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Extending Stata's cluster capabilities

I Stata's cluster/clustermat suite is a stable and

extensive, but some gaps

I I propose a number of extensions
I Comparison of cluster solutions: ari and permtab
I Visualisations: silhouette plots and distance-matrix

heatmaps
I Cluster stopping rule utilities for distance matrices
I Clustering based on medoids: PAM, fuzzy clustering

Slides: http://teaching.sociology.ul.ie/sugparis
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Comparing cluster solutions: "unlabelled"

I Problem: comparing clusterings of the same data using

di�erent parameters or algorithms

I Cluster solutions are "unlabelled classi�cations"
I Identity is only given by the cases they contain

I We compare solution sets in terms of the extent to

which the partitioning of cases is similar

I Two implementations: ARI and PERMTAB

3



Cluster Analysis
Utilities for Stata

Brendan Halpin,
Dept of
Sociology,

University of
Limerick

Extending Stata
Clustering

Comparing
solutions: ari and
permtab

Visualisations

Silhouette

Distance matrix
heatmap

Cluster stopping
rules

Calinski

Duda-Hart

Partitioning
around Medoids

Extracting
medoids

PAM for distance
matrices

PAM Step by Step

clpam

Fuzzy clustering

Accessing

References

Adjusted Rand Index

I The adjusted Rand Index reports agreement based on all

possible pairs of cases (Vinh et al., 2009)

I The index is higher where
I if both elements of a pair are in the same cluster in one

solution, they are also in the same cluster in the other
solution

I if both elements of a pair are in di�erent clusters in one
solution, they are also in di�erent cluster in the other
solution

I A perfect match yields a value of 1.0.

I Values below zero are possible but rare
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Wards linkage vs Kmedians on Iris data

use iris

gen id=_n

cluster wards Sepal_Length Sepal_Width ///

Petal_Length Petal_Width

cluster gen g3 = groups(3)

cluster kmedians Sepal_Length Sepal_Width ///

Petal_Length Petal_Width, k(3) name(k3)

tab g3 k3

ari g3 k3
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Stata Output

. tab g3 k3

k3
g3 1 2 3 Total

1 0 0 50 50
2 61 3 0 64
3 0 36 0 36

Total 61 39 50 150

. ari g3 k3
Adjusted Rand Index: 0.9422
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Permuting tables

I permtab has the same motivation but a di�erent

strategy

I It tabulates the two cluster solutions, and permutes the

column variable to maximise Cohen's Kappa (Reilly

et al., 2005)

I κmax will generally behave like ARI

I The advantage of permtab is that you can view the best

permutation, and save it as a new cluster variable
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permtab output

. permtab g3 k3, gen(k3a)
Calculating permutations:
Kappa max: 0.9694
Permutation vector:

1 2 3

1 3 1 2

Permuted column variable generated from k3: k3a

. tab g3 k3a

k3a
g3 1 2 3 Total

1 50 0 0 50
2 0 61 3 64
3 0 0 36 36

Total 50 61 39 150
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permtab limits

I By default, permtab searches exhaustively through all

permutations

I Uses Mata's cvpermute permutation infrastructure

I For up to 8-10 clusters this is feasible, but time is O(n!)
I If 8 clusters take 0.5s, 16 will take 8 years

I A heuristic solution provides very good results: hillclimb
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Hill climb

Take the existing order

I Examine all pairwise swaps

I Implement the one with the biggest improvement in κ, if
any

I Iterate until no improvement is found

Generates good results as long as there is some common

pattern
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permtab hillclimb syntax

. permtab z10 m10, algo(hc)
Calculating permutations:
Kappa max: 0.5255
Permutation vector:

1 2 3 4 5 6 7 8 9 10

1 1 9 8 4 7 3 10 5 6 2
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Visualisations

Two visualisations are presented

I The silhouette plot

I The heatmap of the cluster-ordered distance matrix
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Silhouette plots

I The silhouette statistic (Rousseeuw, 1987) indexes how

well cases are located in clusters

hi =
bi − ai

max(ai , bi )
(1)

where ai is mean distance to members of the same cluster, bi
to the next nearest cluster

I Where clusters are properly distinct this will be closer to

1 than 0

I Cases can be "mis-assigned", being nearer the centre of

another cluster than their own: negative silhouette width
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Silhouette on Iris data

cluster wards Sepal_Length Sepal_Width ///

Petal_Length Petal_Width

cluster gen g3 = groups(3)

matrix dissim di = Sepal_Length Sepal_Width ///

Petal_Length Petal_Width, L2Squared

silhouette g3, dist(di) id(id) lwidth(0.8 0.8 0.8)

14



Cluster Analysis
Utilities for Stata

Brendan Halpin,
Dept of
Sociology,

University of
Limerick

Extending Stata
Clustering

Comparing
solutions: ari and
permtab

Visualisations

Silhouette

Distance matrix
heatmap

Cluster stopping
rules

Calinski

Duda-Hart

Partitioning
around Medoids

Extracting
medoids

PAM for distance
matrices

PAM Step by Step

clpam

Fuzzy clustering

Accessing

References

Silhouette plot
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IMS lifecourse data: some problematic clusters
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Visualising the distance matrix: DHM

I The distance matrix is at the heart of cluster analysis

I dhm allows us to visualise it as a heatmap

I Order is important: e.g., group by cluster solution, order

within by dendrogram order or silhouette width
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Towns in France: distance re monthly rainfall

http://math.agrocampus-ouest.fr/infoglueDeliverLive/digitalAssets/73503_pluie.csv
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Towns in France: distance re monthly rainfall
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IMS life-histories, dendrogram order
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IMS life-histories, silhouette order
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DHM syntax for previous 2 slides

I Distances are in matrix pwd; the grouping variable is g8

I g999 is a cluster group variable with a maximal number

of clusters

I sw is a variable containing the silhouette width

cluster generate g999 = groups(9999), ties(fewer)

silhouette g8, dist(pwd) id(id) gen(sw)

dhm, mat(pwd) by(g8) order(g999) levels(100) box

dhm, mat(pwd) by(g8) order(sw) levels(100) box
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Cluster stopping rules

I How do we know how many clusters?
I Theory?
I Inspection of the data?

I Two common indices: Cali«ksi-Harabasz and Duda-Hart

I Provided by Stata in cluster stop and cluster

stop, duda

I Do not work when clustering from distance matrices
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Cali«ski-Harabasz index

I The CH logic is ANOVA-like: how much better is SS

within clusters relative to overall SS (Cali«ski and

Harabasz, 1974; Milligan and Cooper, 1985)

I Internally Stata calculates this by running ANOVAs,

regressing each variable on the solution and cumulating

a pseudo-F:

pF =

∑
MSS/(g − 1)∑
RSS/(N − g)

(2)
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Equivalence

I However, there is an equivalence between squared

deviations from the mean and squared pairwise distances

SS =
N∑
i=1

(xi − x̄)2 =
1

N

N∑
i=1

N∑
j=i+1

(xi − xj)
2 (3)

I Thus we can also calculate the CH index from the

pairwise distances:

pF =
(SSt −

∑
SSg)/(g − 1)

(
∑

SSg)/(N − g)
(4)

I See Halpin (2016) for more detail
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cluster stop and calinski

cluster stop on

variables
. cluster wards janvierp-decembrep
cluster name: _clus_1

. cluster stop

Calinski/
Number of Harabasz
clusters pseudo-F

2 17.56
3 18.53
4 22.35
5 21.42
6 20.15
7 19.95
8 20.77
9 22.29
10 23.05
11 23.71
12 24.14
13 24.44
14 24.87
15 25.02

calinski on the distance

matrix
. matrix dissim dd = janvierp-decembrep, L2squared

. calinski, dist(dd) id(id)

Number of Calinski-Harabasz
clusters pseudo-F

2 17.56
3 18.53
4 22.35
5 21.42
6 20.15
7 19.95
8 20.77
9 22.29
10 23.05
11 23.71
12 24.14
13 24.44
14 24.87
15 25.02
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Advantages

I calinski obviously allows estimating the CH index

where the distances are avaiable but not the original

variables

I However, it also allows the calculation to be applied to

other distances than L2Squared

I See also discrepancy measure (Studer et al., 2011)

which applies similar reasoning to assessing partitions of

distance matrices
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Duda-Hart

I See also dudahart for the Duda-Hart index

I Similar calculation to CH, but focuses only on the

cluster to be split
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Extracting medoids

I Medoids are de�ned as the cases nearest the centres of

clusters

I Can be used as base for clustering strategies, e.g.

Partitioning around Medoids

I They can be used as group examplars

I They can be accessed when working from variables or
distance matrices

I getmedoids identi�es medoids from a group variable
and distance matrix

I getgroup assigns cases to their nearest medoid
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Medoids from Iris data

use iris, clear

gen id = _n

cluster wards Sepal_Length Sepal_Width ///

Petal_Length Petal_Width

cluster gen g3 = groups(3)

matrix dissim dd = Sepal_Length Sepal_Width ///

Petal_Length Petal_Width, L2Squared

getmedoids g3, dist(dd) id(id) gen(g3m)
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Iris Medoids
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getgroup

I See also getgroup: opposite direction

I Given a binary variable indicating medoids and a

distance matrix, returns a group membership variable

. getmedoids g4, dist(dd) id(id) gen(g4m)
Translating cluster membership variable g4 into medoids index variable g4m

. getgroup g4m, dist(dd) id(id) gen(newgroup)
Creating newgroup variable as groups nearer to medoids in g4m

. permtab g4 newgroup
Calculating permutations:
Kappa max: 1.0000
Permutation vector:

1 2 3 4

1 3 4 2 1
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Partitioning vs agglommerative clustering

I Numerous classes of clustering algorithm exist

I Agglomerative hierarchical methods such as Ward's are

popular

I But partitioning methods such as k-means, k-medians

and Partitioning Around Medoids are also popular (and

fast)

I Key idea:
I Start with Nk cluster centres (perhaps at random)
I Group cases around centres to form clusters
I Find true centre of new clusters, iterate until stability

I How centres are de�ned di�erentiates the algorithms
I k-means and k-medians uses cluster geometric centre
I PAM uses the medoid, i.e., case closest to centre
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Partition around medoids

I Stata provides k-means and k-medians for

partition-clustering from variables

I When using pairwise distances, Partitioning Around
Medoids (PAM) is possible:

I select random cases (n=NK) as seeds, medoids
I partition around medoids
I de�ne clusters wrt nearest medoid
I for each cluster �nd a better medoid candidate
I iterate until stable

I Described in Kaufman and Rousseeuw (2008)
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Simulated data: 4 bivariate normal clusters
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2: New groups from revised medoids from iter 1
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3: New groups from revised medoids from iter 2
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4: New groups from revised medoids from iter 3
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5: New groups from revised medoids from iter 5
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PAM

I Provided in clpam.ado

use iris, clear

gen id = _n

matrix dissim dd = Sepal_Length Sepal_Width ///

Petal_Length Petal_Width, L2Squared

clpam k3, dist(dd) id(id) medoids(3) many

tab Species k3
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clpam output

. clpam k3, dist(dd) id(id) medoids(3) many
Random starting medoids (Nk=3)
(data already sorted by id)
Trying multiple starting points

. tab Species k3

k3
Species 1 2 3 Total

setosa 50 0 0 50
versicolor 0 48 2 50
virginica 0 14 36 50

Total 50 62 38 150
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PAM options

I PAM results can depend strongly on the initial medoids

I Useful to initialise them, e.g., from a traditional cluster

analysis

I Option many selects the best result from 100 random

initialisations

I Option ga uses a genetic algorithm to search for a

global optimum
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Fuzzy clustering

I Fuzzy clustering allows objects to be members of

multiple clusters, with varying strengths of attachment

I This gives the clustering algorithm extra degrees of

freedom

I Can be more e�ective with noisy data
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FCMdd algorithm

I clfuzz implements the fuzzy C-medoids clustering

algorithm (FCMdd) (Bezdek, 1981; Krishnapuram et al.,

1999)

I Minimises the sum of weighted distances to each cluster

medoid, where the weight is based on the object's

attachment to the cluster

I Returns a variable holding the strongest cluster

membership and an NÖk matrix of object�cluster

attachment strengths

I Note this is an experimental implementation!
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Fuzzy clustering on simulated data
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Fuzzy Irises

. clfuzz f3, dist(dd) id(id) k(3)
Iter 1: 1.021e+02
Iter 2: 1.235e+02
Iter 3: 2.097e+02
Iter 4: 37.8513782
Iter 5: 33.4751293
Iter 6: 30.8313277
Iter 7: 30.5336924
Medoids history

1 2 3

1 77 97 139
2 65 75 79
3 79 98 99
4 24 92 98
5 8 64 128
6 8 64 148
7 8 79 148
8 8 79 148

. tab Species f3

f3
Species 1 2 3 Total

setosa 50 0 0 50
versicolor 0 45 5 50
virginica 0 9 41 50

Total 50 54 46 150
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Accessing slides and code

I Slides:

http://teaching.sociology.ul.ie/sugparis

I Code:
I ari & permtab are part of SADI:

I ssc describe sadi or

I net from http://teaching.sociology.ul.ie/sadi
I net describe sadi

I calinski, dudahart and discrepancy are on SSC
I silhouette is on SSC
I dhm, getmedoids, getgroup, clpam and clfuzz are

part of package CLUTILS
I net from

http://teaching.sociology.ul.ie/statacode
I net describe clutils

I Contact: brendan.halpin@ul.ie
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