Biometrical modeling of twin and family data

Sophia Rabe-Hesketh

Graduate School of Education & Graduate Group in Biostatistics University of California, Berkeley Institute of Education, University of London

joint work with Anders Skrondal and Håkon Gjessing

German Stata Users Group Meeting Berlin, June 2010

Outline

- Genetic variance components model: ACDE
- Liability model for binary traits
- Models for twin designs
 - Assumptions and two parameterizations (P1, P2) as mixed/multilevel models
 - Continuous adult height: P1 ACE, P2 ACE
 - Continuous neuroticism: P2 ADE
 - Binary hay-fever status: P2 ADE & AE
- Models for nuclear family designs
 - Continuous birth weight data

Genetic variance components models: ACDE

 \mathbf{y}_{ij} is continuous trait or phenotype for member i of family j

$$y_{ij} = \mathbf{x}'_{ij}\boldsymbol{\beta} + A_{ij} + D_{ij} + C_{ij} + \epsilon_{ij}$$

Error components

- $A_{ij} \sim N(0, \sigma_A^2)$: Additive genetic, potentially correlated
- $D_{ij} \sim N(0, \sigma_D^2)$: Dominance genetic, potentially correlated
- $C_{ij} \sim N(0, \sigma_C^2)$: Common environment, potentially correlated
- $\epsilon_{ij} \sim N(0, \sigma_E^2)$: Unique environment, independent
- $A_{ij}, D_{ij}, C_{ij}, \epsilon_{ij}$ mutually independent
- Nature (A_{ij} and D_{ij}) versus nurture (C_{ij} and ϵ_{ij})
 - Heritability is percentage of variance in trait that is due to genes

$$h^2 = \frac{\sigma_A^2(+\sigma_D^2)}{\sigma_A^2 + \sigma_D^2 + \sigma_C^2 + \sigma_E^2}$$

Liability model for binary traits

Continuous 'liability' (propensity)

$$y_{ij}^* = \mathbf{x}_{ij}' \boldsymbol{\beta} + A_{ij} + D_{ij} + C_{ij} + \epsilon_{ij}, \qquad \epsilon_{ij} \sim N(0,1)$$

$$y_{ij} = \begin{cases} 1 & \text{if } y_{ij}^* > 0 \\ 0 & \text{otherwise} \end{cases}$$

Probit model

Binary trait

$$\mathsf{Pr}(y_{ij} = 1 | \mathbf{x}_{ij}, A_{ij}, D_{ij}, C_{ij}) = \Phi(\mathbf{x}'_{ij}\boldsymbol{\beta} + A_{ij} + D_{ij} + C_{ij})$$

- $\Phi(\cdot)$ is standard normal CDF (inverse probit link)
- Heritability

$$h^2 = \frac{\sigma_A^2(+\sigma_D^2)}{\sigma_A^2 + \sigma_D^2 + \sigma_C^2 + \underbrace{1}_{\sigma_E^2}}$$

Assumptions for models considered here

- Hardy-Weinberg equilibrium
- No epistasis (interactions between alleles at different loci)
- No gene-environment interactions
- Random (non-assortative) mating
- Correlations among error components
 - For A_{ij} and D_{ij} this follows from Mendelian genetics, under assumptions above, and from type of kinship
 - For C_{ij} make additional assumptions

Model formulation

- Usually biometrical models for twin and family data expressed as a multi-group structural equation models (SEMs) and fitted in Mx, Mplus, or other SEM software
- Can formulate models as mixed/multilevel models [Rabe-Hesketh, Gjessing & Skrondal, 2008] and fit them in Stata
 - stmixed: Continuous phenotypes and models that do not require equality constraints for variances at different levels
 - gllamm: Continuous, binary (or ordinal) phenotypes
- Models with the fewest random effects are easiest to estimate for binary (or ordinal) phenotypes

Models for twin designs

- Monozygotic (MZ) or 'identical' twins share all genes by descent
- Dizygotic (DZ) or 'fraternal' twins share half their genes by descent
- Equal environment assumption: MZ and DZ twins have same degree of similarity in their environments, so that excess similarity between MZ twins can be attributed to the greater proportion of shared genes

Models for twin designs (cont'd)

• Consider two twin pairs: (MZ1, MZ2), (DZ1, DZ2):

$$\operatorname{Cov}(\mathbf{A}) = \sigma_A^2 \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1/2 \\ 0 & 0 & 1/2 & 1 \end{bmatrix} \quad \operatorname{Cov}(\mathbf{D}) = \sigma_D^2 \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1/4 \\ 0 & 0 & 1/4 & 1 \end{bmatrix}$$

$$\operatorname{Cov}(\mathbf{C}) = \sigma_C^2 \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad \operatorname{Cov}(\mathbf{E}) = \sigma_E^2 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

ACDE model not identified here; consider ACE and ADE (as well as AE, CE)

Twin datasets

- All data: м is dummy for MZ; pair is twin-pair j; member is i
- Continuous adult heights twin_bmi.dta [Posthuma & Boomsma, 2005]
 - Variables height (in cm) and male
 - 304 twin pairs (13% with height missing for one member)
 307 DZ members (40% male). 262 MZ members (43% male)
- Continuous neuroticism twin_neur.dta [Sham, 1998]
 - Variable neurot (Eysenck personality questionnaire)
 - 794 female twin pairs (no missing data)
 272 DZ pairs. 522 MZ pairs
- Binary hay fever status twin_hay.dta [Hopper et al., 1990]
 - Variables h, male, pair-level frequency weights freq
 - 3,807 twin pairs (no missing data)
 2,009 DZ pairs (18% male, 45% mix). 1,798 MZ pairs (31% male)

Parameterization 1 (P1) of ACE as mixed model

- Three-level data
 - **•** Level 3: Twin-pair j
 - Level 2: Member i (same as level 1)

					=1, sepby(pa	.11 / 110005	
pair	М	member	male	height			
2	1	1	1	190			
2	1	2	1	190.7			
16	1	2	1	178			
269	0	1	1	183			
269	0	2	0	158.5			

- Use twin-pair level (level-3) random effect $c_j^{(3)}$ with variance σ_C^2 for shared environment
- Use member level (level-1) residual ϵ_{ij} with variance σ_E^2 for unique environment

Parameterization 1 (P1) of ACE as mixed model (cont'd)

- Problem: Additive genetic component completely shared (correlation
 1) for MZ twins and partially shared (correlation 0.5) for DZ twins
- Solution:
 - Shared component $a_j^{(3)}$ with variance σ_A^2 contributes only half as much variance to DZ twins as to MZ twins

$$a_j^{(3)}[M_j + \sqrt{\frac{1}{2}}\overline{M}_j]$$

- M_j is dummy for MZ
- $\overline{M}_j = 1 M_j$ is dummy for DZ
- Remaining variance for DZ twins comes from unshared component $a_{ij}^{(2)}$ with variance σ_A^2

$$a_{ij}^{(2)}\sqrt{\frac{1}{2}}\overline{M}_j$$

Continuous adult height: P1 ACE

- Cannot estimate in xtmixed because of equality constraint for variances at different levels
- In gllamm:

```
generate var3 = M + sqrt(1/2)*(1-M)
generate var2 = sqrt(1/2)*(1-M)
eq var3: var3
eq var2: var2
generate one = 1
eq cons: one
```

```
cons def 1 [mem1_1]var2 = [pai2_1]var3
gllamm height male, i(member pair) nrf(1 2)
eqs(var2 var3 cons) nocor constr(1) adapt
```

Continuous adult height: P1 ACE (cont'd)

log likelihood = -1727.820312522015 (1) [mem1_1]var2 - [pai2_1]var3 = 0								
(1) [mem1_1		2_1]var3 = 0						
height	height Coef. Std. Err. z P> z [95% Conf. Interval							
male _cons		.6166593			11.78673 167.0963			
2.392252 (.3 Variances and ***level 2 (me	covariances o	of random ef	fects					
	0.342974 (5.15	(60/54)						
***level 3 (pa	ir)							
	.342974 (5.15 fixed at 0	760754)						
var(2): 1.	8175006 (5.25	567317)						
. disp 40.3429	974/(40.342974	l+1.8175006+	2.39225	2)				

Parameterization 2 (P2) of ACE as mixed model

- Three-level model
 - Level 3: Twin-pair j

• Level 2: Hybrid
$$k$$
, $k = \begin{cases} pair j & for MZ twins \\ member i & for DZ twins \end{cases}$

1

- Level 1: Member i
- ϵ_{ij} with variance σ_E^2 for unique environment as before
- u⁽³⁾ with variance $\sigma_A^2/2 + \sigma_C^2$ for the other half of additive genetic variance that is shared for everyone and for common environment
- Note: Only two random effects instead of three

Continuous adult height: P2 ACE

generate k = pair if M==1
replace k = member if M==0
xtmixed height male || pair: || k:, mle variance

Log likelihood	d = −1727.8203			Wald ch: Prob > 0		
height	Coef. S	td. Err.	Z	P> z	[95% Conf.	Interval]
male	12.99535 .	6150212	21.13	0.000	11.78993	14.20077
_cons	167.9549 .	4379076	383.54	0.000	167.0966	168.8131
Random-effec	ts Parameters	Estim	ate Std	. Err.	[95% Conf.	Interval]
pair: Identity	vvar(_cons)	 21.98	932 3.4	82324	16.12173	29.99244
k: Identity	var(_cons)	20.17	123 2.5	88088	15.68621	25.9386
	var(Residual)	2.392	253 .30	44573	1.864131	3.069997

Continuous adult height: P2 ACE: (cont'd)

- Already have $\widehat{\sigma_E^2}$
- Get $\widehat{\sigma_A^2}$ and $\widehat{\sigma_C^2}$ using nlcom
 - . nlcom (var_A: 2*exp(2*[lns2_1_1]_cons))
 - > (var_C: exp(2*[lns1_1]_cons)-exp(2*[lns2_1_1]_cons))

```
var_A: 2*exp(2*[lns2_1_1]_cons)
```

var_C: exp(2*[lns1_1]_cons)-exp(2*[lns2_1_1]_cons)

var_A	40.34246	5.176177	7.79	0.000	30.19734	50.48758
var_C	1.818089	5.256801	0.35	0.729	-8.485051	12.12123

- .90549771
- Use _diparm with option ci(probit) to get confidence interval for heritability; however, requires derivatives
- Would be nice to have ci(probit) option in nlcom!

Parameterization 2 for ACE, AE, ADE, CE

• ACE:
$$\widehat{\sigma_A^2} = 2\widehat{\operatorname{Var}}(u_{kj}^{(2)})$$
 and $\widehat{\sigma_C^2} = \widehat{\operatorname{Var}}(u_k^{(3)}) - \widehat{\operatorname{Var}}(u_{kj}^{(2)})$

- Potential problem: $\widehat{\sigma_C^2}$ can be negative
- Solution 1: AE: constrain σ_C^2 to zero by constraining $Var(u_j^{(3)}) = Var(u_{kj}^{(2)})$ (in gllamm only; see slide 22)
- Solution 2: ADE (see below)
- **ADE** (same model as ACE): $\widehat{\sigma_A^2} = 3\widehat{\operatorname{Var}}(u_j^{(3)}) - \widehat{\operatorname{Var}}(u_{kj}^{(2)}) \text{ and } \widehat{\sigma_D^2} = 2[\widehat{\operatorname{Var}}(u_{kj}^{(2)}) - \widehat{\operatorname{Var}}(u_j^{(3)})]$
- **CE**: Set $Var(u_{kj}^{(2)}) = 0$, giving two-level model
- Note: Conventional likelihood ratio tests to compare models are conservative [Dominicus et al., 2006]

Continuous neuroticism: P2 ADE

generate k = pair if M==1
replace k = member if M==0
xtmixed neurot || pair: || k:, mle variance

	1					
neurot	Coef. S	Std. Err.	Z	P> z	[95% Conf.	Interval
_cons	10.23203 .	1237788	82.66	0.000	9.989426	10.4746
	•	-				
Random-effe	cts Parameters	Estimat	e Sto	l. Err.	[95% Conf.	Interval
pair: Identit	y var(_cons)	3.34526	8 1.0)34871	1.824351	6.13413
k: Identity						
	<pre>var(_cons)</pre>	5.02393	3 1.1	L87507	3.161151	7.98440
	var(Residual)	9.55988	1.58	323694	8.483966	10.7722

Continuous neuroticism: P2 ADE (cont'd)

• Note that
$$\widehat{\sigma_C^2} = \widehat{\operatorname{Var}}(u_k^{(3)}) - \widehat{\operatorname{Var}}(u_{kj}^{(2)}) < 0$$

For ADE model, get $\widehat{\sigma_A^2}$ and $\widehat{\sigma_D^2}$ using nlcom

```
. nlcom (var_A: 3*exp(2*[lns1_1_1]_cons) - exp(2*[lns2_1_1]_cons) )
```

```
> (var_D: 2*(exp(2*[lns2_1_1]_cons) - exp(2*[lns1_1_1]_cons)))
```

```
var_A: 3*exp(2*[lns1_1_1]_cons) - exp(2*[lns2_1_1]_cons)
var_D: 2*(exp(2*[lns2_1_1]_cons) - exp(2*[lns1_1_1]_cons))
```

neurot	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
var_A		4.088337			-3.001123	13.02486 11.55148
var_D	3.357331	4.180764	0.80	0.422	-4.836817	1

* heritability

. disp (5.01187+3.357331)/(5.01187+3.357331+9.559881)

.46679473

Binary hay fever status: P2 ADE

generate num3 = freq
gllamm h male, i(k pair) link(probit) fam(binom)
adapt weight(num)

 \log likelihood = -4603.3053

h	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
male	1636205	.0534943	-3.06	0.002	2684675	0587736
_cons	6874611	.040749	-16.87	0.000	7673276	6075945

Variances and covariances of random effects

```
***level 2 (k)
```

```
var(1): .89076163 (.16434027)
```

```
***level 3 (pair)
```

```
var(1): .65503535 (.10341492)
```

Note: Estimation fast because only 40 rows of data and pair-level frequency weights

Binary hay fever status: P2 ADE (cont'd)

	var_A: 3*[pair2]_cons^2 - [k1]_cons^2 var_D: 2*([k1]_cons^2 - [pair2]_cons^2)						
	h	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
v	ar_A	1.074344	.3679161	2.92	0.003	.3532421	1.79544
v	ar_D	.4714526	.4085908	1.15	0.249	3293708	1.27227

Binary hay fever status: P2 AE (cont'd)

```
constr def 1 [pair2]_cons = [k1]_cons
gllamm h male, i(k pair) link(probit) fam(binom) adapt
weight(num) constr(1)
```

log likelihood = -4604.027077892745

(1) - [k1]_cons + [pair2]_cons = 0

h	Coef.	Std. Err.	Z	P> z	[95% Conf.	[Interval]
male	1608356	.0523616	-3.07	0.002	2634623	0582088
_cons	6758232	.0388389	-17.40		751946	5997004

Variances and covariances of random effects

***level 2 (k)

var(1): .73240456 (.08174648)

***level 3 (pair)

var(1): .73240456 (.08174648)

. disp .73240456/(.73240456+1)

.42276762

ACE for nuclear family designs

Nuclear family with two children (mother, father, child1, child2)

$$\mathbf{Cov}(\mathbf{A}) \ = \ \sigma_A^2 \begin{bmatrix} 1 & 0 & 1/2 & 1/2 \\ 0 & 1 & 1/2 & 1/2 \\ 1/2 & 1/2 & 1 & 1/2 \\ 1/2 & 1/2 & 1/2 & 1 \end{bmatrix} \quad \mathbf{Cov}(\mathbf{C}) \ = \ \sigma_C^2 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\mathbf{Cov}(\mathbf{E}) = \sigma_E^2 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Parametrization as mixed model

- Four-level model
 - Level 4: Family k
 - Level 3: Hybrid: Sibling pair j, individual parents i
 - Level 2: Member i (same as level 1)

 $y_{ijk} = \mathbf{x}'_{ik} \boldsymbol{\beta} + a_{1k}^{(4)} [M_i + K_i/2] + a_{2k}^{(4)} [F_i + K_i/2] + a_{ijk}^{(2)} [K_i/\sqrt{2}] + c_{jk}^{(3)} + \epsilon_{ijk}$

• M_i is a dummy for mother, F_i for father, K_i for child

•
$$\operatorname{Var}(c_{jk}^{(3)}) = \sigma_C^2 \text{ and } \operatorname{Var}(\epsilon_{ijk}) = \sigma_E^2$$

- First three terms represent additive genetic component with $Var(a_{1k}^{(4)}) = Var(a_{2k}^{(4)}) = Var(a_{ijk}^{(2)}) = \sigma_A^2$
 - a⁽⁴⁾_{1k} and a⁽⁴⁾_{2k} induce the required additive genetic covariances between each parent and each child and among the children
 a⁽²⁾_{ijk} provides remaining variance σ²_A/2 for children

Continuous birthweight: Nuclear family data

- 1000 Nuclear families from Norwegian birth registry [Magnus et al., 2001]
- One child per family (no level 3, j), model simplifies to two-level model

$$y_{ijk} = \mathbf{x}'_{ik}\boldsymbol{\beta} + a^{(4)}_{1k}[M_i + K_i/2] + a^{(4)}_{2k}[F_i + K_i/2] + a^{(2)}_{ijk}[K_i/\sqrt{2}] + c^{(3)}_{jk} + \epsilon_{ijk}$$
$$y_{ik} = \mathbf{x}'_{ik}\boldsymbol{\beta} + a^{(4)}_{1k}[M_i + K_i/2] + a^{(4)}_{2k}[F_i + K_i/2] + a^{(4)}_{3k}[K_i/\sqrt{2}] + \epsilon_{ij}$$

- Model with $c_{jk}^{(3)}$ not identified
- $a_{ijk}^{(2)}[K_i/\sqrt{2}] \equiv a_{3k}^{(4)}[K_i/\sqrt{2}]$ because K_i is non-zero for one member per family
- Level 4 becomes level 2

$$y_{ik} = \mathbf{x}'_{ik}\boldsymbol{\beta} + a^{(2)}_{1k}[M_i + K_i/2] + a^{(2)}_{2k}[F_i + K_i/2] + a^{(2)}_{3k}[K_i/\sqrt{2}] + \epsilon_{ij}$$

Continuous birthweight: Nuclear family data (cont'd)

fam_birthwt.dta contains M, F, K, family, bwt and

- male: dummy for being male
- first: dummy for being the first child
- midage: dummy for mother aged 20-35 at time of birth
- highage: dummy for mother's age above 35 at time of birth
- birthyr: year of birth minus 1967

```
. list family M F K male birthyr bwt if family<3, sepby(family) noobs
   family
                     male
                            birthyr
           М
                  Κ
              F
                                      bwt
       1
           1
              0
                  0
                        0
                                     3520
                                 5
       1
          0 1 0
                                 6
                        1
                                     3940
       1
         0 0 1
                        0
                                26
                                     3240
              0 0
        2
           1
                        0
                                 5
                                     3660
       2
           0 1 0 1
                                 2
                                     3990
        2
           0
              0
                  1
                        1
                                29
                                     4330
```

Estimation using xtmixed

Stata commands:

generate var1 = M + K/2
generate var2 = F + K/2
generate var3 = K/sqrt(2)

Note: Option covariance(identity) enforces variance equality constraint (and independence of error components) within a level

Estimation using xtmixed

. 2	stmixed bwt male first midage highage birthyr	family:	var1	var2 v	var3,
>	nocons cov(ident) mle variance				

bwt	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
male	158.4546	17.34853	9.13	0.000	124.4521	192.4571
first	-139.3974	18.7415	-7.44	0.000	-176.13	-102.6647
midage	57.0553	31.89569	1.79	0.074	-5.459111	119.5697
highage	118.8564	54.67221	2.17	0.030	11.70082	226.0119
birthyr	3.627799	.6882291	5.27	0.000	2.278894	4.976703
_cons	3461.459	34.77956	99.53	0.000	3393.292	3529.625
	cts Parameters	Estim	ato Sta	l. Err.	[95% Conf.	Intornall
	cis parameters			1. EII.	[95% CONT.	
family: Ident:	ity					
var(v	var1 var2 var3) 99263	.68 101	L57.96	81223.99	121310
	var(Residual) 13356	0.1 906	59.929	116915.7	152574.2
LR test vs. l	inear regressi	on: chibar2	(01) =	97.80 P	rob >= chibar	2 = 0.0000

Concluding remarks

- Advantage of using multilevel models
 - More widely known and available in software than SEM
 - Can handle varying family sizes and missing data easily
 - Can extend to more levels, e.g., random neighborhood environment effects
- Other models considered in [Rabe-Hesketh, Skrondal & Gjessing, 2008]
 - Sibling and cousin data
 - Prameterization 1 for Twin ADE models
- Wishlist for Stata 12
 - Constraints for variance-covariance parameters in xtmixed, particularly equality constraints across levels
 - Icom with ci(probit) option

References to own work

Rabe-Hesketh, S., Skrondal, A. and Gjessing, H. K. (2008). Biometrical modeling of twin and family data using standard software for mixed models. *Biometrics* 64, 280-288.

Rabe-Hesketh, S. and Skrondal, A. (2008). *Multilevel and Longitudinal Modeling Using Stata* (Second Edition). Stata Press.

Rabe-Hesketh, S., Skrondal. A. and Pickles, A. (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. *Journal of Econometrics* 128, 301-323.

Other references

- Dominicus, A., Skrondal, A., Gjessing, H. K., Pedersen, N. and Palmgren, J. (2006). Likelihood ratio tests in behavioral genetics: Problems and solutions. *Behavior Genetics* 36, 331-340.
- Hopper, J. L., Hannah, M. C. and Mathews, J. D. (1990). Twin concordance for a binary trait: III. A binary analysis of hay fever and asthma. *Genetic Epidemiology* 7, 277-289.
- Magnus, P., Gjessing, H. K., Skrondal, A. and Skjærven, R. (2001). Paternal contribution to birth weight. *Journal of Epidemiology and Community Health* 55, 873-877.
- Posthuma, D. and Boomsma, D. I. (2005). Mx Scripts library: Structural equation modeling scripts for twin and family data. *Behavior Genetics* 35, 499-505.
- Sham, P. (1998). Statistics in Human Genetics. London: Arnold.