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Abstract

Despite their high predictive performance, random forest and gradient boost-
ing are often considered as black boxes or uninterpretable models which has
raised concerns from practitioners and regulators. As an alternative, we
propose in this paper to use partial linear models that are inherently in-
terpretable. Specifically, this article introduces GAM-lasso (GAMLA) and
GAM-autometrics (GAMA), denoted as GAM(L)A in short. GAM(L)A
combines parametric and non-parametric functions to accurately capture
linearities and non-linearities prevailing between dependent and explanatory
variables, and a variable selection procedure to control for overfitting issues.
Estimation relies on a two-step procedure building upon the double resid-
ual method. We illustrate the predictive performance and interpretability
of GAM(L)A on a regression and a classification problem. The results show
that GAM(L)A outperforms parametric models augmented by quadratic,
cubic and interaction effects. Moreover, the results also suggest that the
performance of GAM(L)A is not significantly different from that of random
forest and gradient boosting.
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1 Introduction
In recent years, machine learning (ML) algorithms have received considerable at-
tention in the literature and overshadowed traditional econometric models in most
applications. Although econometrics and ML have developed in parallel, both
approaches allow building predictive models. For that purpose, econometrics re-
lies on probabilistic models describing economic phenomena, whereas ML builds
upon smart algorithms learning on their own. However, ML algorithms have re-
cently been shown to be more effective than traditional econometric approaches for
modelling complex relationships (Varian, 2014; Lessmann et al., 2015; Charpentier
et al., 2018; Gunnarsson et al., 2021). Indeed, unlike traditional econometric mod-
els, these algorithms are able to capture many complex non-linear relationships
through non-parametric approaches, resulting in higher predictive performance.
The dominance of ML models in terms of predictive performance, in addition to
several other advantages, has led these techniques to be used in several industries.
For example, banks and fintech firms are currently considering ML algorithms as
challenger models (ACPR, 2020) in the context of credit scoring, and in some cases
ML models are even used for credit production (Hurlin and Pérignon, 2019).

However, ML algorithms raise a very important issue for the industry due
to their lack of interpretability. Indeed, most of these algorithms are generally
considered to be “black-boxes”, i.e., the opacity of ML techniques leads users to
predictions and decision processes that cannot be easily interpreted. The lack of
interpretability is currently one of the main limitations of ML algorithms and raises
concerns in many applications such as medicine, law, military or finance. ML al-
gorithms need to be interpretable to justify predictions made by the models. For
example, in the financial industry, executives need to be able to understand the
model to justify their decisions, and regulators require interpretability to ensure
fairness of the algorithms.1 Furthermore, the lack of interpretability of ML algo-
rithms is currently one of the major concerns of financial regulators regarding the
governance of artificial intelligence approaches in the financial industry (Bracke
et al., 2019; ACPR, 2020; EBA, 2020; EC, 2020).

To address this issue, the literature has recently focused on interpretable ML
methods.2 Specifically, many model-agnostic methods have been proposed to in-
terpret the ex post predictions of black-box models. For example, we can cite
here the partial dependence plot (Friedman, 2001), accumulated local effect (Ap-
ley and Zhu, 2020), local interpretable model-agnostic explanations (Ribeiro et al.,

1See Barocas et al. (2019) for more details on the fairness of ML techniques in a general
context and Hurlin et al. (2021) and Kozodoi et al. (2022) in the context of credit scoring.

2Interpretable ML methods seek to explain the behaviour and predictions of ML algorithms.
See Molnar et al. (2020) for more details on interpretable ML.
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2016) or SHAP (Lundberg and Lee, 2017).3 However, interpretations obtained
from these methods can be inaccurate representations of the original relationships
and potentially mislead users to accept incorrect recommendations, which can be
harmful in a high-stakes decision-making context (Rudin, 2019).

Within this context, we rely in this paper on a class of interpretable models.
Instead of developing methods to explain the predictions of black boxes, we de-
sign flexible models that are fundamentally interpretable. Denoted as GAM-lasso
(GAMLA) and GAM-autometrics (GAMA), or GAM(L)A in short, these models
combine the predictive performance of ML approaches with the inherent inter-
pretability of econometric models. Formally, this class of models is based on a
generalized additive model (GAM) augmented by variables assumed to have a lin-
ear effect on the dependent variable. More specifically we consider interactions of
covariate couples. However, due to the possibly large number of interaction vari-
ables, we perform variable selection on interactions to avoid overfitting issues. For
that purpose, we rely on the lasso (Tibshirani, 1996) and autometrics (Doornik,
2009) approaches. Finally, as the models involve linear (interaction effects) and
non-linear (smooth functions of GAM) terms, the variable selection is not per-
formed on raw data but on filtered data using the double residual approach of
Robinson (1988).

Our approach has several advantages. First, our models are fundamentally
interpretable. Indeed, GAM(L)A inherits the simplicity of interpretation of tra-
ditional econometric models. Specifically, while smooth functions allow a simple
interpretation of the estimated relationships prevailing between dependent and
predictive variables, interaction effects can be interpreted as in a simple linear
model because they are introduced linearly. Moreover, the effect of the predic-
tive variables can easily be measured from their marginal effects, as in standard
econometric models. GAM(L)A thus allows a simple interpretation of prediction
and decision processes, unlike ML algorithms. This class of models is also consis-
tent with the recent literature promoting inherently interpretable models instead
of interpretable ML methods (Rudin, 2019; Rudin and Radin, 2019; Rudin et al.,
2021).

Second, as shown in our empirical applications, GAM(L)A competes with so-
phisticated ML algorithms in terms of predictive performance reinforcing the idea
that parametric models can have outstanding forecasting performances if they are
well specified. We also show that ad hoc choices of parametric functional forms
aimed at capturing non-linearities, such as quadratic or cubic functions, are too
restrictive and may lead to inferior forecasting performances.

We provide a set of Monte Carlo experiments to assess the good performance of
GAM(L)A in terms of predictive performance but also its ability to correctly retain
the relevant interaction variables. The results suggest that GAM(L)A accurately

3See Molnar (2019) for an overview of interpretable ML methods.
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captures non-linear relationships. Moreover, we show that the double residual
approach of Robinson (1988) leads GAMA (unlike GAMLA) to retain a large
number of relevant variables (i.e., high potency) while controlling for the number
of retained irrelevant variables (i.e., gauge close to the chosen target size).

Finally, we illustrate the practical usefulness of GAM(L)A using data on re-
gression and classification problems. To that end, we measure the predictive per-
formance of our models using popular measures of performance as well as infer-
ence procedures and compare them to the benchmark models in the econometrics
and ML literatures. We show that GAM(L)A achieves higher predictive perfor-
mance than linear models, even when augmented by quadratic and cubic func-
tions. Moreover, the results suggest that our models compete with sophisticated
ML algorithms in terms of predictive performance. We also illustrate the inter-
pretability of our new class of models. For that purpose, we assess the parsimony of
GAM(L)A and show the simple interpretation of estimated relationships and deci-
sion rules through graphical representations of the estimated non-linearities as well
as marginal effects. The results suggest that, unlike ML algorithms, GAM(L)A
remains interpretable despite capturing complex non-linear relationships.

The remainder of the article is structured as follows. In Section 2, we present
the main advantages of ML algorithms as well as the main limitations of traditional
linear models and introduce our new class of interpretable models. Section 3 is
devoted to Monte Carlo experiments. In Section 4, two empirical applications are
proposed to illustrate the potential of GAM(L)A. Finally, we conclude the article
in Section 5. Additional figures and tables are provided in Appendix A while
Appendix B presents the penalized logistic tree regression of Dumitrescu et al.
(2022).

2 Competing with Black Boxes: An Interpretable
Parametric Model

In this section, we present a class of partial linear models that is able to com-
pete with sophisticated ML algorithms in terms of predictive performance while
remaining interpretable. The first part of the section describes why ML algorithms
achieve high predictive performance and provides a brief presentation of current
benchmark ML algorithms. The second part presents the pitfalls of parametric
models in that respect. Finally, the last part of the section is devoted to our
model.
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2.1 Machine Learning, Non-linear Effects and Interactions

Consider a regression problem involving a dependent variable y P R and a p-
dimensional vector of predictive variables X � pX1, . . . , Xpq P Rp. Recent years
have witnessed a paradigm shift in terms of the models used to make predictions.
Indeed, ML algorithms have progressively replaced parametric models in many
applications, when the main objective is to build accurate predictions. In general,
ML algorithms can be defined as follows:

y � f pXq � ε, (1)

where f p.q is a non-parametric function and ε an error term. The main reason
for the growing interest in ML methods is that these algorithms lead to very high
predictive performances and currently outperform parametric models traditionally
used by practitioners. The hegemony of ML algorithms over parametric models
has been highlighted in several contexts, such as in the credit scoring literature
(Paleologo et al., 2010; Finlay, 2011; Lessmann et al., 2015).4 The high perfor-
mance of ML algorithms comes from the fact that the non-parametric functions
f p.q used by these approaches are able to accurately capture complex non-linear
effects of covariates including interaction effects. Specifically, instead of specifying
a certain relationship between the dependent and explanatory variables, these non-
parametric functions f p.q rely almost exclusively on data to detect non-linearities
and interaction effects prevailing between y and X.

Among the many algorithms proposed in the ML literature, ensemble methods
such as the random forest (Breiman, 2001) and gradient boosting (Friedman, 2001)
have been shown to lead to very accurate predictions and even become benchmark
models in terms of predictive performance (Lessmann et al., 2015; Grennepois
et al., 2018; Gunnarsson et al., 2021). Random forest and gradient boosting are
particular applications of bagging and boosting procedures, which are based on
decision trees. The decision tree algorithm is based on a recursive partition of
the initial data into smaller homogeneous subsets, in the sense of the dependent
variable. Specifically, decision trees recursively split the covariate space into two
homogeneous partitions, called nodes, until obtaining nodes that are as homoge-
neous as possible, which are called terminal nodes or leaves.5 To do so, for each
partition, the algorithm chooses the most discriminant explanatory variable, i.e.,
the variable partitioning the original node into the two most homogeneous nodes

4Credit scoring is one of the first fields to which ML algorithms were applied in economics.
See, for instance, Makowski (1985), Henley and Hand (1996), Desai et al. (1996), and Baesens
et al. (2003).

5The binary partition corresponds to the CART algorithm (Breiman et al., 1984), which is
the most popular decision tree algorithm.

5



possible. Formally, a decision tree is defined as

fDt pXq �
M̧

m�1

cmI pX P Rmq , (2)

where M is the total number of leaves of the tree, Rm is a leaf of the tree and cm
corresponds to the average of the observations’ dependent variable in Rm.6 Despite
capturing threshold effects through multiple splits, the predictive performances of
decision trees is lacklustre and barely better than random guessing due to their high
variance. To solve this issue and achieve higher performance, ensemble methods
such as random forest and gradient boosting combine several decision trees.7

The random forest algorithm is based on the combination of several decision
trees fitted on copies of the original data obtained from a bootstrap procedure.8
Denoting by B the total number of trees in the forest, which also corresponds to
the number of bootstrap samples, a random forest is defined as

fRf pXq �
1

B

B̧

b�1

f bDt pXq , (3)

where f bDt pXq is a decision tree fitted on the bth bootstrap sample. Predictions of
the random forest thus simply correspond to averages of individual decision tree
predictions.

Gradient boosting does not involve a bootstrap sampling strategy, but instead,
each tree is built upon the errors of the previous decision tree. Formally, gradient
boosting is defined as

fGb pXq �
B̧

b�1

λbf
b
Dt pXq , (4)

where B is again the total number of trees , which also corresponds to the number of
iterations of the algorithm, while λb represents the weight attributed to the bth tree.
From the aggregation of several decision trees, random forest and gradient boosting
capture potentially many complex non-linearities, reason why they perform so well.

6More precisely, this equation defines a decision tree in a context of regression, i.e., a regression
tree. In the context of classification, cm corresponds to the dominant class of observations in the
leaf m.

7By doing so, these algorithms become strong learners, i.e., models that perform substantially
better than random predictions, in comparison with weak learners, i.e., models that perform
slightly better than random predictions.

8In the random forest algorithm, both observations and explanatory variables are randomly
selected, whereas in the general bagging procedure, only the observations are.

6



2.2 Pitfalls of Parametric Models

Historically, the simplest approach used to predict y is to rely on the following
parametric model

y � Xβ � ε, (5)

where β is the vector of parameters to estimate. This simple model assumes a
linear relationship between the dependent variable and the predictive variables.
However, in practice, the true relationship prevailing between y and X may not be
linear but more complex, involving non-linearities and interaction effects. For this
reason, the performance of this simple parametric model is lacklustre compared
to those of the random forest or gradient boosting algorithms in the presence of
complex relationships. To avoid this pitfall of the simple parametric model, a
common approach is to augment Eq.(5) with parametric functions of X, i.e.,

y � X�β � ε, (6)

where X� is a K-dimensional vector of predictive variables obtained from transfor-
mations of X. The objective of X� is to capture potential non-linearities through
parametric transformations of X. Typical examples of parametric functions fre-
quently used to capture non-linearities are the quadratic and cubic functions as
well as interactions between covariates,9 i.e.,

X� �
�
X1, X2, X3, I

�
, (7)

where Xh �
�
Xh

1 , . . . , X
h
q

�
, I � pX1X2, . . . , Xq�1Xqq is the set of covariate couples,

and q ¤ p.10

However, this approach is subject to overfitting issues. Indeed, the model can
involve a very large number of parameters to estimate because the number of pre-
dictors depends on the number of original explanatory variables p. For example,
Eq.(7) involves K � 75 predictors for p � q � 10. Consequently, performing
traditional estimation on this high-dimensional model can obviously lead to over-
fitting. To solve this issue, several approaches have been proposed in the literature
to reduce the number of parameters to estimate.

An early approach developed in the literature is lasso. Proposed in the seminal
paper of Tibshirani (1996), lasso is a penalized regression that proceeds to both
estimation and variable selection. To do so, the approach is based on a penalty
term that regularizes coefficients and performs variable selection. Considering the

9It is also possible to include principal components of explanatory variables as well as some
of their powers to capture non-linear effects. See, for example, Castle and Hendry (2010) and
Castle et al. (2013).

10This condition allows excluding meaningless transformations of elements of X, like powers
of binary variables.
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linear model associated with Eq.(6), lasso solves the following penalized regression
problem

β̂ � arg min
β

�
py �X�βqT py �X�βq � λ

Ķ

k�1

|βk|

�
. (8)

The parameter λ is a tuning parameter controlling for the degree of regulariza-
tion and is generally selected via k-fold cross-validation or information criteria.
For cross-validation, two approaches can be considered to select the optimal value
of λ: the value minimizing a loss function applied to the prediction errors (of a
training sample), λ̂min, or the value associated with the most parsimonious model
within a 1-standard-error interval, λ̂1se.11 For comparison purposes, we also con-
sider the adaptive lasso of Zou (2006) which is a popular extension of the lasso
method satisfying the oracle property (Fan and Li, 2001), unlike the standard lasso
estimator.

An alternative approach for variable selection is autometrics (Doornik, 2009).
This algorithm performs automatic selection model based on the “Hendry” general-
to-specific model selection (Hendry, 2000). Specifically, this approach starts from
a generalized unrestricted model (GUM) that includes every potential relation-
ship existing between the dependent variable and predictors, i.e., dynamic effects,
breaks, trends, outliers and non-linearities. To reduce the dimension of the GUM,
the algorithm performs a battery of tests to eliminate insignificant variables and
find a congruent parsimonious model. Rather than testing for each possible sub-
model from the GUM, autometrics performs a tree search that reduces the com-
putation time and allows the approach to be feasible even in a high-dimensional
context. Finally, the algorithm selects the sub-model encompassing the GUM in
the representation of the relationship of concern and passing a battery of diagnos-
tic tests. The diagnostic tests are for instance the error correlation test (Godfrey,
1978), the ARCH test (Engle, 1982), the normality test (Doornik and Hansen,
2008), the heteroscedasticity test (White, 1980) and the RESET test (Ramsey,
1969).12 One interesting property of autometrics is that the modeler can choose
the target size α, which corresponds to the expected percentage of irrelevant vari-
ables surviving to the reduction procedure. This parameter is a tuning parameter
that solely depends on the modeler’s leniency regarding irrelevant variables. For
example, a liberal choice could be to fix the target size α � 0.05, whereas a more
conservative user might prefer lower values, such as α � 0.01.13

11This method was proposed by Breiman et al. (1984).
12Some of these tests are discarded when autometrics is applied on cross-section data.
13There is currently no theoretical result on the properties of Autometrics, but simulation

results can be found in Hendry and Doornik (2014). See Hendry and Johansen (2011), Johansen
and Nielsen (2016) for theoretical results on properties of Autometrics’ related algorithms.
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2.3 A Partial Linear Approach: GAM-lasso and GAM-autometrics

Although variable selection methods can address overfitting issues, large differences
can still be observed between performances of ML algorithms and parametric mod-
els augmented with non-linear transformations of the raw series. Therefore, if large
differences are observed between the forecasting performance of the random forest
and gradient boosting on one hand and linear models on the other hand, this im-
plies that the chosen parametric functions fail to capture the true non-linearities.
Moreover, if non-linearities are not accurately captured by parametric transfor-
mations, it may also disrupt the estimation of interaction effects, leading to an
inconsistent selection of these interactions.

For that reason, we propose to use the following class of partial linear models:

y � Zγ �
p̧

j�1

gj pXjq � ε, (9)

where Z is a vector of S explanatory variables entering linearly in the model, γ is
the vector of parameters associated to Z, and gj p.q is a non-parametric function.
For the sake of simplicity, we consider the particular case where Z � I so that Z
contains solely the S � ppp� 1q{2 interactions of covariate couples of the variables
belonging toX. However, Z can be extended to contain any variables provided that
the condition stated in Eq.(17) below is satisfied. Model (9) allows to capture both
interaction effects (introduced linearly) and non-linearities of covariates (from non-
parametric functions) and is therefore expected to capture complex relationships.

Unlike ML algorithms, Model (9) has the advantage of keeping the model inter-
pretable. Indeed, the linearity assumption on the effect of I implies that marginal
effects of Eq.(9) can be computed as follows:

By

BXj

� cj � g1j pXjq , (10)

where cj � Xp�jqγj, Xp�jq is the pp� 1q-dimensional vector of covariates exclud-
ing Xj, γj is the set of coefficients associated with the p � 1 pairs of interactions
involving Xj, and g1j pXjq is the partial derivative of gj pXjq with respect to Xj.
This assumption simplifies the interpretation of the model because marginal ef-
fects correspond to the marginal effects of covariates taken individually, eventually
augmented by a constant corresponding to the sum of the interactions’ marginal
effects (evaluated at a chosen value of Xp�jq, e.g., a given quantile of Xp�jq over
the training sample).

One could argue about the linear introduction of interaction effects in the model
and relax this assumption by considering a non-linear representation of interac-
tions. This idea has been investigated by Chouldechova and Hastie (2015). This
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approach allows the researcher to potentially model both covariates and interac-
tion effects non-linearly while controlling for overfitting issues through variable
selection. Although interesting in terms of predictive performance, this approach
damages the interpretability of the model. The interpretation of interaction effects
becomes complicated, but more importantly, the marginal effects can no longer be
easily computed as in Eq.(10). Indeed, the marginal effects would not correspond
to standard marginal effects of covariates augmented by a constant but to a much
more complex formula depending on the non-linear relationships identified for in-
teraction effects. The linearity assumption on interaction effects thus represents
the price to pay to keep the model interpretable.

To estimate non-linearities of covariates, we rely on the non-parametric func-
tions of the generalized additive model (GAM). Introduced by Hastie and Tibshi-
rani (2017), the GAM allows one to relax the assumption of a linear relationship
between y and X and automatically captures non-linear effects through smooth
functions such as

gj pXjq �
ḑ

l�1

θj,lbj,l pXjq , (11)

where bj,l p.q is a basis function and θj � pθj,1, . . . , θj,dq are the associated parame-
ters. The GAM allows for the simultaneous estimation of γ as well as the p smooth
functions gj pXjq using the backfitting algorithm, which is based on the following
objective function:�

y �

�
Zγ �

p̧

j�1

gj pXjq

��T �
y �

�
Zγ �

p̧

j�1

gj pXjq

��
� ψ

p̧

j�1

» �
g2j ptq

�2
dt,

(12)
where ψ is a smoothing (or tuning) parameter. Similar to Eq.(8), the objective
function of the GAM is penalized. However, the goal of this penalization is not to
proceed to variable selection but to avoid overfitting of smooth functions. Indeed,
the smoothing parameter ψ prevents non-parametric functions from becoming too
wiggly, which could lead to the model having low generalizability. In practice, the
smoothing parameter is generally obtained by generalized cross-validation, and the
larger the value of ψ is, the smoother the functions.

Similarly to Eq.(6), the large number S of parameters to estimate in Eq.(9)
can potentially lead to overfitting issues and thus requires proceeding to variable
selection in Z. However, as our new class of partial linear models includes both
linear (interaction effects) and non-linear (smooth functions) terms, variable selec-
tion methods cannot be applied in a standard way. Indeed, partial linear models
require a specific estimation method because the presence of non-linear terms can
potentially disturb the estimation of linear parameters’ coefficients, leading to an
inconsistent selection of linear terms. For that purpose, we propose to combine
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variable selection with the double residual methodology of Robinson (1988). The
double residual approach follows the Frisch–Waugh–Lovell theorem (Frisch and
Waugh, 1933; Lovell, 1963) and allows one to consistently estimate partial linear
models. The conditional expectation of the partial linear model defined in Eq.(9)
is given by

E py|Xq � E pZ|Xq γ �
p̧

j�1

gj pXjq . (13)

When subtracted from Eq.(9), it leads to the following equation

y � E py|Xq � rZ � E pZ|Xqs γ � ε. (14)

If E py|Xq and E pZ|Xq are known, then Eq.(14) can be simply estimated by ordi-
nary least squares (OLS). However, as these conditional expectations are unknown
and potentially non-linear, we estimate them using GAM models, i.e.,

E py|Xq : y �
p̧

j�1

gj pXjq � uy, (15)

@s � 1 . . . , S, E pZs|Xq : Zs �
p̧

j�1

gj pXjq � vZs , (16)

where Zs is the interaction of two different covariates and uy and vZs are error
terms. Note that for Model (16) to be estimable, we need to impose a condition of
no concurvity between Zs and the p smooth functions gj pXjq, i.e., Zs cannot be
written exactly as the sum of the p smooth functions. This condition holds in our
case because Z � I and importantly because we rely on univariate GAM smooth
functions to estimate E pZs|Xq and not multivariate kernel methods as in Li and
Racine (2007). Specifically, the following condition must hold:

E
�
vJZvZ

�
is positive definite, (17)

where vZ � pvZ1 , . . . , vZS
q.

We then propose to apply lasso and autometrics variable selection methods to
the following double residuals model

ûy � v̂Zδ � ε, (18)

where û and v̂Z represent residuals of Eqs.(15) and (16), respectively. The double
residual approach of Robinson (1988) leads to a root-n-consistent estimate of linear
terms’ parameters δ, allowing us to correctly perform variable selection on Z.14

14Note that we only proceed to variable selection on Z.
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Finally, the smooth functions and parameters of the selected interactions are re-
estimated with the following GAM model:

y � Z�γ� �
p̧

j�1

gj pXjq � ε, (19)

where Z� is the subset of S� ¤ S variables in Z selected when estimating (18) by
lasso or autometrics and γ� is the associated vector of parameters. We denote as
GAM-lasso (GAMLA) the resulting model when Z� is obtained by lasso and as
GAM-autometrics (GAMA) when it is obtained by autometrics.15

3 Simulation Study
We use Monte Carlo simulations to study the potential of our new approach.
Specifically, we assess the predictive performance and variable selection properties
of GAM(L)A compared to those of benchmark approaches in the literature. For
that purpose, the Monte Carlo simulation is performed on nr � 1, 000 replications,
with each model being trained on a training sample of nin � 1, 000 observations
and evaluated on nout � 1, 000 out-of-sample observations, so that n � nin � nout
is the total number of simulated data for each replication.

3.1 Simulation Design

We generate p � 10 predictive variables xi,j, j � 1, . . . , p, i � 1, . . . , n, as well as
a response variable yi according to the following data generating process (DGP)

yi �
p̧

j�1

p̧

k�j�1

γj,kxi,jxi,k �
p̧

j�1

gj pxi,jq � εi, (20)

where εi
i.i.d.
� N p0, 1q and g � pg1, . . . , gpq are some non-linear smooth functions

defined below. Notice that we use capital letters, e.g., X, to refer to a set of
variables, small letters with one index (j), e.g. xj, to refer to the vector of n
observations of a single variable (j) and small letters with two indices, e.g., xi,j, to
refer to one observation (i) of a single variable (j).

To generate variables displaying non-linearities, we first simulate q � 5 variables
xi,j

i.i.d.
� N p0, 1q (@j � 1, . . . , q) and then use these q variables to obtain q relevant

15There already exists an R package that allows one to estimate GAM models penalized by
lasso (Ghosal and Kormaksson, 2019). However, this package does not apply the double residual
approach.
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non-linear predictive variables gj pxjq as follows

gj pxjq �

$''''''&
''''''%

sin p5xjq for j � 1,
5xj � 5xjI pxj ¡ 0q for j � 2,
LogN pxj, 0.5q for j � 3,
exj for j � 4,
arctan p10xjq for j � 5,
0 otherwise,

(21)

where LogN p.q is the probability density function of a log-normal distribution.
Notice that gj pxjq � 0 @j ¡ q so that only the first five (out of maximum p � 10)
non-linear variables are relevant.

The above procedure describes how to generate variables xj and gj pxjq for
j � 1, . . . , q. The remaining p � q � 5 variables xj for j � q � 1, . . . , p are
simulated as follows:

xi,j � �gj pxi,j�qq {xi,j�q � ui,j for j � q � 1, . . . , p, (22)

where u � N p0, 0.4q. These p variables xj are used to create the ppp � 1q{2
interaction variables xjxk entering in (20). Doing so, we introduce dependence
between gj pxjq @j ¤ q and the raw variables xi in order to illustrate the usefulness
of the double residual approach in the realistic case of dependence between the
interaction variables and the non-linearities gj pxjq.

The DGP assumes that the first q functions g are non-linear (while the next
p � q are redundant) and that some explanatory variables xj (and therefore also
interaction variables) are correlated with these non-linear functions. This DGP
allows (i) to illustrate the potential of non-parametric functions to accurately cap-
ture non-linearities compared to parametric functions and (ii) to highlight the
importance of accounting for the correlation between linear and non-linear terms.
For the sake of illustration, Figure 1 plots gj pxjq as a function of xj to help vi-
sualizing the type of non-linearities introduced in Eq.(21), and Figure 2 displays
the correlation between xjxk and gj pxjq implied by Eq.(22), for one replication of
simulations.

To study the finite sample properties of lasso and autometrics in selecting
the relevant interaction variables and in rejecting the irrelevant interactions, we
set some parameters γj,k to zero and others to a non-zero value. Specifically,
the relevant interaction effects are xjxj�q for j � 1, . . . , q. We set the non-zero
coefficients γj,k via a measure of non-centrality rather than randomly choosing their
value. Denoting byW � px1x2, . . . , xp�1xp, g1, . . . , gqq the matrix of regressors, the
coefficients of the relevant variables are defined as

γj,k � ξj,k

b
E rW 1W s�1

j,k , (23)
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Figure 1: Illustrations of non-linear functions gj pxjq of Eq.(21) considered in sim-
ulations
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Figure 2: Correlation between xjxk and gj pxjq for one replication of simulations
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where ξj,k is the non-centrality parameter of interaction variable xjxk. The non-
centrality parameter ξj,k allows us to calibrate the significance of the γj,k parame-
ters. We consider ξj,k � 6 for j � 1, . . . , q, and k � j�q so that these variables have
an expected t-statistics (for the null hypothesis that they are redundant) equal to
6. These variables should thus be kept in the final model with a probability close
to 1.

In the simulations, we compare GAM(L)A to several benchmark approaches
in the literature.16 We consider linear models augmented by quadratic, cubic and
interaction terms, as in Eq.(7), whose variables have been selected by lasso, adap-
tive lasso and autometrics. Denoted as LASSO, A-LASSO and AM, these models
allow us to illustrate the failure of parametric functions to accurately capture non-
linearities, as well as the inconsistency of variable selection in the presence of both
linear and non-linear terms. For each variable selection method, we consider two
methods to choose the tuning parameters, i.e., λ̂min and λ̂1se for lasso and α � 0.05
and α � 0.01 for autometrics. We include in the comparison a naive version of
GAMLA and GAMA where the selection of variables in Z is performed by regress-
ing y filtered for the non-linearities in X obtained by GAM (i.e., ûy) on Z without
relying on the double residual approach of Robinson (1988), i.e., on ûy � Zδ � ε.
Denoted as GAMLA* and GAMA*, these models enable us to highlight the ab-
solute need to rely on the double residual approach in the presence of both linear
and non-linear terms. We compare GAM(L)A to the methodology of Chouldechova
and Hastie (2015) which allows us to non-linearly model covariates and interaction
effects. Denoted as GAMSEL, this approach is based on lasso to control for over-
fitting issues. We also compare the predictive performance of GAM(L)A to that of
a standard OLS model and that of the current ML benchmarks, i.e., random forest
and XGBoost.17 Finally, we include in the comparison GAMLA obtained from
the adaptive lasso method, denoted as GAMLA (A-LASSO), as well as its version
obtained without relying on the double residual approach, denoted as GAMLA*
(A-LASSO).

The model performance analysis is conducted using three criteria. First, we
study the consistency of variable selection with the potency and the gauge criteria
(Castle et al., 2011). Specifically, potency measures the frequency of relevant
interaction variables included in the model, such as

Potency �
1

q

q̧

j�1

I pγ̂j,j�q � 0q , (24)

16For each replication, we consider a cubic basis for non-parametric functions of GAMLA and
GAMA.

17The XGBoost algorithm (Chen et al., 2015) is a particular implementation of the gradient
boosting algorithm presented in Section 2.1 that allows for fast computation and is currently
very popular among practitioners and researchers.
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where γ̂j,j�q is the coefficient estimated by the model associated with xjxj�q,
whereas gauge assesses the frequency of irrelevant interactions included in the
model, such as

Gauge �
1

S � q

p̧

j�1

p̧

k�j�1,
k�j�q

I pγ̂j,k � 0q . (25)

The optimal variable selection method is thus the one that includes the highest
percentage of relevant variables in the model, i.e., the highest potency level, while
also controlling for the percentage of irrelevant variables, i.e., the gauge level.
Second, we evaluate the predictive performance of models using the mean squared
(forecasting) error, which is defined as

MSE �
1

nout

nout¸
i�1

pŷi � yiq
2 , (26)

where ŷi is the prediction obtained from a model for the ith out-of-sample obser-
vation.

3.2 Evaluation Results

Table 1 reports the average values of potency, gauge and MSE for seventeen com-
peting models. Notice that the selection of variables is only performed on fully
parametric or partial linear models. Furthermore, while the selection of variables
is performed on all variables entering linearly in the model, the gauge and potency
reported in Table 1 is for the interaction variables (I) only.

The results first suggest that the linear model with the first three powers of all
variables as well as all the interaction variables in the conditional mean (denoted
OLS in the table) has by far the highest MSE and therefore suffers from over-fitting
problems.

Furthermore, it appears that interaction variables are poorly selected by both
lasso, adaptive lasso and autometrics when the non-linearities are approximated
by quadratic and cubic functions of X (i.e., models denoted LASSO, A-LASSO
and AM in the table). Indeed, these models lead to a low potency due to the poor
approximation of non-linearities and sometimes a high gauge. More specifically,
the highest (resp. smallest) potency is 60.8% (resp. 1.8%) while the gauge is
between 0.05% and 21.2%. This result implies that relevant interaction variables
not included in the model are sometimes triangulated by combinations of other
irrelevant variables. Regarding gauge levels, the values are decent although lasso
and adaptive lasso lead to a high number of irrelevant interactions being included
in the model for the λ̂min tuning parameter.
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Table 1: Comparison of potency, gauge and MSE under non-linear effects and
correlated covariates

Model Conditional mean Tuning parameter Potency Gauge MSE

OLS pX1, X2, X3, Iqβ 1.478

LASSO pX1, X2, X3, Iqβ λ̂min 0.408 0.212 1.204

pX1, X2, X3, Iqβ λ̂1se 0.018 0.008 1.221

A-LASSO pX1, X2, X3, Iqβ λ̂min 0.392 0.203 1.205

pX1, X2, X3, Iqβ λ̂1se 0.021 0.005 1.221

AM pX1, X2, X3, Iqβ α � 0.05 0.608 0.058 1.196

pX1, X2, X3, Iqβ α � 0.01 0.438 0.023 1.182

GAMLA* Iγ �
°p
j�1 gj pXjq λ̂min 0.385 0.081 1.154

Iγ �
°p
j�1 gj pXjq λ̂1se 0.001 0.000 1.194

GAMLA* (A-LASSO) Iγ �
°p
j�1 gj pXjq λ̂min 0.387 0.080 1.154

Iγ �
°p
j�1 gj pXjq λ̂1se 0.000 0.000 1.194

GAMA* Iγ �
°p
j�1 gj pXjq α � 0.05 0.518 0.050 1.151

Iγ �
°p
j�1 gj pXjq α � 0.01 0.453 0.027 1.149

GAMLA Iγ �
°p
j�1 gj pXjq λ̂min 0.980 0.252 1.217

Iγ �
°p
j�1 gj pXjq λ̂1se 0.587 0.004 1.128

GAMLA (A-LASSO) Iγ �
°p
j�1 gj pXjq λ̂min 0.656 0.020 1.126

Iγ �
°p
j�1 gj pXjq λ̂1se 0.387 0.000 1.137

GAMA Iγ �
°p
j�1 gj pXjq α � 0.05 0.930 0.058 1.160

Iγ �
°p
j�1 gj pXjq α � 0.01 0.848 0.013 1.127

GAMSEL fGs pXq λ̂min 0.864 0.555 1.161

fGs pXq λ̂1se 0.295 0.103 1.201

Random Forest fRf pXq 1.182

XGBoost fGb pXq 1.215

Note: The results displayed in the last three columns correspond to average values of the criteria
over 1, 000 replications. The conditional mean of the competing models/estimation methods is pro-
vided in the second column (labeled ‘Conditional mean’). Recall that Xh refers to the h-th power
of the X variables while I is the set of covariate couples. Potency and gauge are not reported for
OLS, random forest and XGBoost because these models do not perform variable selection.
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Random forest and XGBoost give similar forecasting performance, with a small
advantage for the former in this simulation.

Interestingly, GAMLA and GAMA achieve the highest predictive performances.
Indeed, the MSEs associated with GAMLA and GAMA are lower than those of all
the other competing models, with the smallest MSE being obtained for the GAMA
model with α � 0.01 as tuning parameter. Therefore, the results of the Monte
Carlo simulation show that the partial linear models GAM(L)A compete with
sophisticated ML algorithms in terms of performance while leading to consistent
identification of relevant and irrelevant variables. Qualitatively similar results are
observed for GAMLA estimated by the adaptive lasso method.

The main difference between the GAMLA and GAMA models comes from the
gauge level. Both the gauge and potency values are high (resp. low) for GAMLA
with the tuning parameter λ̂min (resp. λ̂1se). The highest potency value, 0.980,
comes at the cost of a relatively high gauge level, 25.2%, whereas a gauge level
close to 0 comes at the cost of the potency decreasing to 58.7%. Lasso thus leads
to either potency values close to 1 (with λ̂min) or gauge levels close to 0 (with
λ̂1se). Autometrics however leads to high potency values while controlling for a
low gauge level, unlike lasso. Specifically, the gauge level corresponds to the target
size α of autometrics. Therefore, an autometrics user can choose the gauge desired
while selecting a large percentage of relevant variables. Indeed, while the gauge
levels are very close to the target sizes considered, i.e., α � 0.05 or α � 0.01, the
potency levels remain high and are equal to 93% and 84.8%. For these reasons,
we recommend using GAMA because it allows one to control the target size while
also selecting a large percentage of relevant variables, unlike GAMLA. Finally, the
weakness of GAMLA compared to the GAMA is also valid for GAMSEL. While
leading to a competitive MSE close to those of GAMLA and GAMA, GAMSEL
does not allow one to both control the target size and select a large percentage
of relevant variables because it is based on a lasso penalization. Note that unlike
lasso, the adaptive lasso allows to control the gauge level close to 0. Indeed, gauge
values of the GAMLA (A-LASSO) are close to 0 for both values of the tuning
parameter λ, but still at the cost of lower potency values similarly to the lasso.

The results also highlight the importance of the double residual approach of
Robinson (1988). Indeed, the GAMLA* and GAMA* models select even fewer
relevant variables than the lasso and autometrics methods with selection of the first
three powers of X and the interaction variables (i.e., LASSO and AM). At best,
only half of the relevant interactions are included in these models. In comparison,
the highest percentage of relevant variables included in the GAMLA and GAMA
models is 98%. These results imply that the double residual approach allows
to correctly estimate interaction effects, leading to consistent variable selection.
Similar results are observed for the GAMLA* (A-LASSO) method.

We also display in Tables T5-T7 in Appendix A the results obtained for three
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other Monte Carlo simulation setups. Specifically, we consider a DGP in which (i)
covariates are correlated but functions g are linear, (ii) functions g are non-linear
but covariates are independent, and (iii) functions g are linear and covariates are
independent. For that purpose, we generate linear functions g such as gj pxjq �
γjxj, where γj � 0 for j � 1, . . . , 5 and 0 otherwise, and simulate covariates as
xj � N p0, 1q for j � 1, . . . , p in the case of independence. The results obtained are
consistent with those in Table 1: linear models augmented by parametric functions
perform as well as GAMLA and GAMA when the relationship prevailing between yi
and xi is purely linear, while GAMLA* and GAMA* perform similarly to GAMLA
and GAMA when linear and non-linear terms are not correlated. Moreover, results
displayed in Table T7 confirm the conclusion of Epprecht et al. (2021) that the
adaptive lasso method leads to better variable selection than autometrics when
covariates are linear and independent. In this case, both methods lead to very
high potency levels, but the adaptive lasso selects slightly less irrelevant variables
than autometrics. However, we find that autometric outperforms the adaptive
lasso in the other three setups.

4 Empirical Application
In this section, we consider regression and classification problems to assess the
potential of GAM(L)A.

4.1 Regression Problem: Boston housing market

First, we illustrate the practical usefulness of the GAM(L)A model based on a
regression problem. For that purpose, we use the popular Boston housing market
(Harrison Jr and Rubinfeld, 1978), which has already been considered in several
contributions to the literature (Belsley et al., 1980; Castle et al., 2021; Michelucci
and Venturini, 2021) as well as for the Kaggle competition “Boston Housing”. Built
by the U.S. Census Bureau, this dataset includes 506 instances and 13 explanatory
variables on housing prices in the Boston area, two of which are qualitative. See
Table T8 in Appendix A for a description of the variables included in the analysis.

We compare the r1s GAMLA, r2s GAMA models to several benchmarks in the
literature.18,19 We compare the GAM(L)A to the r3s GAMLA obtained from the

18Similar to the Monte Carlo simulation, we consider a cubic basis for non-parametric functions
of GAMLA and GAMA.

19We do not include in the comparison the GAMLA*, GAMLA* (A-LASSO) and GAMA*
methods because we demonstrated in Section 3 that these approaches lead to inconsistent vari-
able selection in the presence of non-linear relationships prevailing between the dependent and
predictive variables.
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adaptive lasso estimator, denoted as GAMLA (A-LASSO). We consider three para-
metric models: r4s a simple linear regression model including only linear terms,
r5s a linear regression augmented by quadratic and cubic terms, and r6s a linear
model including linear, quadratic, cubic and interaction terms. We also consider
r7s the GAM to compare the potential of parametric and non-parametric functions
to capture non-linearities of covariates. We include in the comparison r8s lasso,
r9s adaptive lasso, and r10s autometrics models including linear, quadratic, cubic
and interaction terms. We also implement r11s random forest and r12s XGBoost
algorithms and consider these models as benchmarks to evaluate the predictive
performance of the other approaches. Finally, we compare the GAM(L)A model
to the r13s penalized logistic tree regression model (PLTR) of Dumitrescu et al.
(2022).20 Like GAM(L)A, the PLTR is also intended to improve the predictive per-
formance of traditional linear models by automatically capturing non-linearities.
Specifically, it improves the predictive performance of linear models by includ-
ing univariate and bivariate threshold effects obtained from short-depth decision
trees and is penalized to control for the number of threshold effects included in the
model. Formally, the PLTR models the conditional mean as Xβ�V1ξ�V2ζ, where
V1 and V2 denote respectively univariate and bivariate threshold effects obtained
from decision trees, and ξ and ζ are the associated parameters to estimate. How-
ever, GAM(L)A and PLTR differ substantially in how non-linearities are captured.
While GAM(L)A is based on GAM non-parametric functions and interaction ef-
fects, the PLTR relies on univariate and bivariate threshold effects obtained from
short-depth decision trees. See Appendix B for more details on the PLTR model
of Dumitrescu et al. (2022).

To evaluate the performance of these models, we use a 10-fold cross-validation
approach based on the mean squared error (MSE), which is the benchmark per-
formance measure for regression problems. For that purpose, we randomly divide
the initial sample into 10 sub-samples of equal size and iteratively consider one
sub-sample for prediction, while the nine other sub-samples are used to fit models.
The MSE is then computed on the vector including all predictions obtained from
each sub-sample. Moreover, we use the model confidence set (MCS) of Hansen
et al. (2011) to identify models exhibiting significantly better predictions. Indeed,
the MCS identifies the bucket of models that exhibit similar performance and are
superior to the remaining models. To do so, we apply the MCS on the vector
of squared errors obtained for the 10-folds. The MCS is computed from 10,000
bootstrap samples and since we have cross-section data, we chose a block size of
one observation.

Finally, we analyse the interpretability of GAM(L)A. However, measuring the
interpretability of a model is difficult, and there is currently no consensus on the

20Initially proposed for credit scoring applications, the PLTR can easily be adapted to regres-
sion problems.
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real definition of an “interpretable model” (Molnar, 2019). For that reason, we
consider two criteria to measure the interpretability of GAM(L)A that correspond
to the function and human-level evaluation of interpretability proposed by Doshi-
Velez and Kim (2017).21 On the one hand, we assess the parsimony of the models
and compute the number of interaction effects selected based on the same vector
including all predictions used to compute the MSE. The idea of this quantitative
criterion is that the fewer the number of variables involved in a prediction, the
easier it is for a user to understand the determinants of predictions. On the other
hand, we represent smooth functions and marginal effects of GAMA (those of
GAMLA are not reported to save space).

Table 2 displays the results obtained for the 10-folds. The results suggest that
parametric linear models r4 - 6s yield the worst performance of all models. Com-
pared to r11s random forest and r12s XGBoost algorithms, the MSEs of the linear
models are between 1.6 to 2.4 times larger, even when augmented by quadratic
and cubic effects as well as interactions of covariates couples. Similarly, the perfor-
mance of the r8s LASSO, r9s A-LASSO and r10s AM models including quadratic
and cubic effects as well as interactions are relatively poor compared to that of
random forest and XGBoost, despite being better than that of linear models. The
results of the A-LASSO model are even worse as it selects a small number vari-
ables compared to LASSO and AM models. In line with the findings of Dumitrescu
et al. (2022), our results suggest that these parametric functions of the raw data
are not flexible enough to capture the non-linearity of this data. In contrast, non-
parametric functions of r7s GAM accurately capture non-linearities, with the MSE
of GAM being closer to that of sophisticated ML algorithms than linear models.
However, non-parametric functions are insufficient to achieve the performance of
these high-performing algorithms, as linear models and GAM are not included in
the subset of outperforming models identified by the MCS, with a nominal level
of αMCS � 20%, except for one case, with a nominal level of αMCS � 10%. PLTR
is not better than GAM and is also rejected from the MCS. This result implies
that the univariate and bivariate threshold effects of the PLTR are insufficient to
correctly capture all the non-linearities in the data.22

Interestingly, the combination of non-parametric GAM functions and interac-
tion effects lead to very satisfactory results. Indeed, r1s GAMLA and r2s GAMA
have MSEs very close to those of Random Forest and XGBoost and belong to
the MCS (at the nominal level of 10%) together with these two ML algorithms.
The MSE of GAMLA with the λ̂1se tuning parameter is actually the smallest of
all competing models. The results obtained for the r3s GAMLA (A-LASSO) are
qualitatively similar to those of GAM(L)A.

21See Doshi-Velez and Kim (2017) for a detailed description of the interpretability evaluation.
22The predictive performance of the PLTR could be improved by including threshold effects

obtained from triplets and quadruplets of explanatory variables.

22



Table 2: Number of variables selected, MSE and MCS: Boston housing dataset

# Model Conditional Tuning Number of MSE MCS P-value

mean parameter interactions

r1s GAMLA Iγ �
°p

j�1 gj pXjq λ̂min 50 10.235 0.920

GAMLA Iγ �
°p

j�1 gj pXjq λ̂1se 22 9.594 1.000

r2s GAMA Iγ �
°p

j�1 gj pXjq α � 0.05 27 10.086 0.933

GAMA Iγ �
°p

j�1 gj pXjq α � 0.01 21 10.389 0.920

r3s GAMLA (A-LASSO) Iγ �
°p

j�1 gj pXjq λ̂min 19 9.974 0.933

GAMLA (A-LASSO) Iγ �
°p

j�1 gj pXjq λ̂1se 9 10.800 0.720

r4s OLS Xβ 23.938   0.001

r5s OLS pX1, X2, X3qβ 16.039 0.006

r6s OLS pX1, X2, X3, Iqβ 78 24.079 0.006

r7s GAM
°p

j�1 gj pXjq 13.186 0.008

r8s LASSO pX1, X2, X3, Iqβ λ̂min 69 14.698 0.119

LASSO pX1, X2, X3, Iqβ λ̂1se 31 15.683 0.006

r9s A-LASSO pX1, X2, X3, Iqβ λ̂min 10 22.827 0.005

A-LASSO pX1, X2, X3, Iqβ λ̂1se 6 21.874 0.003

r10s AM pX1, X2, X3, Iqβ α � 0.05 32 14.881 0.007

AM pX1, X2, X3, Iqβ α � 0.01 29 15.467 0.006

r11s Random Forest fRf pXq 10.008 0.952

r12s XGBoost fGb pXq 9.729 0.955

r13s PLTR Xβ � V1ξ � V2ζ 13.726 0.024

Note: The conditional mean of the competing models/estimation methods is provided in the
second column (labeled ‘Conditional mean’). The results displayed in column MCS correspond
to the mean square (forecast) error over the 10-folds while those in the last column are the p-
values of the MCS test based on 10,000 bootstrap samples.
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The take-away message here is that parametric models can compete with so-
phisticated ML algorithms in terms of predictive performance, as long as the mod-
els are well specified. Therefore, it is not essential to use black boxes to reach high
predictive performance: parametric models can fulfill the same objective.

Castle et al. (2021) investigate the same dataset and find it essential to model
interaction effects between explanatory variables and a dummy variable distin-
guishing Boston and its suburbs.23 We display in Table T11 in Appendix A the
results obtained from this analysis. We find that including a dummy variable for
Boston and its suburbs slightly increases the predictive performance of some mod-
els, such as GAMA and PLTR, but slightly decreases the performance of other
ones, such as AM and random forest. However, results are qualitatively similar
and the conclusions remain the same.

GAMLA and GAMA are also interpretable, unlike sophisticated ML algo-
rithms. For the sake of illustration, Figure 3 displays estimated non-parametric
functions of GAMA associated with a target size α � 0.05.24 The results suggest
that while the effect of the variable Rm is almost linear, for some other variables,
the effects are highly non-linear, such as Dis, which exhibits a partial linear ef-
fect, or Lstat that displays a quadratic effect. As explained above, such graphs are
however not available for random forest and XGBoost, which makes these methods
difficult to interpret. At best, graphs of the variable importance criterion, as illus-
trated in Figure F7 in Appendix A, are available for these two algorithms. These
graphs represent a measure of predictive power of each variable in the considered
algorithm. Although these graphs allow to rank variables from the least important
one to the most important one, they does not say anything about the nature and
even the sign of the non-linearities.

As shown in Eq.(10) marginal effects are easily computable for GAM(L)A.
Figure 4 displays the marginal effect of the variable Lstat obtained for GAMA with
a target size α � 0.05. The solid curve represents the marginal effect of Lstat when
ignoring all the retained interaction variables involving Lstat, i.e., when cj � 0.
The graph shows that the marginal effect is non-linear and increases with the level
of Lstat. The effect is negative (resp. positive) when Lstat is smaller (resp. larger)
than 5.87. However, GAMA selected four variables interacting with Lstat, i.e.,
Age, Black, Dis and Tax. Therefore, marginal effects of Lstat should better be
evaluated for some representative values of these variables (denoted Xp�jq). The
three additional curves plotted in Figure 4 correspond to the marginal effect of
Lstat when the elements of Xp�jq are set to their 2.5, 50.0 and 97.5% quantiles.
The effects of the interaction variable being assumed to be linear, the four curves

23Belsley et al. (1980) note that observations 357 to 488 correspond to Boston, while other
observations correspond to the suburbs.

24Table T10 in Appendix A displays the estimation results of non-parametric functions of
GAMA associated with a target size α � 0.05.
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Figure 3: Non-parametric functions estimated for GAMA associated with the α �
0.05 target size: Boston housing dataset
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are parallel. These interaction variables therefore imply a change in the level of
marginal effects.

4.2 Classification Problem: Credit scoring

Second, we consider a credit scoring application. The goal of credit scoring is to
predict customer default and is based on the estimation of customers’ default prob-
ability. To this end, we use the “Credit Card” dataset (Greene, 2003) that has also
been used for Kaggle competitions. The dataset includes 1,319 observations, and
the dependent variable corresponds to the acceptation and rejection of customers’
credit card applications. To explain the application decision, we can rely on 11
explanatory variables available in the database, two of which being qualitative,
and one continuous variable taking only two values. See Table T9 in Appendix A
for a description of the variables.

We compare the same models as those previously considered in the Boston
housing application. However, r1s GAMLA, r2s GAMA, r3s GAMLA (A-LASSO),
r4 - 6s OLS, r7s GAM, r8s LASSO, r9s A-LASSO and r10s AM are linear proba-
bility models instead of traditional linear models because the dependent variable
is binary.2526 To assess the performance of the models, we rely on a 10-fold cross-
validation approach based on the area under the ROC curve (AUC), which is the
benchmark performance measure for classification problems.27 The AUC measures
the link between the false and true positive rates over every possible threshold be-
tween 0 and 1. Specifically, the AUC represents the probability that the occurrence
of a random bad application is higher than that of a random good application.
Moreover, to assess whether the AUC difference between two models is significant,
we use the pairwise AUC test used in Candelon et al. (2012).

Table 3 displays the number of interaction variables selected as well as the AUC
for each of the competing models. Similarly to the Boston housing dataset, r4 -
6s purely parametric linear models lead to low predictive performance compared
to more sophisticated models. Indeed, the AUC of the parametric linear models,
r8s LASSO, r9s A-LASSO and r10s AM models are much lower than those of r11s
random forest and r12s XGBoost meaning that quadratic functions, cubic functions
and interactions of covariate couples are not sufficient to accurately capture non-

25We rely on linear probability models instead of general linear models such as logistic and
probit regressions for two reasons. First, several authors highlighted advantages of linear prob-
ability models over logistic and probit regressions. See Angrist and Pischke (2008),Wooldridge
(2015), and Boucher et al. (2020) among others. Second, as the dependent variable of Eq. (18)
is not a binary variable but a residual the double residual methodology cannot be combined used
with logistic and probit regressions.

26The PLTR is estimated by a logit regression as proposed in Dumitrescu et al. (2022).
27As probability linear models can lead to probabilities smaller than 0 and larger than 1, we

set predicted probabilities between 0 and 1 to compute the AUC.
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Table 3: Number of variables selected and AUC: Credit card dataset

# Model Conditional Tuning Number of AUC

mean parameter interactions

r1s GAMLA Iγ �
°p

j�1 gj pXjq λ̂min 9 0.995

GAMLA Iγ �
°p

j�1 gj pXjq λ̂1se 0 0.995

r2s GAMA Iγ �
°p

j�1 gj pXjq α � 0.05 3 0.995

GAMA Iγ �
°p

j�1 gj pXjq α � 0.01 2 0.996

r3s GAMLA (A-LASSO) Iγ �
°p

j�1 gj pXjq λ̂min 9 0.995

GAMLA (A-LASSO) Iγ �
°p

j�1 gj pXjq λ̂1se 0 0.995

r4s OLS Xβ 0.924

r5s OLS pX1, X2, X3qβ 0.967

r6s OLS pX1, X2, X3, Iqβ 55 0.988

r7s GAM
°p

j�1 gj pXjq 0.995

r8s LASSO pX1, X2, X3, Iqβ λ̂min 35 0.964

LASSO pX1, X2, X3, Iqβ λ̂1se 27 0.963

r9s A-LASSO pX1, X2, X3, Iqβ λ̂min 10 0.968

A-LASSO pX1, X2, X3, Iqβ λ̂1se 7 0.972

r10s AM pX1, X2, X3, Iqβ α � 0.05 9 0.982

AM pX1, X2, X3, Iqβ α � 0.01 5 0.985

r11s Random Forest fRf pXq 0.995

r12s XGBoost fGb pXq 0.996

r13s PLTR Xβ � V1ξ � V2ζ 0.996

Note: The conditional mean of the competing models/estimation methods is pro-
vided in the second column (labeled ‘Conditional mean’). The results in the last
column correspond to the AUC computed on the predictions for the 10-folds.
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linearities in this application.
In contrast to linear parametric models, non-parametric r7s GAM functions

capture non-linearities much better, judging by their better performance. More
precisely, GAM, r1s GAMLA, r2s GAMA and r3s GAMLA (A-LASSO) achieve
similar performance to random forest, XGBoost and r13s PLTR. These results
highlight the potential of non-parametric GAM functions to capture non-linearities
because the PLTR, random forest and XGBoost have been identified as benchmark
models for credit scoring applications (Lessmann et al., 2015; Grennepois et al.,
2018; Dumitrescu et al., 2022; Gunnarsson et al., 2021). Moreover, the results also
suggest that the predictive performance of these models mostly comes from non-
linearities of covariates rather than interaction effects. Indeed, unlike the Boston
housing application, GAM leads to similar performance to GAMLA, GAMA, ran-
dom forest and XGBoost, implying that the importance of interaction effects is
negligible for this dataset. To confirm this result, we display in Table 4 the p-
values of a pairwise bilateral test of the AUC, which tests whether the difference
between the AUCs of two competing models is significant. For the sake of clarity,
results related to the OLS, LASSO, A-LASSO and AM models are not displayed,
but we find that these models are rejected because their p-values are all inferior to
0.001. Regarding GAMLA, GAMA, GAMLA (A-LASSO), GAM, random forest,
XGBoost and PLTR, the results show that these models lead to similar AUCs
because none of the p-values are lower than the nominal level of 5%. This result is
also confirmed by the small number of interaction effects selected by the GAMLA,
GAMA and GAMLA (A-LASSO) models, i.e., fewer than 10 interactions.

As previously mentioned, the main advantage of GAM and GAM(L)A is their
interpretability. Figure 5 displays estimated non-linearities for GAMA associated
with a target size α � 0.05.28 Notable among the results, a quadratic effect can
be observed for the variable Active, a partial linear effect with a threshold around
3 for the variable Income, and a highly non-linear and particular effect for the
variable Share. Figure 6 also displays the marginal effect of the variable Active
obtained for GAMA with a target size α � 0.05. The solid curve represents the
marginal effect of Active when ignoring the retained interaction variable involving
Active. However, as GAMA selected one variable interacting with Active, i.e.,
Share, three additional curves are included in the figure. These ones represent the
marginal effect of Active when Share is set to its 2.5, 50.0 and 97.5% quantiles.29

The graph shows that the marginal effect is non-linear and decrease with the level
of Active, and that the interaction variable simply implies a change in the level of
marginal effects.

28Table T12 in Appendix A displays estimation results of non-parametric functions of GAMA
associated with a target size α � 0.05.

29The 2.5% quantile of variable Share is close to 0, reason why the corresponding curve dis-
playing the marginal effects is mixed up with the solid curve (i.e., when cj is set to 0).
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Figure 5: Non-parametric functions estimated for GAMA associated with a target
size α � 0.05 : credit card dataset
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5 Conclusion
In the wake of the growing use of machine learning (ML) algorithms in economics,
interpretability has returned to the heart of the literature. Despite their high
predictive performance, some ML algorithms like random forest and XGBoost
are black boxes, which leads to uninterpretable models. The opacity of these
algorithms has raised concerns from practitioners and regulators (Bracke et al.,
2019; ACPR, 2020; EBA, 2020; EC, 2020) and limits their use in industry. Two
approaches are currently investigated in the literature to redirect the focus to the
interpretability of models. On the one hand, a first strand of the literature proposes
model-agnostic approaches to improve the interpretability of black-box models. On
the other hand, a second strand instead designs inherently interpretable models.
While the first group of contributions has received considerably more attention
in the literature, these approaches can potentially mislead users in high-stakes
decisions (Rudin, 2019).

Against this background, we propose in this paper to rely on partial linear mod-
els that are inherently interpretable. Specifically, this article introduces GAM-lasso
(GAMLA) and GAM-autometrics (GAMA) models, which combine parametric
and non-parametric functions to accurately capture linearities and non-linearities
prevailing between dependent and explanatory variables, and a variable selection
procedure to control for overfitting issues.

We propose a two-step procedure that relies on the double residual method of
Robinson (1988). Monte Carlo simulation experiments show that GAMLA and
GAMA can compete with benchmark ML algorithms in terms of predictive per-
formance. Moreover, the results highlight the importance of the double residual
approach as part of GAMLA and GAMA. We also recommend using GAMA be-
cause, unlike GAMLA, it allows the researcher to control the gauge level while
leading to satisfying potency values.

In the empirical applications, we illustrate the predictive performance and in-
terpretability of GAMLA and GAMA for a regression and a classification problem.
Specifically, we compare GAMLA and GAMA to several other benchmark models
in the literature. The results show that GAMLA and GAMA deliver significantly
better forecasts than parametric models augmented by quadratic, cubic and in-
teraction effects, even when lasso and autometrics are used to select the relevant
models in order to account for over-fitting issues. Moreover, the results also sug-
gest that the performance of our new models is not significantly different from that
of random forest and XGBoost. We also illustrate the interpretability of GAMLA
and GAMA and show that the variable selection leads to parsimonious models
while graphical representations of smooth functions and marginal effects allow a
simple understanding of the relationships identified by the models.

Finally, we show in this paper that it is possible to design inherently inter-
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pretable models capable of competing with sophisticated ML algorithms like ran-
dom forest and XGBoost in terms of predictive performance, and, as Rudin (2019),
we advocate for more work in this direction.

References
ACPR (2020). Governance of artificial intelligence in finance. Discussion papers

publication, November, 2020.

Angrist, J. D. and Pischke, J.-S. (2008). Mostly harmless econometrics. Princeton
university press.

Apley, D. W. and Zhu, J. (2020). Visualizing the effects of predictor variables in
black box supervised learning models. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 82(4):1059–1086.

Baesens, B., Gestel, T. V., Viaene, S., Stepanova, M., Suykens, J., and Van-
thienen, J. (2003). Benchmarking state-of-the-art classification algorithms for
credit scoring. Journal of the Operational Research Society, 54:627–635.

Barocas, S., Hardt, M., and Narayanan, A. (2019). Fairness and machine learning.
fairmlbook.org, 2019.

Belsley, D. A., Kuh, E., and Welsch, R. E. (1980). Regression diagnostics. Identi-
fying influential data and sources of collinearity. John Wiley.

Boucher, V., Bramoullé, Y., et al. (2020). Binary Outcomes and Linear Interac-
tions. Aix-Marseille School of Economics.

Bracke, P., Datta, A., Jung, C., and Sen, S. (2019). Machine learning explainabil-
ity in finance: an application to default risk analysis. Bank of England, Staff
Working Paper No.816.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification
and regression trees. Routledge.

Candelon, B., Dumitrescu, E.-I., and Hurlin, C. (2012). How to evaluate an early-
warning system: Toward a unified statistical framework for assessing financial
crises forecasting methods. IMF Economic Review, 60(1):75–113.

Castle, J. L., Clements, M. P., and Hendry, D. F. (2013). Forecasting by factors,
by variables, by both or neither? Journal of Econometrics, 177(2):305–319.

34



Castle, J. L., Doornik, J. A., and Hendry, D. F. (2011). Evaluating automatic
model selection. Journal of Time Series Econometrics, 3(1).

Castle, J. L., Doornik, J. A., and Hendry, D. F. (2021). Robust discovery of
regression models. Econometrics and Statistics.

Castle, J. L. and Hendry, D. F. (2010). A low-dimension portmanteau test for
non-linearity. Journal of Econometrics, 158(2):231–245.

Charpentier, A., Flachaire, E., and Ly, A. (2018). Econometrics and machine
learning. Economie et Statistique, 505(1):147–169.

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., et al. (2015).
Xgboost: extreme gradient boosting. R package version 0.4-2.

Chouldechova, A. and Hastie, T. (2015). Generalized additive model selection.
preprint arXiv:1506.03850.

Desai, V. S., Crook, J. N., and Overstreet Jr, G. A. (1996). A comparison of neural
networks and linear scoring models in the credit union environment. European
Journal of Operational Research, 95(1):24–37.

Doornik, J. A. (2009). Autometrics. in J.L Castle and N. Shepards (Eds.). The
Methodology and Practice of Econometrics: Festschrift in Honour of David F.
Hendry. 88–121.

Doornik, J. A. and Hansen, H. (2008). An omnibus test for univariate and multi-
variate normality. Oxford bulletin of economics and statistics, 70:927–939.

Doshi-Velez, F. and Kim, B. (2017). Towards a rigorous science of interpretable
machine learning. preprint arXiv:1702.08608.

Dumitrescu, E., Hue, S., Hurlin, C., and Tokpavi, S. (2022). Machine learning for
credit scoring: Improving logistic regression with non-linear decision-tree effects.
European Journal of Operational Research, 297(3):1178–1192.

EBA (2020). Report on big data and advanced analytics. European Banking
Authority, January, 2020.

EC (2020). White paper on artificial intelligence: A european approach to excel-
lence and trust. European Commission, February, 2020.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates
of the variance of united kingdom inflation. Econometrica, 50(4). 987–1007.

35



Epprecht, C., Guegan, D., Veiga, Á., and Correa da Rosa, J. (2021). Variable selec-
tion and forecasting via automated methods for linear models: Lasso/adalasso
and autometrics. Communications in Statistics-Simulation and Computation,
50(1):103–122.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likeli-
hood and its oracle properties. Journal of the American statistical Association,
96(456):1348–1360.

Finlay, S. (2011). Multiple classifier architectures and their application to credit
risk assessment. European Journal of Operational Research, 210(2):368–378.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting
machine. The Annals of Statistics, 29(5):1189–1232.

Frisch, R. and Waugh, F. V. (1933). Partial time regressions as compared with
individual trends. Econometrica, 1(4). 387–401.

Ghosal, I. and Kormaksson, M. (2019). The plsmselect package. https://cran.r-
project.org/web/packages/plsmselect/vignettes/plsmselect.html.

Godfrey, L. G. (1978). Testing for higher order serial correlation in regression
equations when the regressors include lagged dependent variables. Econometrica,
46(6). 1303–1310.

Greene, W. H. (2003). Econometric analysis. Pearson Education India.

Grennepois, N., Alvirescu, M., and Bombail, M. (2018). Using random forest for
credit risk models. Deloitte Risk Advisory, September.

Gunnarsson, B. R., Vanden Broucke, S., Baesens, B., Óskarsdóttir, M., and
Lemahieu, W. (2021). Deep learning for credit scoring: Do or don’t? Euro-
pean Journal of Operational Research, 295(1):292–305.

Hansen, P. R., Lunde, A., and Nason, J. M. (2011). The model confidence set.
Econometrica, 79(2):453–497.

Harrison Jr, D. and Rubinfeld, D. L. (1978). Hedonic housing prices and the
demand for clean air. Journal of environmental economics and management,
5:81–102.

Hastie, T. J. and Tibshirani, R. J. (2017). Generalized additive models. Routledge.

Hendry, D. F. (2000). Econometrics: alchemy or science?: essays in econometric
methodology. Oxford University Press.

36



Hendry, D. F. and Doornik, J. A. (2014). Empirical model discovery and theory
evaluation: automatic selection methods in econometrics. MIT Press.

Hendry, D. F. and Johansen, S. (2011). The properties of model selection when
retaining theory variables. University of Copenhagen Discussion Paper.

Henley, W. and Hand, D. (1996). A k-nearest-neighbour classifier for assessing
consumer credit risk. The Statistician, 45(1):77–95.

Hurlin, C. and Pérignon, C. (2019). Machine learning et nouvelles sources de
données pour le scoring de crédit. Revue d’économie financière, (3):21–50.

Hurlin, C., Pérignon, C., and Saurin, S. (2021). The fairness of credit scoring
models. Available at SSRN 3785882.

Johansen, S. and Nielsen, B. (2016). Asymptotic theory of outlier detection algo-
rithms for linear time series regression models. Scandinavian Journal of Statis-
tics, 43(2):321–348.

Kozodoi, N., Jacob, J., and Lessmann, S. (2022). Fairness in credit scoring: Assess-
ment, implementation and profit implications. European Journal of Operational
Research, 297(3):1083–1094.

Lessmann, S., Baesens, B., Seow, H.-V., and Thomas, L. C. (2015). Benchmark-
ing state-of-the-art classification algorithms for credit scoring: An update of
research. European Journal of Operational Research, 247:124–136.

Li, Q. and Racine, J. S. (2007). Nonparametric econometrics: theory and practice.
Princeton University Press.

Lovell, M. C. (1963). Seasonal adjustment of economic time series and multiple re-
gression analysis. Journal of the American Statistical Association, 58(304):993–
1010.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model
predictions. In Proceedings of the 31st international conference on neural infor-
mation processing systems. 4768–4777.

Makowski, P. (1985). Credit scoring branches out. Credit World, 75(1):30–37.

Michelucci, U. and Venturini, F. (2021). Estimating neural network’s perfor-
mance with bootstrap: A tutorial. Machine Learning and Knowledge Extraction,
3(2):357–373.

Molnar, C. (2019). Interpretable machine learning: A guide for making black box
models explainable. published online.

37



Molnar, C., Casalicchio, G., and Bischl, B. (2020). Interpretable machine learning–
a brief history, state-of-the-art and challenges. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer. 417–431.

Paleologo, G., Elisseeff, A., and Antonini, G. (2010). Subagging for credit scoring
models. European Journal of Operational Research, 201(2):490–499.

Ramsey, J. B. (1969). Tests for specification errors in classical linear least-squares
regression analysis. Journal of the Royal Statistical Society: Series B (Method-
ological), 31(2):350–371.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). " Why should I trust you?"
explaining the predictions of any classifier. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining.
1135–1144.

Robinson, P. M. (1988). Root-n-consistent semiparametric regression. Economet-
rica:, 56(4). 931–954.

Rudin, C. (2019). Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nature Machine Intelli-
gence, 1(5):206–215.

Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., and Zhong, C. (2021).
Interpretable machine learning: Fundamental principles and 10 grand challenges.
arXiv preprint arXiv:2103.11251.

Rudin, C. and Radin, J. (2019). Why are we using black box models in AI when
we don’t need to? A lesson from an explainable AI competition. Harvard Data
Science Review, 1(2):1–9.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Methodological), 58(1):267–288.

Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of Economic
Perspectives, 28(2):3–28.

White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and
a direct test for heteroskedasticity. Econometrica, 48(4). 817–838.

Wooldridge, J. M. (2015). Introductory econometrics: A modern approach. Cen-
gage learning.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the
American Statistical Association, 101(476):1418–1429.

38



A Additional Figures and Tables
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Figure F7: Variable importance of Random Forest and XGBoost algorithms
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Table T5: Comparison of potency, gauge and MSE under non-linear effects and
uncorrelated covariates

Model Conditional mean Tuning parameter Potency Gauge MSE

OLS pX1, X2, X3, Iqβ 1.154

LASSO pX1, X2, X3, Iqβ λ̂min 1 0.369 1.104

pX1, X2, X3, Iqβ λ̂1se 0.998 0.040 1.145

A-LASSO pX1, X2, X3, Iqβ λ̂min 0.998 0.039 1.102

pX1, X2, X3, Iqβ λ̂1se 0.983 0.005 1.130

AM pX1, X2, X3, Iqβ α � 0.05 1 0.050 1.103

pX1, X2, X3, Iqβ α � 0.01 1 0.011 1.095

GAMLA* Iγ �
°p
j�1 gj pXjq λ̂min 1 0.252 1.091

Iγ �
°p
j�1 gj pXjq λ̂1se 0.990 0.007 1.062

GAMLA* (A-LASSO) Iγ �
°p
j�1 gj pXjq λ̂min 0.990 0.007 1.062

Iγ �
°p
j�1 gj pXjq λ̂1se 0.911 0.000 1.075

GAMA* Iγ �
°p
j�1 gj pXjq α � 0.05 1 0.053 1.072

Iγ �
°p
j�1 gj pXjq α � 0.01 1 0.010 1.061

GAMLA Iγ �
°p
j�1 gj pXjq λ̂min 1 0.273 1.093

Iγ �
°p
j�1 gj pXjq λ̂1se 0.992 0.008 1.062

GAMLA (A-LASSO) Iγ �
°p
j�1 gj pXjq λ̂min 0.991 0.007 1.062

Iγ �
°p
j�1 gj pXjq λ̂1se 0.923 0.000 1.073

GAMA Iγ �
°p
j�1 gj pXjq α � 0.05 1 0.057 1.073

Iγ �
°p
j�1 gj pXjq α � 0.01 1 0.013 1.062

GAMSEL fGs pXq λ̂min 1 0.473 1.107

fGs pXq λ̂1se 1 0.063 1.140

Random Forest fRf pXq 1.200

XGBoost fGb pXq 1.287

Note: See Table 1.
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Table T6: Comparison of potency, gauge and MSE under linear effects and corre-
lated covariates

Model Conditional mean Tuning parameter Potency Gauge MSE

OLS pX1, X2, X3, Iqβ 1.093

LASSO pX1, X2, X3, Iqβ λ̂min 1 0.641 1.061

pX1, X2, X3, Iqβ λ̂1se 0.991 0.462 1.106

A-LASSO pX1, X2, X3, Iqβ λ̂min 0.988 0.198 1.035

pX1, X2, X3, Iqβ λ̂1se 0.935 0.040 1.066

AM pX1, X2, X3, Iqβ α � 0.05 1 0.047 1.028

pX1, X2, X3, Iqβ α � 0.01 1 0.010 1.017

GAMLA* Iγ �
°p
j�1 gj pXjq λ̂min 1 0.753 1.081

Iγ �
°p
j�1 gj pXjq λ̂1se 0.950 0.371 1.076

GAMLA* (A-LASSO) Iγ �
°p
j�1 gj pXjq λ̂min 0.974 0.344 1.071

Iγ �
°p
j�1 gj pXjq λ̂1se 0.864 0.159 1.083

GAMA* Iγ �
°p
j�1 gj pXjq α � 0.05 0.996 0.212 1.059

Iγ �
°p
j�1 gj pXjq α � 0.01 0.969 0.153 1.060

GAMLA Iγ �
°p
j�1 gj pXjq λ̂min 1 0.263 1.070

Iγ �
°p
j�1 gj pXjq λ̂1se 0.995 0.008 1.041

GAMLA (A-LASSO) Iγ �
°p
j�1 gj pXjq λ̂min 0.995 0.008 1.041

Iγ �
°p
j�1 gj pXjq λ̂1se 0.928 0.000 1.051

GAMA Iγ �
°p
j�1 gj pXjq α � 0.05 1 0.054 1.051

Iγ �
°p
j�1 gj pXjq α � 0.01 1 0.012 1.042

GAMSEL fGs pXq λ̂min 1 0.711 1.076

fGs pXq λ̂1se 0.986 0.517 1.112

Random Forest fRf pXq 1.419

XGBoost fGb pXq 1.217

Note: See Table 1.
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Table T7: Comparison of potency, gauge and MSE under linear effects and uncor-
related covariates

Model Conditional mean Tuning parameter Potency Gauge MSE

OLS pX1, X2, X3, Iqβ 1.089

LASSO pX1, X2, X3, Iqβ λ̂min 1 0.298 1.034

pX1, X2, X3, Iqβ λ̂1se 1 0.032 1.073

A-LASSO pX1, X2, X3, Iqβ λ̂min 1 0.029 1.020

pX1, X2, X3, Iqβ λ̂1se 0.991 0.001 1.053

AM pX1, X2, X3, Iqβ α � 0.05 1 0.049 1.030

pX1, X2, X3, Iqβ α � 0.01 1 0.011 1.017

GAMLA* Iγ �
°p
j�1 gj pXjq λ̂min 1 0.239 1.061

Iγ �
°p
j�1 gj pXjq λ̂1se 0.994 0.006 1.034

GAMLA* (A-LASSO) Iγ �
°p
j�1 gj pXjq λ̂min 0.994 0.007 1.034

Iγ �
°p
j�1 gj pXjq λ̂1se 0.924 0.000 1.045

GAMA* Iγ �
°p
j�1 gj pXjq α � 0.05 1 0.050 1.043

Iγ �
°p
j�1 gj pXjq α � 0.01 1 0.011 1.034

GAMLA Iγ �
°p
j�1 gj pXjq λ̂min 1 0.258 1.062

Iγ �
°p
j�1 gj pXjq λ̂1se 0.992 0.008 1.035

GAMLA (A-LASSO) Iγ �
°p
j�1 gj pXjq λ̂min 0.993 0.007 1.034

Iγ �
°p
j�1 gj pXjq λ̂1se 0.926 0.000 1.045

GAMA Iγ �
°p
j�1 gj pXjq α � 0.05 1 0.053 1.044

Iγ �
°p
j�1 gj pXjq α � 0.01 1 0.012 1.035

GAMSEL fGs pXq λ̂min 1 0.361 1.030

fGs pXq λ̂1se 1 0.045 1.060

Random Forest fRf pXq 1.174

XGBoost fGb pXq 1.212

Note: See Table 1.
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Table T8: Description of the variables in the Boston dataset

Variable Description
Medv Median value of owner-occupied homes in $1000s
Crim Per capita crime rate by town
Zn Proportion of residential land zoned for lots over 25,000 square feet
Indus Proportion of non-retail business acres per town
Chas Charles River dummy variable (= 1 if tract bounds river, 0 otherwise)
Nox Nitric oxides concentration (parts per 10 million)
Rm Average number of rooms per dwelling
Age Proportion of owner-occupied units built prior to 1940
Dis Weighted distances to five Boston employment centres
Rad Index of accessibility to radial highways
Tax Full-value property-tax rate per $10,000
Ptratio Pupil-teacher ratio by town
Black 1000pBk � 0.63q2, where Bk is the proportion of black persons by town
Lstat % Lower status of the population
Note: See Harrison Jr and Rubinfeld (1978) for more details on the dataset.

Table T9: Description of the variables in the credit card dataset

Variable Description
Card Dummy variable: 1 if application for credit card accepted, 0 if not
Reports Number of major derogatory reports
Age Age in years plus twelfths of a year
Income Yearly income (in USD 10,000)
Share Ratio of monthly credit card expenditure to yearly income
Expenditure Average monthly credit card expenditure
Owner Dummy variable: 1 if owns their home, 0 if rent
Selfemp Dummy variable: 1 if self employed, 0 if not
Dependents Number of dependents
Months Months living at current address
Majorcards Number of major credit cards held (0 or 1)
Active Number of active credit accounts
Note: See Greene (2003) for more details on the dataset.
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Table T10: Estimation results of non-parametric functions of GAMA associated
with a target size α � 0.05: Boston housing dataset

Variable Edf Df F-stat P-value
Crim 4.488 5 6.870   0.001
Zn 0.000 5 0.000 0.681
Indus 1.840 5 2.308 0.001
Nox 0.235 5 0.067 0.200
Rm 3.997 5 55.557   0.001
Age 4.164 5 3.271 0.002
Dis 4.974 5 26.247   0.001
Tax 4.302 5 4.201   0.001
Ptratio 0.000 5 0.000 0.458
Black 4.705 5 11.481   0.001
Lstat 4.551 5 15.263   0.001

Note: This table displays estimation results
of non-parametric functions of GAMA asso-
ciated with a target size α � 0.05 for the
Boston housing dataset.

B Penalized Logistic Tree Regression
Similarly to GAM(L)A, the Penalized Logistic Tree Regression (PLTR) model
of Dumitrescu et al. (2022) also aims at improving the predictive performance
of traditional linear models by automatically capturing non-linearities. However,
the method used to capture non-linear effects differs from that of GAM(L)A. To
improve the predictive performance of the logistic regression in a classification
problem’s context, the PLTR is based on a two-step methodology relying on short-
depth decision trees and a penalized regression.

The objective of the first step is to identify threshold effects from decision trees
with one and two splits. Firstly, a decision tree with one split is build for each ex-
planatory variables leading to two leafs, independently of their level of information,
which capture univariate threshold effects. As the two leafs are multicolinear, only
the first one, denoted as Vj1 , is retained to avoid multicollinearity issues. Secondly,
a decision tree with two splits is build for each covariate couple leading to three
binary variables. While the first binary variable accounts for univariate threshold
effects, the second and third leafs capture bivariate threshold effects. Only one
of the two latter leafs, denoted as Vj,k2 , is retained so as to account for two-splits
threshold effects and avoid multicollinearity issues.

In a second step, these univariate and bivariate threshold effects are plugged
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Table T11: Number of variables selected, MSE and MCS: Boston housing dataset
with a dummy variable for Boston and its suburbs

# Model Conditional Tuning Number of interactions MSE MCS P-value

mean parameter

r1s GAMLA Iγ �
°p

j�1 gj pXjq λ̂min 64 10.247 0.936

GAMLA Iγ �
°p

j�1 gj pXjq λ̂1se 25 9.700 1.000

r2s GAMA Iγ �
°p

j�1 gj pXjq α � 0.05 26 9.928 0.984

GAMA Iγ �
°p

j�1 gj pXjq α � 0.01 17 10.169 0.936

r3s GAMLA (A-LASSO) Iγ �
°p

j�1 gj pXjq λ̂min 18 10.134 0.936

GAMLA (A-LASSO) Iγ �
°p

j�1 gj pXjq λ̂1se 9 11.004 0.593

r4s OLS Xβ 23.984   0.001

r5s OLS pX1, X2, X3qβ 16.030 0.006

r6s OLS pX1, X2, X3, Iqβ 91 23.140 0.006

r7s GAM
°p

j�1 gj pXjq 13.106 0.008

r8s LASSO pX1, X2, X3, Iqβ λ̂min 78 14.056 0.101

LASSO pX1, X2, X3, Iqβ λ̂1se 37 16.234 0.006

r9s A-LASSO pX1, X2, X3, Iqβ λ̂min 14 22.242 0.006

A-LASSO pX1, X2, X3, Iqβ λ̂1se 10 26.087 0.004

r10s AM pX1, X2, X3, Iqβ α � 0.05 30 16.631 0.007

AM pX1, X2, X3, Iqβ α � 0.01 32 15.599 0.006

r11s Random Forest fRf pXq 10.075 0.984

r12s XGBoost fGb pXq 9.726 0.985

r13s PLTR Xβ � V1ξ � V2ζ 13.062 0.024

Note: The conditional mean of the competing models/estimation methods is provided in the second col-
umn (labeled ‘Conditional mean’). The results displayed in column MCS correspond to the mean square
(forecast) error over the 10-folds while those in the last column are the p-values of the MCS test based on
10,000 bootstrap samples.
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Table T12: Estimation results of non-parametric functions of GAMA associated
with the α � 0.05 target size: Credit card dataset

Variable Edf Df F-stat P-value
Reports 3.222 5 35.754   0.001
Age 2.715 5 1.595 0.023
Income 3.334 5 9.451   0.001
Share 5.000 5 84.070   0.001
Expenditure 4.770 5 5.821   0.001
Dependents 1.120 5 2.425   0.001
Months 2.070 5 0.990 0.067
Active 3.680 5 10.915   0.001

Note: This table displays estimation results of
non-parametric functions of GAMA associated
with a target size α � 0.05 for the credit card
dataset.

in a logistic regression, such as

Pr pyi � 1|X,Vi,1,Vi,2; Θq �
1

1 � exp r�η pXi,Vi,1,Vi,2; Θqs
,

where Vi,1 �
�
V1
i,1, . . . ,V

p
i,1

�
, Vi,2 �

�
V1,2
i,2 , . . . ,V

p�1,p
i,2

�
,

η pXi,Vi,1,Vi,2; Θq � Xiβ � Vi,1ξ � Vi,2ζ, (27)

where Θ � pβ0, β1, . . . , βp, ξ1, . . . , ξp, ζ1,2, . . . , ζp�1,pq
1 is the set of V parameters to

estimate. The estimate Θ̂ is obtained by maximizing the following log-likelihood

L py,X,V1,V2; Θq �
1

n

Ņ

i�1

tyi log rF pη pXi,Vi,1,Vi,2; Θqqs

� p1 � yiq log rF pη pXi,Vi,1,Vi,2; Θqqsu ,

where F pη pXi,Vi,1,Vi,2; Θqq is the logistic cumulative density function. However,
as the number of parameters to estimate can be relatively high, this approach is
subject to overfitting issues. To solve this issue, the authors rely on the adaptive
lasso estimator (Zou, 2006), defined as

Θ̂alasso pλq � arg min�L py,X,V1,V2; Θq � λ
V̧

v

wv|θv|,

where wv � |θ̂
p0q
v |�ν , for v � 1, . . . , V , θ̂p0qv is a consistent estimate of the v-th

element of Θ and ν a positive constant. In their application, the authors rely on a
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logistic-ridge regression to obtain the V parameters θ̂p0qv , set ν to 1, and λ to λ̂min
via 10-fold cross-validation.
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