
Modular Programming in Stata

German Stata Users Group Meeting
WZB Social Science Research Center, Berlin

June 2012

Daniel Schneider
Goethe University Frankfurt

daniel.schneider@wiwi.uni-frankfurt.de

A word of caution about terminology

• In this talk, I define and use various terms from
computer science you may have heard before: modular
programming, assembly, project, etc.

• However, I am an economist, not a computer scientist,
and may not be aware of the fine implications of some
terms.

• Terms used in this talk should only be understood
within the context of this talk: the exposition of the
user-written command -copycode- which provides a
framework for writing Stata code.

• Suggestions for improvements in terminology are very
welcome.

Programming and distributing Stata
command additions

• In addition to writing scripts („do-files“), Stata allows
for the programming of new Stata commands („ado-
files“).

• These can be as powerful as official Stata commands.

• You can easily distribute your self-written commands
as so-called „packages“ through a web site.
For instructions, see -help net- and -help usersite-.

• Any Stata user can then „install“ your files using -net
install-.

Programming and distributing Stata
command additions

• The installation process is quick, easy, robust:
– Requires execution of only one command:
. net install packagename, from(URL)

See also: -help ssc-

– No manual download or manual moving of files.

– No changes to the adopath are required.

– Since typically very few files are distributed per package,
function (ado-file) name clashes are unlikely.

• Distributing user-written code in Stata is much easier
than it is in many alternative software packages,
especially matrix language based applications.

Motivation for writing -copycode-

• When I started using Stata, I wrote many ado-files
that specifically served my needs.

• When I wrote a new command, I freely used calls
to commands I had previously written, or other
user-written commands. I built up a system of
ado-files.

• I ended up having 50+ ado-files that were
mutually dependent on each other.

• When I wanted to distribute my commands, I
found that dependencies were so complex that
distribution was extremely cumbersome.

System of ado-files

Example:
time series / panel data:
temporal aggregation and merging panel datasets

• -tagg- command: temporal aggregation of time series
– uses -tsfreqtrans-:

convert frequency encodings (e.g. m-Monthly-12)

– see also Christopher Baum’s -tscollap- on SSC

• -xtmerge- : merging panel datasets
– uses -tagg- command:

harmonize frequencies of two datasets before merging

– also uses -tsfreqtrans-

System of ado-files

tagg.ado

tsfreqtrans.ado

xtmerge.ado
uses

uses

uses

Simple example:
time series / panel data:
temporal aggregation and merging panel datasets

Terminology
A dependency is a function
or ado-file that is called by
another function or ado-
file. The latter is said to
have dependencies. There
can be direct / first-order
and higher dependencies.

System of ado-files

tagg.ado

tsfreqtrans.ado

xtmerge.ado
uses

uses

uses

Expanded example:
time series / panel data:
temporal aggregation and merging panel datasets

label2file.ado uses

pathparts.mata

uses
vll2mac.ado

uses

charstore.ado

varlstore.ado

uses

uses

Code production vs. code distribution

• There is a conflict between the requirements of efficient
programming and easy distribution.

• As a programmer, you want to re-use previously written code in
different contexts by creating your system of ado-files and
subroutines.

• The benefits are:
– Code production

Code re-use reduces the number of lines that need to be written.
– Code certification

When writing a new ado-file, functionality provided by calls to
existing ado-files and subroutines does not have to be tested again.

– Code maintenance
Fixing bugs / enhancing subroutines only has to be done in one
place.

Code production vs. code distribution

• Having a system of ado-files means that most self-
written ado-files depend on many other self/user-
written ado-files.

• This causes problems for ado-file distribution:
– It is difficult to find out the list of self/user-written ado-

files that a self-written ado-file potentially uses.
– ado-file naming conflicts become more likely.

• Therefore, for distribution
modular files are desirable, i.e.
code that is self-contained, i.e.
non-dependent on code outside of the file.

<= Terminology:
modular ado-file

Problem: How accommodate
dependencies when distributing code?

Solution candidate I: Distribute large packages?

• -xtmerge- package contains 8 code files.

• Difficult to find out the list of self-written
subroutines / ado-files that an ado-file uses.

• ado-file name clashes

• May require to include ado-files in the
package whose functionality has nothing to
do with the one from the main ado of the
package.

Problem: How accommodate
dependencies when distributing code?

Solution candidate II: Separate distribution?

• For our simple example, we would create
separate packages for -tagg- and -xtmerge-.

• The package description file for -xtmerge-
would indicate that the installation of -tagg-
is a prerequisite.

• This strategy is worse. Uninstalling
-tagg- would break -xtmerge-.

Problem: How accommodate
dependencies when distributing code?

Solution candidate III: copy & paste?

• Copy & paste code from tagg.ado, tsfreqtrans.ado
into distribution version of xtmerge.ado.

• Progress: We now can distribute modular code.

• We still have the problem of having to figure out
dependencies.

• Copy & paste must be done carefully to avoid
multiple function definitions.

• Copy & paste is time-consuming, error-prone,
inefficient.

Problem: How accommodate
dependencies when distributing code?

Proposed solution:

• Write new Stata command whose main
features are that it

– provides an algorithm for detecting unique
dependencies of all orders.

– automates copy & paste operations.

• I named this command -copycode-.

-copycode- design stage:
things to consider

• How does -copycode- know about the subroutines that
a new ado-file uses?

• What do we do with second-order and higher
dependencies?

• How do we prevent accidentally overwriting newly
written code?

• Do we always want to copy the entire source files, or
just sections thereof? In the latter case, how do we
implement this?

• How do we prevent duplicate copying of subroutines?
Do we have to worry about subroutine name clashes?

-copycode- design:
outline of usage

1) For each ado project, make a list of ado/mata functions that this
project directly depends on.

2) Make this list for all ado projects you have worked on and put
them into one big input list for -copycode-.

3) For any particular project, -copycode- uses the information
contained in the input list to figure out a complete list of first-
order and higher dependencies for that project.

4) It will copy the code from these files into a target (ado) file.

 copycode necessitates the separation of files that contain the code
typed by you, the programmer, and files whose code is executed.

 use file extension .adv (“ado development”) for writing code.
 To avoid accidentially overwriting typed code,
 never ever edit ado-files; instead, edit adv-files.

- copycode- input list:
simple example

// simple example input list for -copycode-

// German Stata Users Group Meeting 2012

xtmerge c:\mypath\xtmerge.adv

xtmerge c:\mypath\tagg.adv

xtmerge c:\mypath\tsfreqtrans.stp

tagg c:\mypath\tagg.adv

tagg c:\mypath\tsfreqtrans.stp

Contents of ccinput_simple.txt:

Terminology
• Project:

entries in first column
of -copycode- input list

• Source files:
entries in second column
of -copycode- input list

• Main adv:
first entry of a project (if it is
an adv-file)

- copycode- input list:
expanded example

// expanded example input list for -copycode-
// German Stata Users Group Meeting 2012

xtmerge c:\mypath\xtmerge.adv
xtmerge c:\mypath\tagg.adv
xtmerge c:\mypath\tsfreqtrans.stp
xtmerge c:\mypath\label2file.adv
xtmerge c:\mypath\ds_pathparts.mata

tagg c:\mypath\tagg.adv
tagg c:\mypath\charstore.adv
tagg c:\mypath\varlstore.adv
tagg c:\mypath\tsfreqtrans.stp

label2file c:\mypath\label2file.adv
label2file c:\mypath\vll2mac.adv

vll2mac c:\mypath\vll2mac.adv

charstore c:\mypath\charstore.adv

varlstore c:\mypath\varlstore.adv

Contents of ccinput_expanded.txt:

I use the extension .stp
(„Stata program files“) for text
files that contain simple Stata
programs and are used as
subroutines by different ado-files
(„common subroutines“).

-copycode- syntax

copycode , inputfile(inputfilename)
 project(projectname)
 targetfile(targetfilename)
 [replace simplemode force]

Executing
. copycode , inputfile(c:\mypath\ccinput_simple.txt)

 project(xtmerge) targetfile(c:\mypath\xtmerge.ado) replace

produces the screen output
copied: c:\mypath\xtmerge.adv
copied: c:\mypath\tagg.adv
copied: c:\mypath\tsfreqtrans.stp
project xtmerge successfully assembled
outputfile: c:\mypath/xtmerge.ado

Terminology
To assemble a project
means to use -copycode-
to produce an output file
for a certain project.

Dependencies and file types

-copycode- handles source file entries with the following file extensions in a
special way
• .adv ("ado development file"):

must have a corresponding project; its dependencies are added to the list
of files to be included in the target file.

• .ado
treated as a modular user-written ado-file

• .stp ("Stata program file“)
treated as a file that defines a (small) modular user-written Stata program

• .mata
currently treated as a modular Mata function definition file.

The order of occurrence of source file contents in the target file is:
adv-files => ado-files => stp files => mata-files => other files

Copy regions

• An additional feature of -copycode- is that within each
source file it allows to switch copying on and off.
-copycode- looks for the (comment) lines that contain

 !copycodebeg=>
 !copycodeend||
 and switches copying on and off accordingly.
• Lines containing these strings are called copy region limits.

The code in between these lines is called a copy region. A
file can have multiple copy regions.

• Benefits:
– private vs. public comments
– crucial for designing effective development and certification file

templates. See Gould (2010), pp. 14-18.

-xtmerge- example code outline:
main adv

// !copycodebeg=>
*! version 0.0.1 1jun2012 dcs

program define xtmerge
 (…code goes here…)
 quietly tagg … // <= call to tagg
 quietly tsfreqtrans … // <= call to tsfreqtrans
/* !copycodeend||
 any text that goes here serves as a “private” comment and will not be added to the
output file
 !copycodebeg=> */
 (…more code goes here…)
end

program define xtmerge_sub1
 (…)
end
// !copycodeend||

any text that is below the last „!copycodeend||” occurrence will remain “private”; e.g.
ToDo list, version history, possible enhancements

Contents of xtmerge.adv:

-xtmerge- example code outline:
adv dependencies

// !copycodebeg=>
*! version 0.0.1 1jun2012 dcs

program define tagg
 (…code goes here…)
 quietly tsfreqtrans … // <= call to tsfreqtrans
/* !copycodeend||
 again, switch copying on and off if desired
 !copycodebeg=> */
 (…more code goes here…)
end

program define tagg_sub1
 (…)
end
// !copycodeend||

Contents of tagg.adv:

-xtmerge- example code outline:
stp dependencies

// !copycodebeg=>

// version 0.0.1 1jun2012 dcs

program define tsfreqtrans

 (…code goes here…)

end

// !copycodeend||

Contents of tsfreqtrans.stp:

-xtmerge- target file creation

*! version 0.0.1 1jun2012 dcs

program define xtmerge
 (…code goes here…)
 quietly tagg … // <= call to tagg
 quietly tsfreqtrans … // <= call to tsfreqtrans
 (…more code goes here…)
end

program define xtmerge_sub1
 (…)
end

. copycode , inputfile(c:\mypath\ccinput.txt) project(xtmerge)
 targetfile(c:\mypath\xtmerge.ado) replace

Contents of xtmerge.ado (continued on next page):

-xtmerge- target file creation

// *! version 0.0.1 1jun2012 dcs

program define tagg
 (…code goes here…)
 quietly tsfreqtrans … // <= call to tsfreqtrans
 (…more code goes here…)
end

program define tagg_sub1
 (…)
end

// *! version 0.0.1 1jun2012 dcs

program define tsfreqtrans
 (…code goes here…)
end

Contents of xtmerge.ado (continued from previous page):

Downsides of using -copycode-

• code bloat

• somewhat complicated

• limited ability to format target ado-file

Fast -copycode-: -fastcc-

• -fastcc- is a wrapper function for -copycode-
that runs it with standard options (e.g. the
standard input list).

• It was written because writing and debugging
commands requires very frequent re-assembly
of projects.

• Has option -alldepon-: re-assembles all
projects that directly/indirectly depend on a
certain file.

Miscellaneous remarks

• starbang lines

• See also the -adolist- package: Jann (2007)

• version statements

• subroutine name clashes

• reverting back to a non-modular system

• other uses: option -simplemode-

• -copycode- can be used to get a list of files to be
included in „traditional“ multiple-file packages.

• One can easily include ado-files written by other users.

Thank you

References

Gould, William (2010): Mata, the Missing Manual. Presentation at the
UK Stata Users Group Meeting 2010, London. Available at
http://www.stata.com/meeting/uk10/UKSUG10.Gould.pdf

Jann, Ben (2007): Adolists – A New Concept for Stata. Presentation at
the UK Stata Users Group Meeting 2007, London. Available at
http://repec.org/usug2007/London07_adolist.pdf

Acknowledgments
I thank Kevin Crow from StataCorp for helpful comments.

