Prediction in Multilevel Logistic Regression

Sophia Rabe-Hesketh

Graduate School of Education & Graduate Group in Biostatistics
University of California, Berkeley

Institute of Education, University of London

Joint work with Anders Skrondal

Fall North American Stata Users Group meeting San Francisco, November 2008

Outline

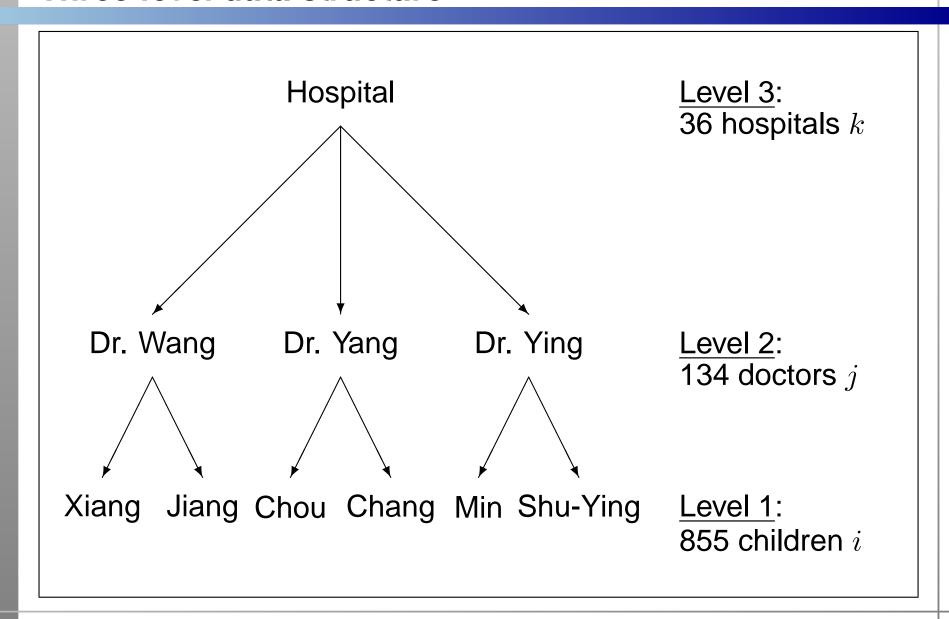
- Application: Abuse of antibiotics in China
- Three-level logistic regression model
- Prediction of random effects
 - Empirical Bayes (EB) prediction
 - Standard errors for EB prediction and approximate CI
- Prediction of response probabilities
 - Conditional response probabilities
 - Posterior mean response probabilities (different types)
 - Population-averaged response probabilities
- Concluding remarks

Abuse of antibiotics in China

- Acute respiratory tract infection (ARI) can lead to pneumonia and death if not properly treated
- Inappropriate frequent use of antibiotics was common in China in 1990's, leading to drug resistance
- In the 1990's the WHO introduced a program of case management for children under 5 with ARI in China
- Data collected on 855 children i (level 1) treated by 134 doctors j (level 2) in 36 hospitals k (level 3) in two counties (one of which was in the WHO program)
- Response variable: Whether antibiotics were prescribed when there were no clinical indications based on medical files

Reference: Min Yang (2001). *Multinomial Regression*. In Goldstein and Leyland (Eds). *Multilevel Modelling of Health Statistics*, pages 107-123.

Three-level data structure



Variables

- lacksquare Response variable y_{ijk}
 - Antibiotics prescribed without clinical indications (1: yes, 0: no)
- lacksquare 7 covariates \mathbf{x}_{ijk}
 - Patient level i
 - [Age] Age in years (0-4)
 - [Temp] Body temperature, centered at 36°C
 - [Paymed] Pay for medication (yes=1, no=0)
 - [Selfmed] Self medication (yes=1, no=0)
 - [Wrdiag] Failure to diagnose ARI early (yes=1, no=0)
 - Doctor level j
 - [DRed] Doctor's education
 (6 categories from self-taught to medical school)
 - Hospital level k
 - [WHO] Hospital in WHO program (yes=1, no=0)

Three-level random intercept logistic regression

Logistic regression with random intercepts for doctors and hospitals

$$logit[Pr(y_{ijk} = 1 | \mathbf{x}_{ijk}, \zeta_{jk}^{(2)}, \zeta_{k}^{(3)})] = \mathbf{x}'_{ijk} \boldsymbol{\beta} + \zeta_{jk}^{(2)} + \zeta_{k}^{(3)}$$

- Level 3: $\zeta_k^{(3)}|\mathbf{x}_{ijk}\sim N(0,\psi^{(3)})$ independent across hospitals $\psi^{(3)}$ is residual between-hospital variance
- Level 2: $\zeta_{jk}^{(2)}|\mathbf{x}_{ijk},\zeta_k^{(3)}\sim N(0,\psi^{(2)})$ independent across doctors, independent of $\zeta_k^{(3)}$ $\psi^{(2)}$ is residual between-doctor, within-hospital variance
- gllamm command:

gllamm abuse age temp Paymed Selfmed Wrdiag DRed WHO, //
i(doc hosp) link(logit) family(binom) adapt

Maximum likelihood estimates

	No covariates		F	Full model			
Parameter	Est	(SE)	Est	(SE)	(OR)		
β_0 [Cons]	0.87	(0.14)	1.52	(0.46)			
eta_1 [Age]			0.14	(0.07)	1.15		
eta_2 [Temp]			-0.72	(0.10)	0.49		
eta_3 [Paymed]			0.38	(0.30)	1.46		
eta_4 [Selfmed]			-0.65	(0.21)	0.52		
eta_5 [Wrdiag]			1.97	(0.20)	7.18		
eta_6 [DRed]			-0.20	(0.10)	0.82		
eta_7 [WHO]			-1.26	(0.32)	0.28		
$\psi^{(2)}$	0.20		0.14				
$\psi^{(3)}$	0.36		0.19				
Log-likelihood	-5	12.14	-415.76				
using gllamm with adaptive quadrature							

Distributions of random effects and responses

Vector of all random intercepts for hospital k

$$\boldsymbol{\zeta}_{k(3)} \equiv (\zeta_{1k}^{(2)}, \dots, \zeta_{J_k k}^{(2)}, \zeta_k^{(3)})'$$

Random effects distribution [Prior distribution]

$$\varphi(\zeta_{k(3)}), \quad \varphi(\zeta_{jk}^{(2)}), \quad \varphi(\zeta_{k}^{(3)}), \quad \text{all (multivariate) normal}$$

• Conditional response distribution of all responses $\mathbf{y}_{k(3)}$ for hospital k, given all covariates $\mathbf{X}_{k(3)}$ and all random effects $\boldsymbol{\zeta}_{k(3)}$ for hospital k [Likelihood]

$$f(\mathbf{y}_{k(3)}|\mathbf{X}_{k(3)},\boldsymbol{\zeta}_{k(3)}) = \prod_{\substack{\text{all docs } j \\ \text{in hosp } k \text{ of doc } j}} f(y_{ijk}|\mathbf{x}_{ijk},\boldsymbol{\zeta}_{jk}^{(2)},\boldsymbol{\zeta}_{k}^{(3)})$$

Posterior distribution

Use Bayes theorem to obtain posterior distribution of random effects given the data:

$$\omega(\boldsymbol{\zeta}_{k(3)}|\mathbf{y}_{k(3)}, \mathbf{X}_{k(3)}) = \frac{\varphi(\boldsymbol{\zeta}_{k(3)})f(\mathbf{y}_{k(3)}|\mathbf{X}_{k(3)}, \boldsymbol{\zeta}_{k(3)})}{\int \varphi(\boldsymbol{\zeta}_{k(3)})f(\mathbf{y}_{k(3)}|\mathbf{X}_{k(3)}, \boldsymbol{\zeta}_{k(3)})d\boldsymbol{\zeta}_{k(3)}}$$

$$\propto \varphi(\boldsymbol{\zeta}_{k}^{(3)}) \prod_{j} \varphi(\boldsymbol{\zeta}_{jk}^{(2)}) \prod_{i} f(y_{ijk}|\mathbf{x}_{ijk}, \boldsymbol{\zeta}_{jk}^{(2)}, \boldsymbol{\zeta}_{k}^{(3)})$$

ullet Denominator, marginal likelihood contribution for hospital k, simplifies

$$\int \varphi(\zeta_k^{(3)}) \prod_j \left[\int \varphi(\zeta_{jk}^{(2)}) \prod_i f(y_{ijk}|\mathbf{x}_{ijk}, \zeta_{jk}^{(2)}, \zeta_k^{(3)}) \,\mathrm{d}\zeta_{jk}^{(2)} \right] \,\mathrm{d}\zeta_k^{(3)}$$

Empirical Bayes prediction of random effects

Empirical Bayes (EB) prediction is mean of posterior distribution

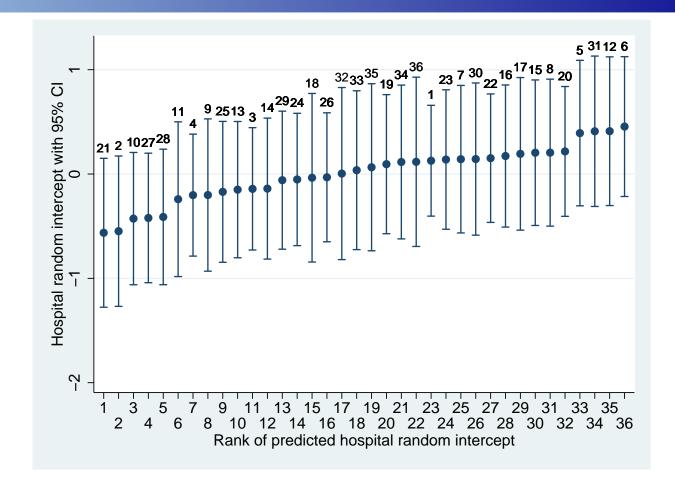
$$\widetilde{\boldsymbol{\zeta}}_{k(3)} = \int \boldsymbol{\zeta}_{k(3)} \ \omega(\boldsymbol{\zeta}_{k(3)}|\mathbf{y}_{k(3)}, \mathbf{X}_{k(3)}) \ d\boldsymbol{\zeta}_{k(3)}$$

- Standard error of EB is standard deviation of posterior distribution
- Using gllapred with the u option

gllapred eb, u

- ullet ebm1 contains $\widetilde{\zeta}_{jk}^{(2)}$
- ullet ebs1 contains $\operatorname{SE}(\widetilde{\zeta}_{jk}^{(2)})$
- ullet ebm2 contains $\widetilde{\zeta}_k^{(3)}$
- ullet ebs2 contains $\operatorname{SE}(\widetilde{\zeta}_k^{(3)})$
- For approximately normal posterior, use Wald-type interval, e.g., for hospital k, 95% CI is $\widetilde{\zeta}_k^{(3)} \pm 1.96$ SE $(\widetilde{\zeta}_k^{(3)})$

Confidence intervals for hospital random effects



- $m{\mathcal{G}}_k^{(3)} \pm 1.96~\mathrm{SE}(\widetilde{\zeta}_k^{(3)})$
- Identify the good and bad with caution

Predicted probability for patient of hypothetical doctor

Predicted **conditional probability** for hypothetical values \mathbf{x}^0 of the covariates and $\boldsymbol{\zeta}^0$ of the random intercepts

$$\widehat{\Pr}(y = 1 | \mathbf{x}^0, \boldsymbol{\zeta}^0) = \frac{\exp(\mathbf{x}^{0'} \widehat{\boldsymbol{\beta}} + \zeta^{(2)0} + \zeta^{(3)0})}{1 + \exp(\mathbf{x}^{0'} \widehat{\boldsymbol{\beta}} + \zeta^{(2)0} + \zeta^{(3)0})}$$

- If $\zeta^{(2)0} + \zeta^{(3)0} = 0$, median of distribution for $\zeta_{jk}^{(2)} + \zeta_k^{(3)}$, then predicted conditional probability is median probability
 - Analogously for other percentiles
- Using gllapred with mu and us() option:

```
replace age = 2 / * etc.: change covariates to \mathbf{x}^0 * / generate zeta1 = 0 generate zeta2 = 0 gllapred probc, mu us(zeta)
```

Predicted probability for new patient of existing doctor in existing hospital

Posterior mean probability for new patient of existing doctor j in hospital k

$$\widetilde{\mathsf{Pr}}_{jk}(y=1|\mathbf{x}^0) = \int \widehat{\mathsf{Pr}}(y=1|\mathbf{x}^0, \boldsymbol{\zeta}_{k(3)}) \, \omega(\boldsymbol{\zeta}_{k(3)}|\mathbf{y}_{k(3)}, \mathbf{X}_{k(3)}) \, \mathrm{d}\boldsymbol{\zeta}_{k(3)}$$

- Invent additional patient i^*jk with covariate values $\mathbf{x}_{i^*jk} = \mathbf{x}^0$
- Make sure that invented observation does not contribute to posterior $\omega(\zeta_{k(3)}|\mathbf{y}_{k(3)},\mathbf{X}_{k(3)})$

$$\omega(\zeta_{k(3)}|\mathbf{y}_{k(3)},\mathbf{X}_{k(3)}) \propto \varphi(\zeta_k^{(3)}) \prod_j \varphi(\zeta_{jk}^{(2)}) \prod_{i \neq i^*} f(y_{ijk}|\mathbf{x}_{ijk},\zeta_{jk}^{(2)},\zeta_k^{(3)})$$

ullet Cannot simply plug in EB prediction $\widetilde{\zeta}_{k(3)}$ for $\zeta_{k(3)}$

$$\widetilde{\mathsf{Pr}}_{jk}(y=1|\mathbf{x}^0) \neq \widehat{\mathsf{Pr}}(y=1|\mathbf{x}^0, \zeta_{k(3)} = \widetilde{\zeta}_{k(3)})$$

Prediction dataset: One new patient per doctor

Data (ignore gaps)			Data	Data with invented observations			
id	doc	hosp	abuse	id	doc	hosp	abuse
1	1	1	0	1	1	1	0
2	1	1	1	2	1	1	1
				•	1	1	•
3	2	2	0	3	2	2	0
				•	2	2	•
4	3	2	1	4	3	2	1
5	3	2	1	5	3	2	1
				•	3	2	•

- Response variable abuse must be missing for invented observations
- Use required value of doc
- Can invent several patients per doctor

Prediction dataset: One new patient per doctor (continued)

Data	with	invented	ohser	vations
Dala	VVILII	IIIVEIILEU	ODSEL	valions

				terms for posterior			
id	doc	hosp	abuse	hospital	doctor	patient	
1	1	1	0	$\varphi(\zeta_1^{(3)})$	$\varphi(\zeta_{11}^{(2)})$	$f(y_{111} \zeta_1^{(3)},\zeta_{11}^{(2)})$	
2	1	1	1			$f(y_{211} \zeta_1^{(3)},\zeta_{11}^{(2)})$	
•	1	1	•			1	
3	2	2	0	$\varphi(\zeta_2^{(3)})$	$\varphi(\zeta_{22}^{(2)})$	$f(y_{322} \zeta_2^{(3)},\zeta_{22}^{(2)})$	
•	2	2	•			1	
4	3	2	1		$\varphi(\zeta_{32}^{(2)})$	$f(y_{432} \zeta_2^{(3)},\zeta_{32}^{(2)})$	
5	3	2	1			$f(y_{532} \zeta_2^{(3)},\zeta_{32}^{(2)})$	
•	3	2	•			1	

Using gllapred with mu and fsample options:

gllapred probd, mu fsample

Predicted probability for new patient of new doctor in existing hospital

Posterior mean probability for new patient of new doctor in existing hospital k

$$\widetilde{\mathsf{Pr}}_k(y=1|\mathbf{x}^0) = \int \widehat{\mathsf{Pr}}(y=1|\mathbf{x}^0, \boldsymbol{\zeta}_{k(3)}^*) \, \omega(\boldsymbol{\zeta}_{k(3)}^*|\mathbf{y}_{k(3)}, \mathbf{X}_{k(3)}) \, \mathrm{d}\boldsymbol{\zeta}_{3(k)}^*$$

- Invent additional observation i^*j^*k with covariates in $\mathbf{x}_{i^*j^*k} = \mathbf{x}^0$
- $\boldsymbol{\zeta}_{k(3)}^* = (\zeta_{j^*k}^{(2)}, \zeta_{k(3)}')'$
- Make sure that invented doctor but not invented patient contribute to posterior $\omega(\zeta_{k(3)}^*|\mathbf{y}_{k(3)},\mathbf{X}_{k(3)})$

$$\omega(\boldsymbol{\zeta}_{k(3)}^*|\mathbf{y}_{k(3)},\mathbf{X}_{k(3)}) \propto \varphi(\boldsymbol{\zeta}_{j^*k}^{(2)}) \omega(\boldsymbol{\zeta}_{k(3)}|\mathbf{y}_{k(3)},\mathbf{X}_{k(3)})$$

Prediction dataset: One new doctor and patient per hospital

Data	Data (ignore gaps)			Data with invented observations			
id	doc	hosp	abuse	id	doc	hosp	abuse
1	1	1	0	1	1	1	0
2	1	1	1	2	1	1	1
				•	0	1	•
3	2	2	0	3	2	2	0
4	3	2	1	4	3	2	1
5	3	2	1	5	3	2	1
				•	0	2	•

- Response variable abuse must be missing for invented observations
- Use unique (for that hospital) value of doc
- Can invent several new docs which can all have the same value of doc

Prediction dataset: One new doctor and patient per hospital (continued)

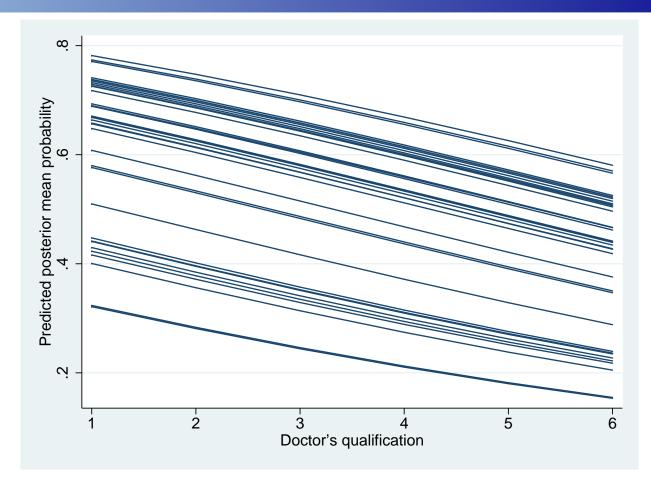
Data with invented observations

				terms for posterior			
id	doc	hosp	abuse	hospital	doctor	patient	
1	1	1	0	$\varphi(\zeta_1^{(3)})$	$\varphi(\zeta_{11}^{(2)})$	$f(y_{111} \zeta_1^{(3)},\zeta_{11}^{(2)})$	
2	1	1	1			$f(y_{211} \zeta_1^{(3)},\zeta_{11}^{(2)})$	
•	0	1	•		$\varphi(\zeta_{01}^{(2)})$	1	
3	2	2	0	$\varphi(\zeta_2^{(3)})$	$\varphi(\zeta_{22}^{(2)})$	$f(y_{322} \zeta_2^{(3)},\zeta_{22}^{(2)})$	
4	3	2	1		$\varphi(\zeta_{32}^{(2)})$	$f(y_{432} \zeta_2^{(3)},\zeta_{32}^{(2)})$	
5	3	2	1			$f(y_{532} \zeta_2^{(3)},\zeta_{32}^{(2)})$	
•	0	2	•		$\varphi(\zeta_{02}^{(2)})$	1	

Using gllapred with mu and fsample options:

gllapred probh, mu fsample

Example: Predicted probability for new patient of new doctor in existing hospital

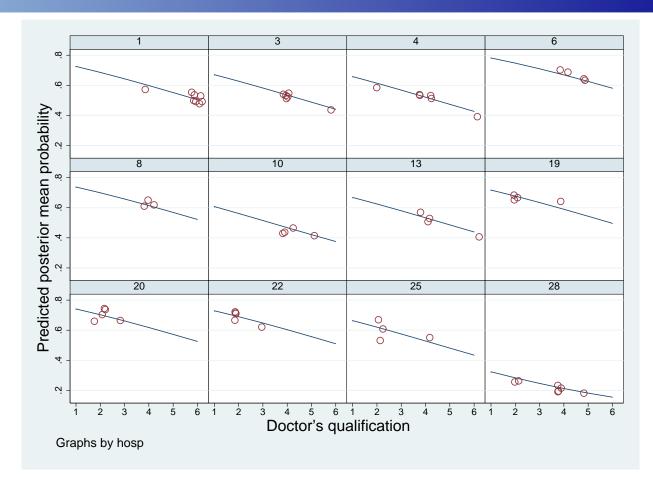


Each curve represents a hospital

For each hospital: 6 new doctors with [DRed] = 1, 2, 3, 4, 5, 6

For each doctor: 1 new patient with [Age] = 2, [Temp] = 1 (37°C), [Paymed] = 0, [Selfmed] = 0, [Wrdiag] = 0

Example: Predicted probability for new patient of existing doctor in existing hospital



- 12 of the hospitals, with curves as in previous slide
- Dots represent doctors with [DRed] as observed
 For each doctor: predicted probability for 1 new patient with [Age] = 2, [Temp] = 1, [Paymed] = 0, [Selfmed] = 0, [Wrdiag] = 0

Predicted probability for new patient of new doctor in new hospital

Population-averaged or marginal probability:

$$\overline{\Pr}(y=1|\mathbf{x}^0) = \int \widehat{\Pr}(y=1|\mathbf{x}^0, \zeta_{jk}^{(2)}, \zeta_k^{(3)}) \, \varphi(\zeta_{jk}^{(2)}), \varphi(\zeta_k^{(3)}) \, \mathrm{d}\zeta_{jk}^{(2)} \, \mathrm{d}\zeta_k^{(3)}$$

Cannot plug in means of random intercepts

$$\overline{\Pr}(y=1|\mathbf{x}^0) \neq \widehat{\Pr}(y=1|\mathbf{x}^0,\zeta_{jk}^{(2)}=0,\zeta_k^{(3)}=0)$$
 mean \neq median

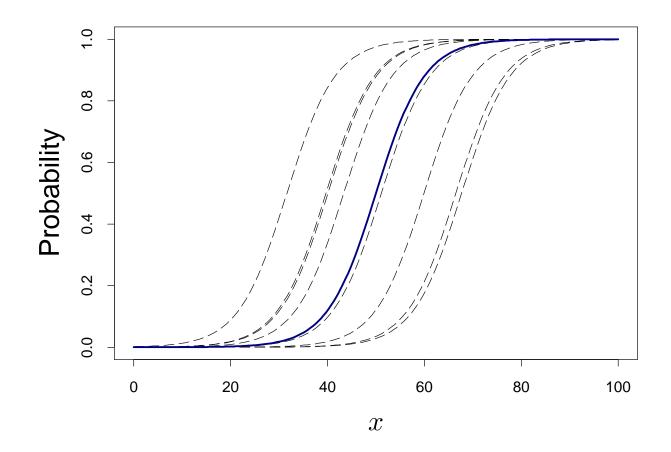
Using gllapred with the mu and marg options:

gllapred prob, mu marg fsample

Confidence interval, by sampling parameters from the estimated asymptotic sampling distribution of their estimates

ci_marg_mu lower upper, level(95) dots

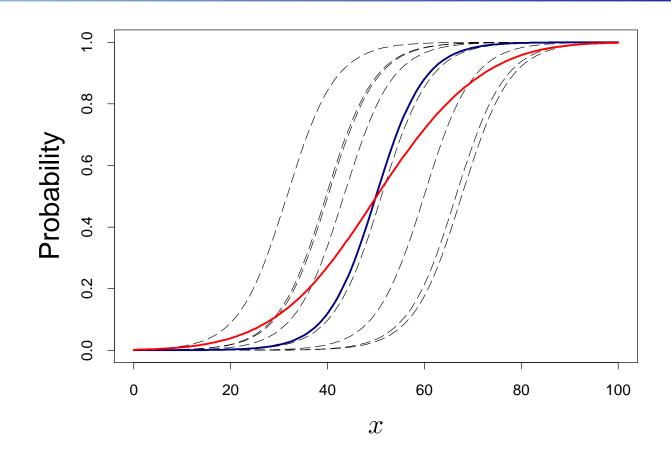
Illustration Cluster-specific: versus population averaged probability



---- cluster-specific (random sample)

----- median

Illustration Cluster-specific: versus population averaged probability

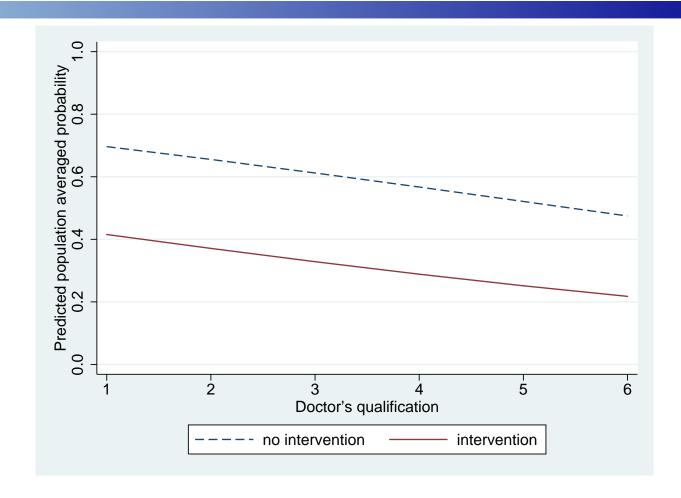


---- cluster-specific (random sample)

----- median

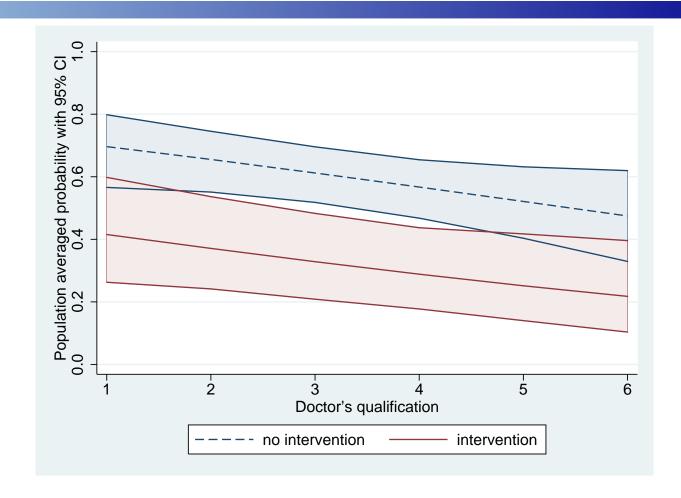
population averaged

Example: Predicted probability for new patient of new doctor in new hospital



Same patient covariates as before

Example: Predicted probability for new patient of new doctor in new hospital



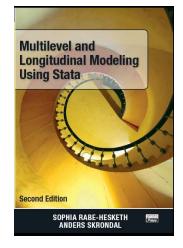
- Same patient covariates as before
- Confidence bands represent parameter uncertainty

Concluding remarks

Discussed:

- Empirical Bayes (EB) prediction of random effects and CI using gllapred, ignoring parameter uncertainty
- Prediction of different kinds of probabilities using gllapred after careful preparation of prediction dataset
- Simulation-based CI for predicted marginal probabilities using new command ci_marg_mu
- Methods work for any GLLAMM model, including random-coefficient models and models for ordinal, nominal or count data
- Assumed normal random effects distribution
 - EB predictions not robust to misspecification of distribution
 - Could use nonparametric maximum likelihood in gllamm, followed by same gllapred and ci_marg_mu commands

References



Rabe-Hesketh, S. and Skrondal, A. (2008). Multilevel and Longitudinal Modeling Using Stata (2nd Edition). College Station, TX: Stata Press.

- Skrondal, A. and Rabe-Hesketh, S. (2009). Prediction in multilevel generalized linear models. *Journal of the Royal Statistical Society, Series A*, in press.
- Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. *Journal of Econometrics* 128, 301-323.