppose that ses_{it} is endogenous and we have an instrument

- ses_{it} is affected by the unobserved, individual-level component η_i and another unobserved component ξ_{it} that also affects $work_{it}$
- We believe that parental education ped_{it} affects ses_{it} but not $work_{it}$
- Some would not define η_i to FE, but rather RE that are related to the observed covariates

$$work_{it} = (\beta_0 + ses_{it}\beta_1 + age_{it}\beta_2 + \eta_i + \xi_{it}\beta_3 + \epsilon_{1it}) > 0$$

$$ses_{it} = \alpha_0 + ped_{it}\alpha_1 + \eta_i\alpha_2 + \xi_{it} + \epsilon_{2it}$$

$$\epsilon_{1it} \sim \text{Logistic}(0, \pi^2/3)$$

$$\epsilon_{2it} \sim \mathcal{N}(0, \sigma^2)$$

$$\eta_i \sim \text{Normal}(0, 1)$$

$$\xi_i \sim \text{Normal}(0, 1)$$

$$\left(\epsilon_{1it}, \epsilon_{2it}, \eta_i, \xi_i\right) \text{ mutually independent}$$
. gsem (work <- ses age L[id]@1 X, logit) ///
> (ses <- ped L[id] X@1), var(X@1)vsquish ///
> from(var(e.ses):_cons = 1) nolog

Generalized structural equation model
Number of obs = 5000
Log likelihood = -12851.37
(1) [work]L[id] = 1
(2) [ses]X = 1
(3) [var(X)]_cons = 1

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------------|--------|------------|-------|------|---------------------|
| work <- | | | | | |
| ses | -.593026 | .0496495 | -11.94 | 0.000 | -0.6903373 - .4957148 |
| age | .1019323 | .0149949 | 6.80 | 0.000 | .0725429 .1313217 |
| L[id] | 1 (constrained) | | | | |
| X | 2.150414 | .2074175 | 10.37 | 0.000 | 1.743883 2.556945 |
| _cons | 9.282667 | .9335425 | 9.94 | 0.000 | 7.452957 11.11238 |
| ses <- | | | | | |
| ped | 2.020729 | .0168226 | 120.12| 0.000 | 1.987757 2.053701 |
| L[id] | 1.515159 | .1373711 | 11.03 | 0.000 | 1.245916 1.784401 |
| X | 1 (constrained) | | | | |
| _cons | .741761 | .1704414 | 4.35 | 0.000 | .4077019 1.07582 |
| var(L[id]) | .9920447 | .1891004 | 6.80 | 0.000 | .6827755 1.4414 |
| var(X) | 1 (constrained) | | | | |
| var(e.ses) | 1.066483 | .0459968 | 6.80 | 0.000 | .9800357 1.160555 |
Panel probit with endogenous variable and CRE

- Binary dependent variables \(school_{it} \) for young people (20-30, at first interview)
 - \(school_{it} \) is a function of \(age_{it} \) and time-varying parental socio-economic score \(ses_{it} \)
 - \(age_{it} \) is exogenous
 - \(ses_{it} \) is endogenous
 - \(ses_{it} \) is affected by an unobserved component individual-level effect \(\eta_i \) and by a time-varying unobserved component \(\xi_{it} \), both of which also affect \(school_{it} \)
 - We believe that time-varying parental education \(ped_{it} \) affects \(ses_{it} \) but not \(school_{it} \).

- We have 5 observations on each young person
 \[
 ses_{it} = \alpha_0 + \alpha_1 ped_{it} + \xi_{it} + \eta_i + \epsilon_{1, it}
 \]
 \[
 school_{it} = \left(\left(\beta_0 + \beta_1 ses_{it} + \beta_2 age_{it} + \beta_3 \xi_{it} + \eta_i + \epsilon_{2, it} \right) > 0 \right)
 \]
 \[
 \eta_i \sim \text{Normal}(0, \sigma_{\eta}) \quad \epsilon_{1, it} \sim \text{Normal}(0, \sigma_{ses})
 \]
 \[
 \xi_{it} \sim \text{Normal}(0, 1) \quad \epsilon_{2, it} \sim \text{Normal}(0, 1)
 \]
. gsem (school <- ses age L M1[id]@1, probit) ///
> (ses <- ped L@1 M1[id]@1), ///
> var(L@1) from(var(e.ses):_cons=1) nolog
Generalized structural equation model Number of obs = 5000
Log likelihood = -10377.715
(1) [school]M1[id] = 1
(2) [ses]M1[id] = 1
(3) [ses]L = 1
(4) [var(L)]_cons = 1

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------------|--------|-----------|-------|------|---------------------|
| school <- | | | | | |
| ses | .6098294 | .0447354 | 13.63 | 0.000 | .5221496 .6975093 |
| age | -.4142175 | .0201581 | -20.55 | 0.000 | -.4537266 -.3747085 |
| M1[id] | 1 (constrained) | | | | |
| L | 1.123539 | .1016453 | 11.05 | 0.000 | .9243183 1.322761 |
| _cons | 10.69246 | .5345878 | 20.00 | 0.000 | 9.644685 11.74023 |
| ses <- | | | | | |
| ped | .5016687 | .0150045 | 33.43 | 0.000 | .4722603 .531077 |
| M1[id] | 1 (constrained) | | | | |
| L | .9645122 | .1500038 | 6.43 | 0.000 | .6705102 1.258514 |
| _cons | 1 (constrained) | | | | |
| var(M1[id]) | 1.042761 | .0646625 | 16.25 | 0.000 | .9234241 1.177521 |
| var(L) | 1 (constrained) | | | | |
| var(e.ses) | .9568585 | .0433915 | 22.11 | 0.000 | .8754826 1.045798 |
Main “job” is either work, school, or home for young people aged 20–30

- \(job_i \) is coded, 0 for home, 1 for work, and 2 for school

Multinomial-logit probabilities are functions of \(age_i \), and parental socio-economic score \(ses_i \), and an unobserved individual-level component \(\eta_i \)

- \(age_i \) is exogenous
- \(ses_i \) is endogenous,
 - \(ses_i \) is affected by \(\eta_i \) that also affects the multinomial-logit probabilities
 - We believe that parental education \(ped_i \) affects \(ses_i \) but not the multinomial-logit probabilities

\[
Pr[\text{job} = j] = \frac{\exp(\beta_{0j} + ses_i \beta_{1j} + age_i \beta_{2j} + \eta_i \beta_{4j})}{1 + \sum_{j=1}^{2} \exp(\beta_{0j} + ses_i \beta_{1j} + age_i \beta_{2j} + \eta_i \beta_{4j})} \quad j \in \{1, 2\}
\]

\[
ses_i = \alpha_0 + \alpha_1 ped_i + \eta_i + \epsilon_i
\]

\[
\eta_i \sim \text{Normal}(0, 1) \quad \epsilon_i \sim \text{Normal}(0, \sigma_{ses})
\]
. gsem (job <- ses age L, mlogit) (ses <- ped L@1), var(L@1) nolog

Generalized structural equation model

Number of obs = 3000
Log likelihood = -8130.9865

(1) [ses]L = 1
(2) [var(L)]_cons = 1

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|-------|-----------|------|------|----------------------|
| 0.job | | | | | |
| (base outcome) | | | | | |
| 1.job <- | | | | | |
| ses | 0.1680505 | 0.079434 | 2.12 | 0.034 | 0.0123627 0.3237383 |
| age | 0.1977622 | 0.0176799 | 11.19 | 0.000 | 0.1631103 0.2324141 |
| L | 0.4178895 | 0.1825025 | 2.29 | 0.022 | 0.0601912 0.7755879 |
| _cons | -5.667666 | 0.5556052 | -10.20 | 0.000 | -6.756632 -4.576899 |
| 2.job <- | | | | | |
| ses | 0.5734593 | 0.0834707 | 6.87 | 0.000 | 0.4098598 0.7370588 |
| age | -0.2094759 | 0.0201765 | -10.38 | 0.000 | -0.2490211 -0.1699306 |
| L | -0.6267227 | 0.1836712 | -3.41 | 0.001 | -0.9867115 -0.2667338 |
| _cons | 1.21761 | 0.6033821 | 2.02 | 0.044 | 0.0350030 2.400217 |
| ses <- | | | | | |
| ped | 0.6313673 | 0.0197324 | 32.00 | 0.000 | 0.5926925 0.670042 |
| L | 1.0000000 | 0.0000000 | 32.00 | 0.000 | 0.5926925 0.670042 |
| _cons | 0.6768382 | 0.1919967 | 3.53 | 0.000 | 0.3005317 1.053145 |
| var(L) | 1.0000000 | 0.0000000 | 32.00 | 0.000 | 0.5926925 0.670042 |
| var(e.ses) | 1.007182 | 0.0518205 | 19.66 | 0.000 | 0.9105691 1.114046 |
Multinomial logit with CRE and an endogenous variable

- Main “job” is either work, school, or home for young people
 - job_{it} is coded, 0 for home, 1 for work, and 2 for school

- Multinomial-logit probabilities are functions of age_{it}, and parental socio-economic score ses_{it}, an unobserved individual-level component η_i, and an unobserved component that varies over individuals and time ξ_{it}
 - age_{it} is exogenous, ses_{it} is endogenous
 - ses_{it} is affected by η_i and by ξ_{it}, both of which also affect the multinomial-logit probabilities
 - We believe that parental education ped_{it} affects ses_{it} but not the multinomial-logit probabilities

 $xb_{itj} = \beta_0 + ses_{it}\beta_1 + age_{it}\beta_2 + \eta_i + \xi_{it}\beta_4$

 $Pr[job_{it} = j] = \frac{\exp(xb_{ijt})}{1 + \sum_{j=1}^{2} \exp(xb_{itj})}$ \hspace{1cm} j \in \{1, 2\}$

 $ses_i = \alpha_0 + \alpha_1 ped_i + \eta_i + \xi_{it} + \epsilon_{it}$

 $\eta_i \sim Normal(0, \sigma_\eta)$ \hspace{1cm} $\xi_{it} \sim Normal(0, 1)$ \hspace{1cm} $\epsilon_{it} \sim Normal(0, \sigma_{ses})$
. gsem (job <- ses age L P1[id]@1, mlogit) (ses <- ped L P1[id]@1), vlnolog
> var(L@1) vsquish nolog
Generalized structural equation model
Number of obs = 5000
Log likelihood = -13691.986
(1) [1.job]P1[id] = 1
(2) [2.job]P1[id] = 1
(3) [ses]P1[id] = 1
(4) [ses]L = 1
(5) [var(L)]_cons = 1

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|--------|-----------|-------|-------|----------------------|
| 0.job | | | | | |
| 1.job <- | | | | | |
| ses | .082676| .0381896 | 2.16 | 0.030 | .0078257 .1575262 |
| age | .2072062| .0150389 | 13.78 | 0.000 | .1777304 .2366819 |
| P1[id] | 1 (constrained) | | | | |
| L | .6057244| .1070445 | 5.66 | 0.000 | .395921 .8155277 |
| _cons | -5.398094| .4560614 | -11.84| 0.000 | -6.291958 -4.50423 |
| 2.job <- | | | | | |
| ses | .4291914| .0422678 | 10.15 | 0.000 | .346348 .5120348 |
| age | -.1651801| .0164842 | -10.02| 0.000 | -.1974885 -.1328717 |
| P1[id] | 1 (constrained) | | | | |
| L | -.2399792| .1115573 | -2.15 | 0.031 | -.4586274 -.021331 |
| _cons | 1.206197| .4645158 | 2.60 | 0.009 | .2957623 2.116631 |
| ses <- | | | | | |
| ped | .8193806| .0206827 | 39.62 | 0.000 | .7788433 .8599179 |
| P1[id] | 1 (constrained) | | | | |
| L | .7655727| .2146381 | 3.57 | 0.000 | .3448897 1.186256 |
| _cons | | | | | |
| var(P1[id]) | 1.012727| .0616391 | 16.67 | 0.000 | .8988445 1.141039 |
| var(L) | 1 (constrained) | | | | |
| var(e.ses)| .9701532| .0435647 | 22.15 | 0.000 | .8884176 1.059409 |
A CRE probit with sample-selection

- Binary variable for school or work $sowork_{it}$ is missing if the young person is at home
- We believe that parental education ped_{it} and parental SES score ses_{it} affect the choice between school or work
- We believe that that ses_{it} and an attachment-to-home score ath_{it} affect whether the young person stays home, making $sowork_{it}$ missing.
- We allow for Heckman-type endogenous selection and CRE

$$sowork_{it} = \begin{cases}
\left(\beta_0 + \beta_1 ses_{it} + \beta_2 ped_{it} + \beta_3 \xi_{it} + \eta_i + \epsilon_{1it} > 0 \right), & \text{if } home_{it} = 0 \\
\cdot & \text{otherwise}
\end{cases}$$

$$home_{it} = \left(\gamma_0 + \gamma_1 ses_{it} + \gamma_2 ath_{it} + \xi_{it} + \eta_{it} + \epsilon_{2it} > 0 \right)$$

$$ses_{it} = \alpha_0 + \eta_i + \epsilon_{3it} \quad ped_{it} = \alpha_0 + \eta_i + \epsilon_{4it}$$

$$ath_{it} = \alpha_0 + \eta_i + \epsilon_{5it}$$

$$\eta_i \sim \text{Normal}(0,1) \quad \epsilon_{1it} \sim \text{Normal}(0,1) \quad \epsilon_{2it} \sim \text{Normal}(0,1)$$

$$\epsilon_{3it} \sim \text{Normal}(0,\sigma_3^2) \quad \epsilon_{4it} \sim \text{Normal}(0,\sigma_3^2) \quad \epsilon_{5it} \sim \text{Normal}(0,\sigma_5^2)$$

$$\xi_{it} \sim \text{Normal}(0,1)$$
. gsem (sowork <- ses ped L M[id]@1, probit) ///
> (home <- ses ath L@1 M[id]@1, probit) ///
> (ses <- M[id]@1) ///
> (ped <- M[id]@1) ///
> (ath <- M[id]@1) ///
> , var(L@1) nolog

Generalized structural equation model
Number of obs = 7500
Log likelihood = -38532.664
(1) [sowork]M[id] = 1
(2) [home]M[id] = 1
(3) [home]L = 1
(4) [ses]M[id] = 1
(5) [ped]M[id] = 1
(6) [ath]M[id] = 1
(7) [var(L)]_cons = 1

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------------|--------|-----------|-------|------|---------------------|
| sowork <- | | | | | |
| ses | .9927245 | .0810946 | 12.24 | 0.000 | .8337821 - 1.151667 |
| ped | .9831526 | .0816976 | 12.03 | 0.000 | .8230283 - 1.143277 |
| M[id] | 1 (constrained) | | | | |
| L | 1.06312 | .1247585 | 8.52 | 0.000 | .8185974 - 1.307642 |
| _cons | -2.024637 | .1560467 | -12.97 | 0.000 | -2.330483 - 1.718791 |
| home <- | | | | | |
| ses | -.989918 | .0236261 | -41.90 | 0.000 | -1.036224 - .9436117 |
| ath | .9893967 | .0292436 | 33.83 | 0.000 | .9320802 - 1.046713 |
| M[id] | 1 (constrained) | | | | |
| L | 1 (constrained) | | | | |
| _cons | -1.034227 | .0484887 | -21.33 | 0.000 | -1.129263 - .9391909 |
| ses <- | | | | | |
| M[id] | 1 (constrained) | | | | |
| _cons | .9617187 | .0288255 | 33.36 | 0.000 | .9052217 - 1.018216 |
| ped <- | | | | | |
| M[id] | 1 (constrained) | | | | |
| _cons | .9748653 | .0287962 | 33.85 | 0.000 | .9184258 - 1.031305 |
All the documentation is online.

- http://www.stata.com/support/documentation/

For an example of a cross-sectional Heckman model, see http://www.stata.com/bookstore/structural-equation-modeling-reference-manual/ and click on example43g

For an example of a cross-sectional endogenous treatment effects, see http://www.stata.com/bookstore/structural-equation-modeling-reference-manual/ and click on example44g
Many two-step estimators have the form

1. Estimate nuisance parameters γ by an M estimator
2. Estimate parameters of interest β by an M estimator or a method of moments estimator that depends on the original data and $\hat{\gamma}$

In general, the distribution of $\hat{\beta}$ depends on the first stage estimation

- The correction is well known, e.g. Wooldridge (2010)

Another way solving the two-step estimation problem is to stack the moment conditions from the two estimation problems and solve them jointly
Our research question implies \(q \) population moment conditions

\[
E[m(w_i, \theta)] = 0
\]

- \(m \) is \(q \times 1 \) vector of functions whose expected values are zero in the population
- \(w_i \) is the data on person \(i \)
- \(\theta \) is \(k \times 1 \) vector of parameters, \(k \leq q \)

The sample moments that correspond to the population moments are

\[
\bar{m}(\theta) = \frac{1}{N} \sum_{i=1}^{N} m(w_i, \theta)
\]

When \(k < q \), the GMM chooses the parameters that are as close as possible to solving the over-identified system of moment conditions

\[
\hat{\theta}_{GMM} \equiv \arg \min_{\theta} \quad \bar{m}(\theta)'W\bar{m}(\theta)
\]
Some properties of the GMM estimator

\[\hat{\theta}_{GMM} \equiv \arg\ min_\theta \quad \bar{m}(\theta)'W\bar{m}(\theta) \]

- When \(k = q \), the MM estimator solves \(\bar{m}(\theta) \) exactly so \(\bar{m}(\theta)'W\bar{m}(\theta) = 0 \)
- \(W \) only affects the efficiency of the GMM estimator
 - Setting \(W = I \) yields consistent, but inefficient estimates
 - Setting \(W = \text{Cov}[\bar{m}(\theta)]^{-1} \) yields an efficient GMM estimator
 - We can take multiple steps to get an efficient GMM estimator

1. Let \(W = I \) and get
 \[\hat{\theta}_{GMM1} \equiv \arg\ min_\theta \quad \bar{m}(\theta)'\bar{m}(\theta) \]
2. Use \(\hat{\theta}_{GMM1} \) to get \(\hat{W} \), which is an estimate of \(\text{Cov}[\bar{m}(\theta)]^{-1} \)
3. Get
 \[\hat{\theta}_{GMM2} \equiv \arg\ min_\theta \quad \bar{m}(\theta)'\hat{W}\bar{m}(\theta) \]
4. Repeat steps 2 and 3 using \(\hat{\theta}_{GMM2} \) in place of \(\hat{\theta}_{GMM1} \)
Using the `gmm` command

The `gmm` command

- The command `gmm` estimates parameters by GMM
- `gmm` is similar to `nl`, you specify the sample moment conditions as substitutable expressions
- Substitutable expressions enclose the model parameters in braces `{}`
The syntax of gmm I

- For many models, the population moment conditions have the form
 \[E[z e(\beta)] = 0 \]
 where \(z \) is a \(q \times 1 \) vector of instrumental variables and \(e(\beta) \) is a scalar function of the data and the parameters \(\beta \)

- The corresponding syntax of gmm is

 \[
 \text{gmm (eb_expression) [if] [in] [weight],}
 \]
 \[
 \text{instruments(instrument_varlist) [options]}
 \]

 where some options are

 - _onestep \quad \text{use one-step estimator (default is two-step estimator)}
 - \text{winitial(wmtype)} \quad \text{initial weight-matrix } W
 - \text{wmatrix(witype)} \quad \text{weight-matrix } W \text{ computation after first step}
 - \text{vce(vcetype)} \quad \text{vcetype may be robust, cluster, bootstrap, hac}
We have data

```
. use cscrime, clear
. describe
Contains data from cscrime.dta
    obs:     10,000
    vars:      5           24 May 2008 17:01
  size:   400,000       (_dta has notes)

variable name   storage    display      value     variable label
                type        format       label

policepc       double     %10.0g     police officers per thousand
arrestp        double     %10.0g     arrests/crimes
convictp       double     %10.0g     convictions/arrests
legalwage      double     %10.0g     legal wage index 0-20 scale
crime          double     %10.0g     property-crime index 0-50 scale

Sorted by:
```
Modeling crime data II

- We specify that

\[\text{crime}_i = \beta_0 + \text{policepc}_i \beta_1 + \text{legalwage}_i \beta_2 + \epsilon_i \]

- We want to model

\[E[\text{crime}|\text{policepc,legalwage}] = \beta_0 + \text{policepc}_i \beta_1 + \text{legalwage}_i \beta_2 \]

- If \(E[\epsilon|\text{policepc,legalwage}] = 0 \), the population moment conditions

\[
E \left[\begin{pmatrix} \text{policepc} \\ \text{legalwage} \end{pmatrix} \epsilon \right] = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

hold
Using the `gmm` command

OLS by GMM I

```
. gmm (crime - policepc*b1 - legalwage*b2 - {b3}),
     instruments(policepc legalwage) nolog
```

Final GMM criterion $Q(b) = 6.61e-32$

GMM estimation

| Number of parameters = 3 |
| Number of moments = 3 |
| Initial weight matrix: Unadjusted |
| GMM weight matrix: Robust |

<table>
<thead>
<tr>
<th></th>
<th>Robust</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef.</td>
</tr>
<tr>
<td>/b1</td>
<td>-.4203287</td>
</tr>
<tr>
<td>/b2</td>
<td>-7.365905</td>
</tr>
<tr>
<td>/b3</td>
<td>27.75419</td>
</tr>
</tbody>
</table>

Instruments for equation 1: policepc legalwage _cons
Using the \texttt{gmm} command

OLS by GMM II

```
. regress crime policepc legalwage, robust
Linear regression

Number of obs  =  10000
F(  2,   9997)  = 4422.19
Prob > F      =  0.0000
R-squared    =  0.6092
Root MSE     =  1.8032

|              | Coef.  | Std. Err. |      t    |     P>|t|   | [95% Conf. Interval] |
|--------------|--------|-----------|-----------|--------|---------------------|
| crime        |        | Robust    |          |        |                     |
| policepc     | -0.4203287 | 0.0053653 | -78.34   | 0.000  | -0.4308459 to -0.4098116 |
| legalwage    | -7.365905 | 0.2411907 | -30.54   | 0.000  | -7.838688 to -6.893123  |
| _cons        | 27.75419 | 0.0311075 | 892.20   | 0.000  | 27.69321 to 27.81517  |
```
. generate cons = 1
. gmm (crime - {xb:police legalwage cons}), ///
> instruments(police legalwage) nolog onestep

Final GMM criterion Q(b) = 1.84e-31

GMM estimation
Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted

| | Coef. | Robust Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------------|-----------|------------------|---------|---------|---------------------|
| /xb_policepc | -.4203287 | .0053645 | -78.35 | 0.000 | -.4308431 -.4098144 |
| /xb_legalw-e | -7.365905 | .2411545 | -30.54 | 0.000 | -7.838559 -6.893251 |
| /xb_cons | 27.75419 | .0311028 | 892.34 | 0.000 | 27.69323 27.81515 |

Instruments for equation 1: policepc legalwage _cons
IV and 2SLS

- For some variables, the assumption \(E[\epsilon|x] = 0 \) is too strong and we need to allow for \(E[\epsilon|x] \neq 0 \).

- If we have \(q \) variables \(z \) for which \(E[\epsilon|z] = 0 \) and the correlation between \(z \) and \(x \) is sufficiently strong, we can estimate \(\beta \) from the population moment conditions:

\[
E[z(y - x\beta)] = 0
\]

- \(z \) are known as instrumental variables.

- If the number of variables in \(z \) and \(x \) is the same \((q = k)\), solving the sample moment conditions yield the MM estimator known as the instrumental variables (IV) estimator.

- If there are more variables in \(z \) than in \(x \) \((q > k)\) and we let

\[
W = \left(\sum_{i=1}^{N} z_i'z_i \right)^{-1}
\]

in our GMM estimator, we obtain the two-stage least-squares (2SLS) estimator.
The assumption that $E[\epsilon|\text{policepc}] = 0$ is false, if communities increase policepc in response to an increase in crime (an increase in ϵ_i).

The variables arrestp and convictp are valid instruments, if they measure some components of communities’ toughness-on crime that are unrelated to ϵ but are related to policepc.

We will continue to maintain that $E[\epsilon|\text{legalwage}] = 0$.

Using the `gmm` command

2SLS by GMM I

```
gmm (crime - {xb:police legalwage cons}), ///
>      instruments(arrestp convictp legalwage ) nolog onestep
```

Final GMM criterion $Q(b) = 0.001454$

GMM estimation

Number of parameters = 3
Number of moments = 4
Number of obs = 10000

Initial weight matrix: Unadjusted

<table>
<thead>
<tr>
<th>/xb_policepc</th>
<th>/xb_legalw~e</th>
<th>/xb_cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.002431</td>
<td>-1.281091</td>
<td>30.0494</td>
</tr>
<tr>
<td>.0455469</td>
<td>.5890977</td>
<td>.1830541</td>
</tr>
<tr>
<td>-22.01</td>
<td>-2.17</td>
<td>164.16</td>
</tr>
<tr>
<td>0.000</td>
<td>0.030</td>
<td>0.000</td>
</tr>
<tr>
<td>-1.091701</td>
<td>-2.435702</td>
<td>29.69062</td>
</tr>
<tr>
<td>-.9131606</td>
<td>-.1264811</td>
<td>30.40818</td>
</tr>
</tbody>
</table>

Instruments for equation 1: arrestp convictp legalwage _cons
Using the `gmm` command

2SLS by GMM II

```
. ivregress 2sls crime legalwage (policepc = arrestp convictp), robust
Instrumental variables (2SLS) regression

Number of obs = 10000
Wald chi2(2) = 1891.83
Prob > chi2 = 0.0000
R-squared = .
Root MSE = 3.216

|            | Coef.  | Std. Err. | z     | P>|z|  | [95% Conf. Interval] |
|------------|--------|-----------|-------|------|----------------------|
| policepc   | -1.002431 | 0.0455469 | -22.01 | 0.000 | -1.091701 to -0.9131606 |
| legalwage  | -1.281091 | 0.5890977 | -2.17  | 0.030 | -2.435702 to -0.1264811 |
| _cons      | 30.0494  | 0.1830541 | 164.16 | 0.000 | 29.69062 to 30.40818  |

Instrumented: policepc
Instruments: legalwage arrestp convictp
```
CF estimator for Poisson model endogenous variables

- Cross-sectional CF estimator for Poisson model endogenous variables
- See Wooldridge (2010), and ivpoisson documentation

\[y_i = \exp(\beta_0 + x_i \beta_1 + \epsilon_i) \]
\[x_i = \alpha_0 + z_i \alpha_1 + \xi_i \]
\[\epsilon_i = \xi_i \rho + \eta_i \]

(\eta_i \text{ is independent of } \xi \text{ and } E[\exp(\eta_i)] = 1)

Implied model

\[E[y_i|z, x, \xi_i] = \exp(\beta_0 + x_i \beta_1 + \xi_i \rho) \]

So we could estimate \(\beta_1 \) if we knew \(\xi_i \)

CF estimator

1. Estimates \(\alpha_0 \) and \(\alpha_1 \) by OLS,
2. Computes residuals \(\hat{\epsilon}_i \)
3. Plug \(\hat{\epsilon}_i \) in for \(\xi \)
4. Now estimate \(\beta_1 \) by multiplicative moment condition as \(E[\exp(\eta_i)] = 1 \)
GMM with evaluator programs

- Up to this point, all the problems have fit into the residual-instrument syntax
- We want to use `gmm` to estimator more difficult models
- We need to use the program-evaluator syntax
Using the `gmm` command

gmm program evaluator syntax

```
gmm evaluator_program_name, nequations(#) parameters(parameter_name_list) [options]
```
program define ivp_m
 version 13
 syntax varlist if, at(name)
 forvalues i=1/5{
 local m'i' : word 'i' of 'varlist'
 }
 quietly {
 tempvar r1 r2
 generate double 'r2' = x - 'at'[1,4]*z - 'at'[1,5]
 generate double 'r1' = y/exp('at'[1,1]*x + 'at'[1,2] + 'at'[1,3]*'r2') - 1
 replace 'm1' = 'r2'
 replace 'm2' = 'r2'*z
 replace 'm3' = 'r1'
 replace 'm4' = 'r1'*x
 replace 'm5' = 'r1'*'r2'
 }
end
. gmm ivp_m, nequations(5) parameters(y:x y:_cons rho:_cons x:z x:_cons) winit > ial(identity) onestep nolog
Final GMM criterion Q(b) = 4.05e-15
GMM estimation
Number of parameters = 5
Number of moments = 5
Initial weight matrix: Identity
Number of obs = 5000

| | Robust Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------------|--------------|-----------|-----|------|----------------------|
| y | | | | | |
| x | 1.037235 | 0.062547 | 16.58 | 0.000 | 0.914645 1.159825 |
| _cons | 0.0112318 | 0.0272029 | 0.41 | 0.680 | -0.0420849 0.0645485 |
| rho | | | | | |
| _cons | 0.0947202 | 0.0657478 | 1.44 | 0.150 | -0.0341431 0.2235835 |
| x | | | | | |
| z | 0.3890606 | 0.0137986 | 28.20 | 0.000 | 0.3620159 0.4161053 |
| _cons | 0.1003455 | 0.0144203 | 6.96 | 0.000 | 0.0720821 0.1286088 |

Instruments for equation 1: _cons
Instruments for equation 2: _cons
Instruments for equation 3: _cons
Instruments for equation 4: _cons
Instruments for equation 5: _cons
Using the `gmm` command

```
> ivpoisson cfunction y (x = z)
Step 1
Iteration 0:  GMM criterion Q(b) = 0.01255627
Iteration 1:  GMM criterion Q(b) = 0.00003538
Iteration 2:  GMM criterion Q(b) = 4.202e-10
Iteration 3:  GMM criterion Q(b) = 6.188e-20
Exponential mean model with endogenous regressors
Number of parameters = 5  Number of obs = 5000
Number of moments = 5
Initial weight matrix: Unadjusted
GMM weight matrix: Robust

|       | Coef. | Robust Std. Err. | z    | P>|z|   | [95% Conf. Interval] |
|-------|-------|------------------|------|-------|---------------------|
| y     |       |                  |      |       |                     |
| y     |       |                  |      |       |                     |
| x     | 1.037235 | 0.062547 | 16.58 | 0.000 | 0.9146451  1.159825 |
| _cons| 0.0112319 | 0.0272029 | 0.41  | 0.680 | -0.0420848  0.0645486 |
| x     |       |                  |      |       |                     |
| z     | 0.3890606 | 0.0137986 | 28.20 | 0.000 | 0.3620159  0.4161053 |
| _cons| 0.1003455 | 0.0144203 | 6.96  | 0.000 | 0.0720821  0.1286088 |
| /c_x  | 0.0947201 | 0.0657478 | 1.44  | 0.150 | -0.0341432  0.2235834 |

Instrumented: x
Instruments: z
Wooldridge (1999, 2010); Blundell, Griffith, and Windmeijer (2002) discuss estimating the fixed-effects Poisson model for panel data by GMM.

In the Poisson panel-data model we are modeling

\[ E[y_{it} | x_{it}, \eta_i] = \exp(x_{it} \beta + \eta_i) \]

Hausman, Hall, and Griliches (1984) derived a conditional log-likelihood function when the outcome is assumed to come from a Poisson distribution with mean \( \exp(x_{it} \beta + \eta_i) \) and \( \eta_i \) is an observed component that is correlated with the \( x_{it} \).
Wooldridge (1999) showed that you could estimate the parameters of this model by solving the sample moment equations

$$\sum_i \sum_t x_{it} \left( y_{it} - \mu_{it} \frac{\bar{y}_i}{\mu_i} \right) = 0$$

These moment conditions do not fit into the interactive syntax because the term $\mu_i$ depends on the parameters.

Need to use moment-evaluator program syntax.
Using the gmm command

program xtfe
    version 13
    syntax varlist if, at(name)
    quietly {
        tempvar mu mubar ybar
        generate double `mu' = exp(kids*'at'[1,1] //
            + cvalue*'at'[1,2] ///
            + tickets*'at'[1,3]) 'if'
        egen double `mubar' = mean(`mu') 'if', by(id)
        egen double `ybar' = mean(accidents) 'if', by(id)
        replace `varlist' = accidents ///
            - `mu'*`ybar'/`mubar' 'if'
    }
end
Using the `gmm` command

**FE Poisson by `gmm`**

```bash
. use xtaccidents, clear
. by id: egen max_a = max(accidents)
. drop if max_a ==0
 (3750 observations deleted)
. gmm xtfe , equations(accidents) parameters(kids cvalue tickets) ///
 > instruments(kids cvalue tickets, noconstant) ///
 > vce(cluster id) onestep nolog
Final GMM criterion Q(b) = 1.50e-16
GMM estimation
Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------------|--------|-----------|-------|-----|----------------------|
| /kids | -.4506245 | .0969133 | -4.65 | 0.000 | -.6405711 -.2606779 |
| /cvalue | -.5079946 | .0615506 | -8.25 | 0.000 | -.6286315 -.3873577 |
| /tickets | .151354 | .0873677 | 1.73 | 0.083 | -.0198835 .3225914 |

Instruments for equation 1: kids cvalue tickets
```
. xtpoisson accidents kids cvalue tickets, fe nolog vce(robust)

Conditional fixed-effects Poisson regression
Number of obs = 1250
Group variable: id
Number of groups = 250
Obs per group: min = 5
avg = 5.0
max = 5
Wald chi2(3) = 84.89
Prob > chi2 = 0.0000

Log pseudolikelihood = -351.11739

(Std. Err. adjusted for clustering on id)

|             | Coef.   | Std. Err. | z     | P>|z|  | [95% Conf. Interval] |
|--------------|---------|-----------|-------|------|---------------------|
| accidents    |         |           |       |      |                     |
| kids         | -.4506245 | .0969133 | -4.65 | 0.000 | (-.6405712, -.2606779) |
| cvalue       | -.5079949 | .0615506 | -8.25 | 0.000 | (-.6286319, -.3873579) |
| tickets      | .151354  | .0873677 | 1.73  | 0.083 | (-.0198835, .3225914) |


References


