Lee’s (2009) treatment effects bounds for non-random sample selection for Stata

Harald Tauchmann (RWI & CINCH)

Rheinisch-Westfälisches Institut für Wirtschaftsforschung (RWI)
& CINCH Health Economics Research Centre

1. June 2012

2012 German Stata Users Group Meeting, WZB, Berlin
Introduction

- Random assignment of treatment: ideal setting for estimating treatment effects
 - Randomized trials
- Non-random sample attrition (selection) still undermines validity of econometric estimates
 - Selection bias
- Typical examples:
 - Dropout from program
 - Denied information on outcome
 - Death during clinical trial
- Possibly severe attrition bias
- Direction of bias a priori unknown
Selection Correction Estimators

- Modeling the mechanism of sample selection/attrition
- Classical Heckman (1976, 1979) **parametric** selection correction estimator
 - Stata command **heckman**
 - Assumes *joint normality*
 - Exclusion restrictions beneficial
 - Identification through non-linearity – in principle – possible
 → Parametric approach relying on strong assumptions
- **Semi-parametric** approaches (e.g. Ichimura and Lee, 1991; Ahn and Powell, 1993)
 - Assumption of joint normality not required
 - Exclusion restrictions essential
 → Valid exclusion restrictions may not be available
Treatment Effect Bounds

- Rather than correcting point estimate of treatment effect
- Determining interval for effect size
- Correspond to extreme assumptions about the impact of selection on estimated effect

1. **Horowitz and Manski (2000) bounds**
 - No assumptions about the selection mechanism required
 - Outcome variable needs to be bounded
 - Missing information is imputed on basis of minimal and maximal possible values of the outcome variable
 - Frequently yields very wide (i.e. hardly informative) bounds
 - Useful benchmark for binary outcome variables
2. Lee (2009) bounds

Assumptions:

(i) Besides *random assignment of treatment*

(ii) *Monotonicity* assumption about selection mechanism

- Assignment to treatment can only affect attrition in one direction
- I.e. (in terms of sign) no heterogeneous effect of treatment on selection
- Average treatment effect for never-attriters

Intuition:

- Sample trimmed such that the share of observed individuals is equal for both groups
- Trimming either from above or from below
- Corresponds to extreme assumptions about missing information that are consistent with

 (i) The observed data and
 (ii) A one-sided selection model
Estimating Lee (2009) bounds

Let denote \(Y \) the outcome, \(T \) a binary treatment indicator, \(W \) a binary selection indicator, and \(i \) individuals. Calculate:

1. \(q_T \equiv \frac{\sum_i 1(T_i=1, W_i=1)}{\sum_i 1(T_i=1)} \) and \(q_C \equiv \frac{\sum_i 1(T_i=0, W_i=1)}{\sum_i 1(T_i=0)} \), i.e. the shares of individuals with observed \(Y \)

2. \(q \equiv (q_T - q_C)/q_T \), if \(q_T > q_C \) (If \(q_T < q_C \), exchange \(C \) for \(T \))

3. \(y_T^q = G_Y^{-1}(q|T=1, W=1) \) and \(y_{1-q}^T = G_Y^{-1}(1 - q|T=1, W=1) \), i.e. \(q \)th and the \((1 - q)\)th quantile of observed outcome in the treatment group

4. Upper bound \(\hat{\theta}^{upper} \) and lower bound \(\hat{\theta}^{lower} \) as

\[
\hat{\theta}^{upper} = \frac{\sum_i 1(T_i=1, W_i=1, Y_i \geq y_T^q)}{\sum_i 1(T_i=1, W_i=1, Y_i \geq y_T^q)} Y_i - \frac{\sum_i 1(T_i=0, W_i=1)}{\sum_i 1(T_i=0, W_i=1)} \]

\[
\hat{\theta}^{lower} = \frac{\sum_i 1(T_i=1, W_i=1, Y_i \leq y_{1-q}^T)}{\sum_i 1(T_i=1, W_i=1, Y_i \leq y_{1-q}^T)} Y_i - \frac{\sum_i 1(T_i=0, W_i=1)}{\sum_i 1(T_i=0, W_i=1)} \]

Tightening Bounds

- Lee (2009) bounds rest on comparing unconditional means of (trimmed) subsamples
 - No covariates considered
- Using covariates yields tighter bounds:
 1. Choose (discrete) variable(s) that have explanatory power for attrition
 2. Split sample into cells defined by these variables
 3. Compute bounds for each cell
 4. Take weighted average
 - Lee (2009) shows that such bounds are tighter than unconditional ones
- Researcher can generate such variables by deliberately varying the effort on preventing attrition (DiNardo et al., 2006)
Standard Errors and Confidence Intervals

- Lee (2009) derives analytic standard errors for bounds
- Allows for straightforward calculation of a ‘naive’ confidence interval
- Covers the interval $[\theta_{\text{lower}}, \theta_{\text{upper}}]$ with probability $1 - \alpha$
- Imbens and Manski (2004) derive confidence interval for the treatment effect itself
- Tighter than confidence interval for the interval
help orderalpha

Title

leebounds — Lee (2009) treatment effect bounds

Syntax

leebounds depvar treatvar [if] [in] [weight], [options]

Outcome and treatment Description

Model

depvar dependent variable
treatvar binary treatment indicator

options Description

Main

select(varname) selection indicator
tight(varlist) covariats for tightened bounds
cifect compute confidence interval for treatment effect

SE/Bootstrap

vce(analytic|bootstrap) compute analytic or bootstrapped standard errors;

Reporting

set confidence level; default is level(95)

pweights (default), fweights, and iweights are allowed, aweights are not allowed; see weight. observations
with negative weight are skipped for any weight type.
bootstrap is allowed, by and svy are not allowed; see prefix.
leebounds saves the following in e():

Scalars
- \(e(N) \): number of observations
- \(e(nsel) \): number of selected observations
- \(e(trim) \): (overall) trimming proportion
- \(e(cells) \): number of cells (only saved for tight())
- \(e(cilower) \): lower bound of treatment effect-confidence interval (only saved for cieffect)
- \(e(cilower) \): upper bound of treatment effect-confidence interval (only saved for cieffect)
- \(e(level) \): confidence level
- \(e(N_reps) \): number of bootstrap repetitions (only saved for vce(bootstrap))

Macros
- \(e(cmd) \): command as typed
- \(e(cmdline) \): Lee (2009) treatment effect bounds
- \(e(vce) \): either analytic or bootstrap
- \(e(vctype) \): Bootstrap for vce(bootstrap)
- \(e(depvar) \): depvar
- \(e(treatment) \): treatvar
- \(e(select) \): varname (only saved for select())
- \(e(covariates) \): varlist (only saved for tight())
- \(e(trimmed) \): either treatment or control
- \(e(wtype) \): either pweight, fweight, or iweight (only saved if weights are specified)
- \(e(wexp) \): = exp (only saved if weights are specified)
- \(e(properties) \): b v

Matrices
- \(e(b) \): 1x2 vector of estimated treatment effect bounds (colnames are of the form treatvar:lower and treatvar:upper)
- \(e(v) \): 2x2 variance-covariance matrix for estimated treatment effect bounds (covariance set to zero for vce(analytic))

Functions
- \(e(sample) \): marks estimation sample
Experimental Design

Research question: Do financial incentives aid obese in reducing bodyweight?

- Ongoing randomized trial (Augurzky et al., 2012)
- 698 obese (BMI ≥ 30) individuals recruited during rehab hospital stay
- Individual weight-loss target (typically 6–8% of body weight)
- Participants prompted to realize weight-loss target within four months
- Randomly assigned to one of three experimental groups:
 1. No financial incentive (control group)
 2. 150 € reward for realizing weight-loss target
 3. 300 € reward for realizing weight-loss target
- After four months: weight-in at assigned pharmacy
Attrition Problem

Experimental groups:

<table>
<thead>
<tr>
<th>group size</th>
<th>compliers</th>
<th>attrition</th>
</tr>
</thead>
<tbody>
<tr>
<td>control group</td>
<td>233</td>
<td>155</td>
</tr>
<tr>
<td>150€ group</td>
<td>236</td>
<td>172</td>
</tr>
<tr>
<td>300€ group</td>
<td>229</td>
<td>193</td>
</tr>
<tr>
<td>total</td>
<td>698</td>
<td>520</td>
</tr>
</tbody>
</table>

- Attrition rate negatively correlated with size of reward
- Plausible since (successful) members of incentive group have stronger incentive not to dropout
- Selection on success (in particular for incentive groups) likely
- Overestimation of incentive effect likely downward bias still possible
Empirical Application Economic Analysis

Simple Bivariate OLS (comparison of means)

- Outcome variable: *weightloss* (percent of body weight)
- Focus on comparing *group 300* with *control group*

```
. regress weightloss group300

Source | SS      | df | MS
-------|---------|----|---
Model  | 686.575435 | 1  | 686.575435
Residual | 10253.2078 | 346 | 29.6335486
Total  | 10939.7832 | 347 | 31.5267528

Number of obs = 348
F( 1, 346) = 23.17
Prob > F = 0.0000
R-squared = 0.0628
Adj R-squared = 0.0601
Root MSE = 5.4437

weightloss | Coef. | Std. Err. | t     | P>|t| | [95% Conf. Interval]
-----------|-------|-----------|-------|-----|----------------------
group300   | 2.826111 | .5871336 | 4.81 | 0.000 | 1.671311 3.980911
_cons      | 2.34758  | .4372461  | 5.37 | 0.000 | 1.487585 3.207575
```

- Highly significant inventive effect
- Roughly three percentage points
Heckman (two-step) Selection Correction Estimator

- Exclusion restriction: *nearby_pharmacy* (assigned pharmacy within same ZIP-code area as place of residence)
- Captures cost of attending weight-in, no direct link to weight loss
- No further controls
- Two-step estimation
Heckman (two-step) Selection Correction Estimator II

```
. heckman weightloss group300, select(group300 nearby_pharmacy) twostep

Heckman selection model -- two-step estimates
(regression model with sample selection)
Number of obs = 462
Censored obs = 114
Uncensored obs = 348
Wald chi2(1)  = 1.37
Prob > chi2  = 0.2415

weightloss     Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
weightloss
  group300     3.126055    2.669154    1.17   0.242     -2.105391    8.357501
  _cons        1.716602    5.493513    0.31   0.755    -9.050485   12.48369
select
  group300     0.577729    0.131260    4.40   0.000     0.320463    0.834995
  nearby_pharmacy
     0.135898    0.134428    1.01   0.312    -0.127576    0.399373
     0.340634    0.120111    2.84   0.005     0.105221    0.576049
mills
  lambda      1.158006    10.04912    0.12   0.908    -18.53790    20.85392
rho
  sigma       0.21123     5.482109
```

- Similar point estimate as for OLS
- Large S.E.s → insignificant incentive effect
- Low explanatory power of `nearby_pharmacy`
 (if regional characteristics are not controlled for)
Lee Bounds

. leebounds weightloss group300
Lee (2009) treatment effect bounds

| weightloss | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|--------|-----------|-------|-----|----------------------|
| group300 | | | | | |
| lower | .983459| .6431066 | 1.53 | 0.126 | -.2770069 - 2.243925 |
| upper | 4.783921| .6677338 | 7.16 | 0.000 | 3.475187 - 6.092655 |

- Bounds cover OLS and Heckman point estimate
- Fairly wide interval
- Lower bound does not significantly differ from zero
Lee Bounds with Effect Confidence Interval

```
. leebounds weightloss group300, cie
Lee (2009) treatment effect bounds
Number of obs. = 462
Number of selected obs. = 348
Trimming porportion = 0.2107
Effect 95% conf. interval : [-0.0744  5.8822]

weightloss |  Coef.  Std. Err.       z    P>|z|     [95% Conf. Interval]
-------------|-----------|---------|---------|---------------------------|
group300     |          |         |         |                           |
lower        | .983459  | .6431066|  1.53   |  0.126        | -.2770069      |  2.243925     |
upper        | 4.783921 | .6677338|  7.16   |  0.000        |  3.475187      |  6.092655     |
```

▶ Effect confidence interval covers zero
Empirical Application Econometric Analysis

Tightened Lee Bounds

- Variable `nearby_pharmacy` used for tightening bounds
- Following the suggestion of DiNardo et al. (2006)

```
. leebounds weightloss group300, cie tight(nearby_pharmacy)
Tightened Lee (2009) treatment effect bounds
Number of obs. = 462
Number of selected obs. = 348
Number of cells = 2
Overall trimming porportion = 0.2107
Effect 95% conf. interval : [-0.0595 5.8448]
```

| weightloss | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|--------|-----------|-------|------|---------------------|
| group300 | | | | | |
| lower | 1.000043 | .6441664 | 1.55 | 0.121| -.2625003 2.262585 |
| upper | 4.727485 | .6792707 | 6.96 | 0.000| 3.396139 6.058831 |

- Bounds just marginally tighter
- Effect confidence interval still covers zero

Harald Tauchmann (RWI & CINCH)
Tightened Lee Bounds II

Further covariates for tightening bounds:

i. *age50* (indicator for age ≤ 50)

ii. *woman* (indicator for sex)

. leebounds weightloss group300, cie tight(nearby_pharmacy age50 woman)

Tightened Lee (2009) treatment effect bounds

Number of obs. = 462
Number of selected obs. = 348
Number of cells = 8
Overall trimming porportion = 0.2107
Effect 95% conf. interval : [0.0608 5.3804]

| weightloss | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|-------|-----------|------|---------|----------------------|
| group300 | | | | | |
| lower | 1.282951 | 0.7429877 | 1.73 | 0.084 | -.1732782 2.73918 |
| upper | 4.065244 | 0.7995777 | 5.08 | 0.000 | 2.498101 5.632388 |

▶ Bounds substantially tighter
▶ Effect confidence interval does not covers zero
▶ Confirms existence of incentive effect
▶ Size of (potential) attrition bias remains somewhat unclear

