Modular Programming in Stata

German Stata Users Group Meeting

W?ZB Social Science Research Center, Berlin
June 2012

Daniel Schneider
Goethe University Frankfurt
daniel.schneider@wiwi.uni-frankfurt.de



A word of caution about terminology

In this talk, | define and use various terms from
computer science you may have heard before: modular
programming, assembly, project, etc.

However, | am an economist, not a computer scientist,
and may not be aware of the fine implications of some
terms.

Terms used in this talk should only be understood
within the context of this talk: the exposition of the
user-written command -copycode- which provides a
framework for writing Stata code.

Suggestions for improvements in terminology are very
welcome.



Programming and distributing Stata
command additions

In addition to writing scripts (,,do-files”), Stata allows

for the programming of new Stata commands (,,ado-
files”).

These can be as powerful as official Stata commands.

You can easily distribute your self-written commands
as so-called ,, packages” through a web site.
For instructions, see -help net- and -help usersite-.

Any Stata user can then ,install” your files using -net
install-.



Programming and distributing Stata
command additions

* The installation process is quick, easy, robust:

— Requires execution of only one command:
net install packagename, from (URL)
See also: -help ssc-

— No manual download or manual moving of files.
— No changes to the adopath are required.

— Since typically very few files are distributed per package,
function (ado-file) name clashes are unlikely.

* Distributing user-written code in Stata is much easier
than it is in many alternative software packages,
especially matrix language based applications.



Motivation for writing -copycode-

* When | started using Stata, | wrote many ado-files
that specifically served my needs.

* When | wrote a new command, | freely used calls
to commands | had previously written, or other
user-written commands. | built up a system of
ado-files.

* | ended up having 50+ ado-files that were
mutually dependent on each other.

* When | wanted to distribute my commands, |
found that dependencies were so complex that
distribution was extremely cumbersome.



System of ado-files

Example:

time series / panel data:

temporal aggregation and merging panel datasets
e -tagg- command: temporal aggregation of time series

— uses -tsfreqtrans-:
convert frequency encodings (e.g. m-Monthly-12)

— see also Christopher Baum’s -tscollap- on SSC

e -xtmerge- : merging panel datasets

— uses -tagg- command:
harmonize frequencies of two datasets before merging

— also uses -tsfreqtrans-



System of ado-files

Simple example:
time series / panel data:
temporal aggregation and merging panel datasets

xtmerge.ado Terminology
A dependency is a function
\es or ado-file that is called by
another function or ado-
tagg.ado file. The latter is said to
uses
have dependencies. There
/ses can be direct / first-order
and higher dependencies.

tsfreqtrans.ado



System of ado-files

Expanded example:
time series / panel data:
temporal aggregation and merging panel datasets

xtmerge.ado es Iabel2fi|e.ado\4
/%s tagg.ado vll2Zmac.ado

uses

uses
pathparts.mata /Ses \ charstore.ado

uses

tsfreqtrans.ado varlstore.ado



Code production vs. code distribution

 There is a conflict between the requirements of efficient
programming and easy distribution.

* Asaprogrammer, you want to re-use previously written code in
different contexts by creating your system of ado-files and
subroutines.

e The benefits are:

— Code production
Code re-use reduces the number of lines that need to be written.

— Code certification
When writing a new ado-file, functionality provided by calls to
existing ado-files and subroutines does not have to be tested again.

— Code maintenance
Fixing bugs / enhancing subroutines only has to be done in one
place.



Code production vs. code distribution

* Having a system of ado-files means that most self-
written ado-files depend on many other self/user-
written ado-files.

* This causes problems for ado-file distribution:

— Itis difficult to find out the list of self/user-written ado-
files that a self-written ado-file potentially uses.

— ado-file naming conflicts become more likely.

 Therefore, for distribution

. . . <= Terminology:
modular files are desirable, i.e.

modular ado-file

code that is self-contained, i.e.
non-dependent on code outside of the file.



Problem: How accommodate

dependencies when distributing code?

Solution candidate I: Distribute large packages?

-xtmerge- package contains 8 code files.

Difficult to find out the list of self-written
subroutines / ado-files that an ado-file uses.

ado-file name clashes

May require to include ado-files in the
package whose functionality has nothing to
do with the one from the main ado of the
package.



Problem: How accommodate
dependencies when distributing code?

Solution candidate II: Separate distribution?

* For our simple example, we would create
separate packages for -tagg- and -xtmerge-.

* The package description file for -xtmerge-
would indicate that the installation of -tagg-
IS @ prerequisite.

* This strategy is worse. Uninstalling
-tagg- would break -xtmerge-.



Problem: How accommodate

dependencies when distributing code?

Solution candidate lll: copy & paste?

Copy & paste code from tagg.ado, tsfregtrans.ado
into distribution version of xtmerge.ado.

Progress: We now can distribute modular code.

We still have the problem of having to figure out
dependencies.

Copy & paste must be done carefully to avoid
multiple function definitions.

Copy & paste is time-consuming, error-prone,
inefficient.



Problem: How accommodate
dependencies when distributing code?

Proposed solution:
e Write new Stata command whose main
features are that it

— provides an algorithm for detecting unique
dependencies of all orders.

— automates copy & paste operations.

* | named this command -copycode-.



-copycode- design stage:
things to consider

How does -copycode- know about the subroutines that
a hew ado-file uses?

What do we do with second-order and higher
dependencies?

How do we prevent accidentally overwriting newly
written code?

Do we always want to copy the entire source files, or
just sections thereof? In the latter case, how do we
implement this?

How do we prevent duplicate copying of subroutines?
Do we have to worry about subroutine name clashes?



1)
2)

3)

4)

-copycode- design:
outline of usage

For each ado project, make a list of ado/mata functions that this
project directly depends on.

Make this list for all ado projects you have worked on and put
them into one big input list for -copycode-.

For any particular project, -copycode- uses the information
contained in the input list to figure out a complete list of first-
order and higher dependencies for that project.

It will copy the code from these files into a target (ado) file.

—> copycode necessitates the separation of files that contain the code

typed by you, the programmer, and files whose code is executed.

= use file extension .adv (“ado development”) for writing code.

To avoid accidentially overwriting typed code,
never ever edit ado-files; instead, edit adv-files.



- copycode- input list:
simple example

Contents of ccinput_simple.txt:

// simple example input list for -copycode-

xtmerge.ado
// German Stata Users Group Meeting 2012 -

T~ uses

_\ tagg.ado
xtmerge c:\mypath\xtmerge.adv /../uses
xtmerge c:\mypath\tagg.adv tsfreqtran's.ado
xtmerge c:\mypath\tsfregtrans.stp

Terminology
tagg c:\mypath\tagg.adv * Project:
tagg c:\mypath\tsfregtrans.stp entries in first column

of -copycode- input list
* Source files:
entries in second column
of -copycode- input list
* Main adv:
first entry of a project (if it is
an adv-file)




- copycode- input list:
expanded example

Contents of ccinput_expanded.txt:

// expanded example input list for -copycode-

// German Stata Users Group Meeting 2012 xtmerge.ado -~ label2fileado

. \‘.‘.uses uses \
xtmerge c:\mypath\xtmerge.adv | ~ tagg.ado I
xtmerge c:\mypath\tagg.adv pathparts.mata SO o o
xtmerge c:\mypath\tsfreqtrans.stp \ / '

uses "\

xtmerge c:\mypath\label2file.adv tsfreqtrans.ado S Varlstore.ado
xtmerge c:\mypath\ds_pathparts.mata

tagg c:\mypath\tagg.adv
tagg c:\mypath\charstore.adv | use the extension .stp
::gg Cftmypatﬂ\"afrlsmre'adv (,Stata program files”) for text

Bg  c:\mypathitsiregtrans.stp files that contain simple Stata
label2file c:\mypath\label2file.adv programs and are used as
label2file c:\mypath\vll2mac.adv subroutines by different ado-files
(,,common subroutines”).

vi2mac  c:\mypath\vll2mac.adv
charstore c:\mypath\charstore.adv

varlstore c:\mypath\varlstore.adv



-copycode- syntax

copycode, inputfile(inputfilename)
project(projectname)
targetfile(targetfilename)

[replace simplemode force]

Executing

copycode , inputfile (c:\mypath\ccinput simple. txt)

project (xtmerge) targetfile (c:\mypath\xtmerge.ado) replace
produces the screen output

copied: c:\mypath\xtmerge.adv

copied: c:\mypath\tagg.adv Terminology

copied: c:\mypath\tsfreqtrans.stp To assemble a project

project xtmerge successfully assembled means to use -copycode-

outputfile: c:\mypath/xtmerge.ado to produce an output file
for a certain project.




Dependencies and file types

-copycode- handles source file entries with the following file extensions in a
special way

e .adv ("ado development file"):
must have a corresponding project; its dependencies are added to the list
of files to be included in the target file.

e .ado
treated as a modular user-written ado-file

e .stp ("Stata program file“)
treated as a file that defines a (small) modular user-written Stata program

* .mata
currently treated as a modular Mata function definition file.

The order of occurrence of source file contents in the target file is:
adv-files => ado-files => stp files => mata-files => other files



Copy regions

* An additional feature of -copycode- is that within each

source file it allows to switch copying on and off.
-copycode- looks for the (comment) lines that contain

lcopycodebeg=>
lcopycodeend| |
and switches copying on and off accordingly.

* Lines containing these strings are called copy region limits.
The code in between these lines is called a copy region. A

file can have multiple copy regions.

* Benefits:
— private vs. public comments
— crucial for designing effective development and certification file
templates. See Gould (2010), pp. 14-18.



-xtmerge- example code outline:
main adv

Contents of xtmerge.adv:

// \copycodebeg=>
*1 version 0.0.1 1jun2012 dcs

program define xtmerge
(...code goes here...)
quietly tagg ... // <= call to tagg
quietly tsfreqgtrans ... // <= call to tsfreqtrans
/* Icopycodeend| |
any text that goes here serves as a “private” comment and will not be added to the
output file
Icopycodebeg=> */
(...more code goes here...)
end

program define xtmerge_subl
(...)

end

// \copycodeend| |

any text that is below the last ,, Icopycodeend||” occurrence will remain “private”; e.qg.
ToDo list, version history, possible enhancements



-xtmerge- example code outline:
adv dependencies

Contents of tagg.adv:

// \copycodebeg=>
*1 version 0.0.1 1jun2012 dcs

program define tagg
(...code goes here...)
quietly tsfreqgtrans ... // <= call to tsfreqtrans
/* lcopycodeend| |
again, switch copying on and off if desired
Icopycodebeg=> */
(...more code goes here...)
end

program define tagg _subl
(...)

end
// 'copycodeend| |



-xtmerge- example code outline:
stp dependencies

Contents of tsfreqtrans.stp:

// \copycodebeg=>
// version 0.0.1 1jun2012 dcs

program define tsfreqtrans
(...code goes here...)

end

// \copycodeend| |



-xtmerge- target file creation

. copycode , inputfile(c:\mypath\ccinput.txt) project(xtmerge)
targetfile(c:\mypath\xtmerge.ado) replace

Contents of xtmerge.ado (continued on next page):

*1 version 0.0.1 1jun2012 dcs

program define xtmerge
(...code goes here...)
quietly tagg ... // <= call to tagg
quietly tsfreqtrans ... // <= call to tsfreqtrans
(...more code goes here...)
end

program define xtmerge _subl

(...)

end



-xtmerge- target file creation

Contents of xtmerge.ado (continued from previous page):

// *!version 0.0.1 1jun2012 dcs

program define tagg
(...code goes here...)
quietly tsfreqtrans ... // <= call to tsfreqtrans
(...more code goes here...)

end

program define tagg _subl
(...)

end
// *! version 0.0.1 1jun2012 dcs

program define tsfreqtrans
(...code goes here...)
end



Downsides of using -copycode-

* code bloat
 somewhat complicated
* |limited ability to format target ado-file



Fast -copycode-: -fastcc-

e -fastcc-is a wrapper function for -copycode-
that runs it with standard options (e.g. the
standard input list).

* |t was written because writing and debugging

commands requires very frequent re-assembly
of projects.

* Has option -alldepon-: re-assembles all

projects that directly/indirectly depend on a
certain file.



Miscellaneous remarks

starbang lines

See also the -adolist- package: Jann (2007)
version statements

subroutine name clashes

reverting back to a non-modular system
other uses: option -simplemode-

-copycode- can be used to get a list of files to be
included in ,traditional” multiple-file packages.

One can easily include ado-files written by other users.



Thank you



References

Gould, William (2010): Mata, the Missing Manual. Presentation at the
UK Stata Users Group Meeting 2010, London. Available at
http://www.stata.com/meeting/uk10/UKSUG10.Gould.pdf

Jann, Ben (2007): Adolists — A New Concept for Stata. Presentation at
the UK Stata Users Group Meeting 2007, London. Available at
http://repec.org/usug2007/London07_adolist.pdf

Acknowledgments

| thank Kevin Crow from StataCorp for helpful comments.



