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Parallel lines assumption in Ordered logit

I We have a dependent variable consisting of three ordered
categories: 1, 2, and 3

I So we can look at the effect of a variable X on the
comparison 1 versus 2 and 3 and the comparison 2 versus
3.

I An ordered logit results in one effect of X by assuming that
these effects are the same

I A generalized version of this model allows some or all of
these effects to be different. This model is implemented by
Richard Williams in gologit2.
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5 Tests of the parallel lines assumption after ordered
logit

Tests of the parallel lines assumption compare the ordered logit
model with a full generalized ordered logit model. There are 5
tests implemented in Stata (soon) in oparallel

I likelihood ratio test
I Wald test
I score test
I Wolfe-Gould test (approximate likelihood ratio test)
I Brant test (approximate Wald test)
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What do I mean with ‘inspect the performance of a
test’?

A test is based on the following process:
1. We think of a null hypothesis

2. We have drawn a sample
3. We imagine a world in which the null hypothesis is true and

can that we draw many samples from this population
4. The p-value is the proportion of these samples that deviate

from the null hypothesis at least as much as the observed
data

5. It is the probability of drawing a sample that is at least as
‘weird’ as the observed data if the null hypothesis is true
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What do I mean with ‘inspect the performance of a
test’?

I The p-values returned by a test are often approximate, e.g.
many are based on asymptotic arguments

I A valid question might be: Does the approximation work
well enough for my dataset?

I To answer that question I am going to take the process of
testing literally:

1. I am going to change my data such that the null hypothesis
is true

2. I am going to draw many samples from this ‘population’ and
perform the test in each of these samples

3. I am going to compare the p-value returned by that test with
the proportion of samples that are more extreme than that
sample.
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The distribution of p-values

I The p-value is one way to measure the difference between
the data and the null-hypothesis, such that smaller values
represent larger difference.

I If we find a p-value of α, than the probability of drawing a
dataset with a p-value ≤ α if the null hypothesis is true
should itself be α, and this should be true for all possible
values of α.

I So the sampling distribution of the p-values if the null
hypothesis is true should be a standard uniform
distribution.
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The basic simulation (preparation)

clear all
use "http://www.indiana.edu/~jslsoc/stata/spex_data/ordwarm2.dta", clear
ologit warm white ed prst male yr89 age

predict double pr1 pr2 pr3 pr4, pr
forvalues i = 2/3 {

local j = ‘i’ - 1
replace pr‘i’ = pr‘i’ + pr‘j’

}
replace pr4 = 1
gen pr0 = 0
keep if e(sample)

gen ysim = .
gen u = .
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The basic simulation (actual simulation)
program define sim, rclass

replace u = runiform()
forvalues i = 1/4 {

local j = ‘i’ - 1
replace ysim = ‘i’ if u > pr‘j’ & u < pr‘i’

}
ologit ysim white ed prst male yr89 age
oparallel

return scalar s = r(p_s)
return scalar w = r(p_w)
return scalar lr = r(p_lr)
return scalar wg = r(p_wg)
return scalar b = r(p_b)
end

simulate s=r(s) w=r(w) lr=r(lr) wg=r(wg) b=r(b), reps(1000) : sim
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The basic simulation (interpret the results)

simpplot s w lr wg b, ///
main1opt(ms(none) c(l) sort ) ///
main2opt(ms(none) c(l) sort ) ///
main3opt(ms(none) c(l) sort ) ///
main4opt(ms(none) c(l) sort ) ///
main5opt(ms(none) c(l) sort ) ///
legend(order(2 "score" ///

3 "Wald" ///
4 "likelihoood" ///

"ratio" ///
5 "Wolfe-Gould" ///
6 "Brant" )) ///

overall reps(100000) ///
scheme(s2color) ///
ylab(-.05(.025).05,angle(horizontal))
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The basic simulation (interpret the results)
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Sample size

I So, all three tests seem to work well in the current dataset,
which contains 2,293 observations

I What if I have a smaller dataset?
I Adapt the basic example by sampling say 200

observations, like so:

<prepare data>
save prepared_data
program define sim, rclass

use prepared_data
bsample 200
...
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sample size
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number of categories

I What if the number of observations remains constant at
the observed number 2,293 but we increase the number of
answer categories?

I We looked at 3, 4, 6, 8, and 10 categories, by changing the
constants.

I These constants were chosen such that the proportion of
observations in each of these categories are all the same
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size of categories

I In this set-up the proportion in a category decreases as the
number of categories increase

I Did we see an effect of the number of categories or of
small categories?

I Such sparse categories are also common in real data and
often cause trouble.

I We fix the number of categories at 4 but change the first
constant such that the proportion of observations in the
first two categories change

I We do that in such a way that the first category contains
1%, 2%, 5%, 10%, or 20% of the observations
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Bootstrap test

I Consider the basic simulation again.

I It creates a ‘population’ in which the null hypothesis is true,
but is otherwise as similar to the data as possible

I It draws many times from this population, and in each of
these draws it inspects how large the deviation from the
null hypothesis is

I We could just count the number of samples in which that
deviation is larger than in the observed data and we would
have an estimate of the p-value

I This is a bootstrap test
I This is implemented in oparallel as the asl option
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p-value = k
B or k+1

B+1

I The ratio is of the number of samples that are at least as extreme as the
observed data k over the the number of replications B is the natural
estimate of the p-value. However...

I If the null hypothesis is true all possible values of a should be equally
likely.

I If we draw B samples then there are B + 1 possible outcomes: 0 , 1,
· · · , or B samples that are more extreme than the observed data.

I Each of these outcomes should be equally likely, so 1
B+1

I So the probability of finding 0 or less samples that are more extreme
than the observed data is 1

B+1

I The probability of finding 1 or less samples that are more extreme than
the observed data is 2

B+1

I In general, the probability of finding k or less samples that are more
extreme than the observed data is k+1

B+1
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I Each of these outcomes should be equally likely, so 1
B+1

I So the probability of finding 0 or less samples that are more extreme
than the observed data is 1

B+1

I The probability of finding 1 or less samples that are more extreme than
the observed data is 2

B+1

I In general, the probability of finding k or less samples that are more
extreme than the observed data is k+1

B+1
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An alternative justification of k+1
B+1

I there is some ideal p-value based on an infinite number of bootstrap
samples that we try to approximate.

I Based on B bootstrap one can determine the hypothetical rank i of the
p-value in the observed data if it had occurred in one of the bootstrap
samples.

I If there are no bootstrap samples with a p-value smaller than the
observed p-value than the observed p-value would have been the
smallest and would thus receive rank 1.

I Similarly, if there was only one bootstrap sample that produced a
smaller p-value then the observed p-value would have received rank 2.

I In general, i = k + 1.
I We know that the underlying distribution of the ideal p-value must be a

continuous standard uniform distribution.
I This means that the value of the i th smallest value will follow a Beta

distribution with parameters i and B + 1 − i
I The mean of this distribution is i/(B + 1) = (k + 1)/(B + 1).
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uncertainty in the bootstrap estimate of the p-value

I There is randomness in our estimate of the p-value

I If we use the simple proportion as our estimate we can use
the binomial distribution to compute a Monte Carlo
confidence interval around our estimate (cii in Stata)

I If we use (k + 1)/(B + 1) as our estimate we can use the
Beta distribution

I The two are very similar
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Concluding remarks

I Tests of the parallel lines assumption in ordered logit
models tend to be a bit anti-conservative

I But it is nowhere near as bad as we expected
I Problematic situations are small sample sizes and a large

number of categories in the dependent variable, but not so
much a sparse categories.

I Surprisingly the Wolfe-Gould test seems to work best
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Concluding remarks

I Does this mean that tests for the parallel lines is not anti-conservative?

I Not if you use it for model selection. If you are automatically going to
reject your model when you find a significant deviation from the parallel
lines assumptions you will reject to many useful models.

I A model is a simplification of reality. Simplification is another word for
‘wrong in some useful way’. So, all models are by definition wrong.

I Finding that the parallel lines assumption does not hold tells you that
the patterns you can see in a generalized ordered logit model are
unlikely to be just random noise.

I It is now up to the researcher to determine whether these patterns are
important enough to abandon the ordered logit model. This is a
judgement call that cannot be delegated to a computer

Maarten L. Buis, Richard Williams Using simulation to inspect the performance of a test



Introduction
simulations
Alternative
conclusion

Concluding remarks

I Does this mean that tests for the parallel lines is not anti-conservative?
I Not if you use it for model selection.

If you are automatically going to
reject your model when you find a significant deviation from the parallel
lines assumptions you will reject to many useful models.

I A model is a simplification of reality. Simplification is another word for
‘wrong in some useful way’. So, all models are by definition wrong.

I Finding that the parallel lines assumption does not hold tells you that
the patterns you can see in a generalized ordered logit model are
unlikely to be just random noise.

I It is now up to the researcher to determine whether these patterns are
important enough to abandon the ordered logit model. This is a
judgement call that cannot be delegated to a computer

Maarten L. Buis, Richard Williams Using simulation to inspect the performance of a test



Introduction
simulations
Alternative
conclusion

Concluding remarks

I Does this mean that tests for the parallel lines is not anti-conservative?
I Not if you use it for model selection. If you are automatically going to

reject your model when you find a significant deviation from the parallel
lines assumptions you will reject to many useful models.

I A model is a simplification of reality. Simplification is another word for
‘wrong in some useful way’. So, all models are by definition wrong.

I Finding that the parallel lines assumption does not hold tells you that
the patterns you can see in a generalized ordered logit model are
unlikely to be just random noise.

I It is now up to the researcher to determine whether these patterns are
important enough to abandon the ordered logit model. This is a
judgement call that cannot be delegated to a computer

Maarten L. Buis, Richard Williams Using simulation to inspect the performance of a test



Introduction
simulations
Alternative
conclusion

Concluding remarks

I Does this mean that tests for the parallel lines is not anti-conservative?
I Not if you use it for model selection. If you are automatically going to

reject your model when you find a significant deviation from the parallel
lines assumptions you will reject to many useful models.

I A model is a simplification of reality.

Simplification is another word for
‘wrong in some useful way’. So, all models are by definition wrong.

I Finding that the parallel lines assumption does not hold tells you that
the patterns you can see in a generalized ordered logit model are
unlikely to be just random noise.

I It is now up to the researcher to determine whether these patterns are
important enough to abandon the ordered logit model. This is a
judgement call that cannot be delegated to a computer

Maarten L. Buis, Richard Williams Using simulation to inspect the performance of a test



Introduction
simulations
Alternative
conclusion

Concluding remarks

I Does this mean that tests for the parallel lines is not anti-conservative?
I Not if you use it for model selection. If you are automatically going to

reject your model when you find a significant deviation from the parallel
lines assumptions you will reject to many useful models.

I A model is a simplification of reality. Simplification is another word for
‘wrong in some useful way’.

So, all models are by definition wrong.
I Finding that the parallel lines assumption does not hold tells you that

the patterns you can see in a generalized ordered logit model are
unlikely to be just random noise.

I It is now up to the researcher to determine whether these patterns are
important enough to abandon the ordered logit model. This is a
judgement call that cannot be delegated to a computer

Maarten L. Buis, Richard Williams Using simulation to inspect the performance of a test



Introduction
simulations
Alternative
conclusion

Concluding remarks

I Does this mean that tests for the parallel lines is not anti-conservative?
I Not if you use it for model selection. If you are automatically going to

reject your model when you find a significant deviation from the parallel
lines assumptions you will reject to many useful models.

I A model is a simplification of reality. Simplification is another word for
‘wrong in some useful way’. So, all models are by definition wrong.

I Finding that the parallel lines assumption does not hold tells you that
the patterns you can see in a generalized ordered logit model are
unlikely to be just random noise.

I It is now up to the researcher to determine whether these patterns are
important enough to abandon the ordered logit model. This is a
judgement call that cannot be delegated to a computer

Maarten L. Buis, Richard Williams Using simulation to inspect the performance of a test



Introduction
simulations
Alternative
conclusion

Concluding remarks

I Does this mean that tests for the parallel lines is not anti-conservative?
I Not if you use it for model selection. If you are automatically going to

reject your model when you find a significant deviation from the parallel
lines assumptions you will reject to many useful models.

I A model is a simplification of reality. Simplification is another word for
‘wrong in some useful way’. So, all models are by definition wrong.

I Finding that the parallel lines assumption does not hold tells you that
the patterns you can see in a generalized ordered logit model are
unlikely to be just random noise.

I It is now up to the researcher to determine whether these patterns are
important enough to abandon the ordered logit model. This is a
judgement call that cannot be delegated to a computer

Maarten L. Buis, Richard Williams Using simulation to inspect the performance of a test



Introduction
simulations
Alternative
conclusion

Concluding remarks

I Does this mean that tests for the parallel lines is not anti-conservative?
I Not if you use it for model selection. If you are automatically going to

reject your model when you find a significant deviation from the parallel
lines assumptions you will reject to many useful models.

I A model is a simplification of reality. Simplification is another word for
‘wrong in some useful way’. So, all models are by definition wrong.

I Finding that the parallel lines assumption does not hold tells you that
the patterns you can see in a generalized ordered logit model are
unlikely to be just random noise.

I It is now up to the researcher to determine whether these patterns are
important enough to abandon the ordered logit model.

This is a
judgement call that cannot be delegated to a computer

Maarten L. Buis, Richard Williams Using simulation to inspect the performance of a test



Introduction
simulations
Alternative
conclusion

Concluding remarks

I Does this mean that tests for the parallel lines is not anti-conservative?
I Not if you use it for model selection. If you are automatically going to

reject your model when you find a significant deviation from the parallel
lines assumptions you will reject to many useful models.

I A model is a simplification of reality. Simplification is another word for
‘wrong in some useful way’. So, all models are by definition wrong.

I Finding that the parallel lines assumption does not hold tells you that
the patterns you can see in a generalized ordered logit model are
unlikely to be just random noise.

I It is now up to the researcher to determine whether these patterns are
important enough to abandon the ordered logit model. This is a
judgement call that cannot be delegated to a computer

Maarten L. Buis, Richard Williams Using simulation to inspect the performance of a test



Introduction
simulations
Alternative
conclusion

Concluding remark

I Checking a test, we make sure we repeatedly draw from a
population in which the null hypothesis is true

I in regression type problems it is usually enough to draw a
new dependent variable from the distribution implied by the
model

I The purpose is than to check whether the p-values follow a
standard uniform distribution
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Concluding remarks

I This idea can also be used to estimate p-values when the
test itself does not behave as well as you would like.

I That is the bootstrap test, and it is a general idea. It has
been applied in: asl_norm and propcnsreg
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