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Abuse of antibiotics in China
I

® Acute respiratory tract infection (ARI) can lead to pneumonia and
death if not properly treated

® Inappropriate frequent use of antibiotics was common in China in
1990’s, leading to drug resistance

® Inthe 1990’s the WHO introduced a program of case management
for children under 5 with ARI in China

® Data collected on 855 children ¢ (level 1) treated by 134 doctors j
(level 2) in 36 hospitals k& (level 3) in two counties (one of which was
In the WHO program)

® Response variable: Whether antibiotics were prescribed when there
were no clinical indications based on medical files

Reference: Min Yang (2001). Multinomial Regression. In Goldstein and Leyland (Eds).
Multilevel Modelling of Health Statistics, pages 107-123.
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Three-level data structure

Hospital

Y

Dr. Wang Dr. Yang Dr. Ying

ASANA

Xiang Jiang Chou Chang Min Shu-Ying

Level 3:

36 hospitals &

Level 2:

134 doctors j

Level 1:

855 children 1
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Variables
e

® Response variable y;
# Antibiotics prescribed without clinical indications (1: yes, O: no)

® 7/ covariates x;

o Patient level ¢

& [Age] Age in years (0-4)
‘Temp] Body temperature, centered at 36°C
Paymed] Pay for medication (yes=1, no=0)
Selfmed] Self medication (yes=1, no=0)
& [Wrdiag] Failure to diagnose ARI early (yes=1, no=0)

L

# Doctor level j
& [DRed] Doctor’s education
(6 categories from self-taught to medical school)

» Hospital level &
& [WHO] Hospital in WHO program (yes=1, no=0)
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Three-level random intercept logistic regression
D

® Logistic regression with random intercepts for doctors and hospitals
logit|Pr(ysjx = 1|xij, Cﬁ)a C/E;S))] = X; kB + Cﬁ) + Cli3)

9 Level 3: C}iB)|Xijk ~ N(wa(?)))
Independent across hospitals
) is residual between-hospital variance

® Level 2: C;i”ijk,Clgz” ~ N(O,’(p@))
independent across doctors, independent of C,f)
»(?) is residual between-doctor, within-hospital variance

$» gl | ammcommand:

gl  amm abuse age tenp Payned Sel fnmed Wdiag DRed WHO, ////
| (doc hosp) link(logit) fam |l y(bi nom adapt

. —p6




Maximum likelihood estimates
e

No covariates Full model
Parameter Est (SE) Est (SE) (OR)
By [Cons] 0.87 (0.14) 1.52 (0.46)
51 [Age] 0.14 (0.07) 1.15
Bo [Temp] —0.72 (0.10) 0.49
B3 [Paymed] 0.38 (0.30) 1.46
54 [Selfmed] —0.65 (0.21) 0.52
G5 [Wrdiag] 1.97 (0.20) 7.18
Bs [DRed] —0.20 (0.10) 0.82
B7 [WHQ] ~1.26 (0.32) 0.28
) 0.20 0.14
W) 0.36 0.19
Log-likelihood —512.14 —415.76
using gl | anmwith adaptive quadrature
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Distributions of random effects and responses
e

® Vector of all random intercepts for hospital &
2 2 3
® Random effects distribution [Prior distribution]

©(Cr(3))s (C(Q)) o ,S”)), all (multivariate) normal

® Conditional response distribution of all responses yy, ) for hospital &,
given all covariates X3y and all random effects ¢y, for hospital &
[Likelihood]

3
(Yk:(3)|Xk(3)7Ck(3) H H f ywk‘xzjk Cj(k;) C( ))

all docs 5  all patients 2

in hosp k of doc j
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Posterior distribution
e

® Use Bayes theorem to obtain posterior distribution of random effects
given the data:

SO(Ck(3))f(Yk(3) |Xk:(3)> Ck(S))
J 0(Cr3))f (Vi3)| Xi3), Cz))dCra)

3 3
( ) HSO Hf yzgk|ijk Cj(ka ]i))

W(Ck(s) |Yk(3)7 Xk(S))

®» Denominator, marginal likelihood contribution for hospital &, simplifies

/90(C1£3))H[/ Cj(k Hf Yiik|Xijks C jk:? k ) C(z) dC;gS)
J
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Empirical Bayes prediction of random effects

® Empirical Bayes (EB) prediction is mean of posterior distribution

| I

Ck;(3) = /Ck(:s) W(Ck(3)|Yk(3)an(3)) de;(3)

Standard error of EB is standard deviation of posterior distribution

Using gl | apr ed with the u option

gl l apred eb, u

N

o

N

N

ebml contains Eﬁ)
ebs1 contains SE(ZJ(.?)

ebn? contains N,g‘g)

ebs?2 contains SE(N,E?))

® For approximately normal posterior, use Wald-type interval, e.g., for
hospital k, 95% Cl is ¢\* + 1.96 SE(C\?))
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Confidence intervals for hospital random effects
e

53112 6

1
1

36 1715 8
35 o 30 167/
18 3233713 T BITHpTPTT Y

0

|
®
®
®
®

®

1

Hospital random intercept with 95% CI

2

1T 1T 17T 17T 17T T T 1T T°7T
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Rank of predicted hospital random intercept

® (¥ +£1.96 SE(C*)
® Identify the good and bad with caution
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Predicted probability for patient

of hypothetical doctor
D

® Predicted conditional probability for hypothetical values x° of the
covariates and ¢° of the random intercepts

exp(xO’B 4 C(2)0 + 6(3)0)
1+ eXp(XO’,B T C(2)0 + C(S)O)

Priy = 1|x°,¢°) =

® If (@0 4 (30 = 0, median of distribution for ¢’ + ¢{¥, then
predicted conditional probability is median probability

o Analogously for other percentiles
® Using gl | apr ed with mu and us() option:

repl ace age = 2 /* etc.: change covariates to x' */
generate zetal = 0

generate zeta2 = 0

gl | apred probc, mu us(zeta)
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Predicted probability for new patient

of existing doctor in existing hospital
I

® Posterior mean probability for new patient of existing doctor 5 in
hospital &

Prjx(y = 1|XO) = /Pr(y = 1|XO,Ck(?,))W(Ck(3)b’k(3)axk(3)) de(:s)

» Invent additional patient i*;jk with covariate values x;- ;5 = x"
» Make sure that invented observation does not contribute to
posterior W(Ck(:s) ‘Yk:(3)7 Xk(3))

2 3
(Ck(S ‘Yk(S Xk:(S) OCSO HSO Hf yz]k|xzjk g(k)7 ]i))
1£L*

o Cannot simply plug in EB prediction Ck(g) for Cps)
Prju(y = 1|x°) # Pr(y = 1|x°, Cris) = Crs))
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Prediction dataset:

One new patient per doctor
D

Data (ignore gaps) Data with invented observations
id doc hosp abuse Id doc hosp abuse
1 1 1 0 1 1 1 0
2 1 1 1 2 1 1 1
1 1
3 2 2 0 3 2 2 0
2 2
4 3 2 1 4 3 2 1
3 2 1 3 2 1
: 3 2
® Response variable abuse must be missing for invented observations
® Use required value of docC
® Caninvent several patients per doctor
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Prediction dataset:

One new patient per doctor (continued)
e

Data with invented observations

terms for posterior

Id doc hosp abuse hospital  doctor patient
1 1 1 0 o) W) el )
> 1 1 1 Flyonnl¢?, ¢t?)
1 1 1
3 2 2 0 (&) () Flusls”, G2
2 2 . 1
4 3 2 1 o(C52)  FlyaslsY, ¢50)
3 2 1 (y532|C(3) (2))
: 3 2 . 1
® using gl | apr ed with mu and f sanpl e options:
gl | apred probd, nu fsanple
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Predicted probability for new patient

of new doctor in existing hospital
D

® Posterior mean probability for new patient of new doctor in existing
hospital &

Pry(y=1|x") = / Pr(y=1[x", (i) w(Ciea) Y k(3) Xa)) A3 n)

# Invent additional observation *j*k with covariates in x;« j«; = xY
* 2
® (i) = (CJ(*L,CZ(?)))/
» Make sure that invented doctor but not invented patient
contribute to posterior w(¢Cr, 3|y (3), Xk(3))

Prior

(2)
w(CZ(3)|Yk(3)7Xk(3)) X @(Cj*k) W(Ck(3)|Yk(3)7Xk:(3))
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Prediction dataset:

One new doctor and patient per hospital
e

Data (ignore gaps) Data with invented observations
id doc hosp abuse Id doc hosp abuse
1 1 1 0 1 1 1 0
2 1 1 1 2 1 1 1
0 1
3 2 2 0 3 2 2 0
4 3 2 1 4 3 2 1
3 2 1 3 2 1
0 2

® Response variable abuse must be missing for invented observations
® Use unique (for that hospital) value of docC

® Caninvent several new docs which can all have the same value of dOC
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Prediction dataset:

One new doctor and patient per hospital (continued)
D

Data with invented observations

terms for posterior

id doc hosp abuse hospital  doctor patient
11 1 0 o) e¢d) femlg?.al)
2 1 1 1 Flyaanlct?, ¢iD)
0 1 e (Gor) 1
2 2 0 p&)) el(¢n)  flysle”,6)
4 3 2 1 o 3(,3)) f(Ya32 C2(3)7 ?(é))
3 2 1 Flyssl8”, ¢53)
0 2 . 0(C63) 1
® using gl | apr ed with mu and f sanpl e options:
gl | apred probh, mu fsanple
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Example: Predicted probability for new patient
of new doctor in existing hospital

Predicted posterior mean probability

Doctor’s qualification

® Each curve represents a hospital
For each hospital: 6 new doctors with [DRed] =1,2,3,4,5,6

For each doctor: 1 new patient with [Age] = 2, [Temp] = 1 (37°C), [Paymed] = 0,
[Selfmed] = 0, [Wrdiag] = 0
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Example: Predicted probability for new patient
of existing doctor in existing hospital

6 .6 .8
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Predicted posterior mean probability

4
1

/

1 2 3 4 5 61 2 3 4 5 61 2 3 4 5 61 2 3 4 5 6
Doctor’s qualification
Graphs by hosp

® 12 of the hospitals, with curves as in previous slide
® Dots represent doctors with [DRed] as observed

For each doctor: predicted probability for 1 new patient with [Age] = 2, [Temp] = 1,
[Paymed] = 0, [Selfmed] = 0, [Wrdiag] = 0
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Predicted probability for new patient
of new doctor in new hospital

9

Population-averaged or marginal probability:
Priy=1x°) = / Pr(y = 11x°,¢7), ¢i) o(¢i)), (6™ e def”

Cannot plug in means of random intercepts
Priy=1]x°) # Pr(y=1}x"¢; = 0,7 =0)

mean # median

Using gl | apr ed with the mu and mar g options:
gl | apred prob, nmu marg fsanple

Confidence interval, by sampling parameters from the estimated
asymptotic sampling distribution of their estimates

ci_marg nmu | ower upper, |evel (95) dots
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lllustration Cluster-specific:
versus population averaged probability

1.0

0.8
!

0.6

0.4

Probability

0.2

0.0

0 20 40 60 80 100

————— cluster-specific (random sample)
— median
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lllustration Cluster-specific:
versus population averaged probability
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————— cluster-specific (random sample)
— median
— population averaged
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Example: Predicted probability for new patient

of new doctor in new hospital
D
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Predicted population averaged probability
0.2

0.0
1

1 2 3 4 5 6
Doctor’s qualification

intervention

————— no intervention

® Same patient covariates as before
9o
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Example: Predicted probability for new patient

of new doctor in new hospital
o
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Population averaged probability with 95% CI

0.0

Doctor’s qualification

————— no intervention intervention

® Same patient covariates as before
® Confidence bands represent parameter uncertainty

.—p.23



Concluding remarks
D

® Discussed:

» Empirical Bayes (EB) prediction of random effects and CI using
gl | apr ed, ignoring parameter uncertainty

# Prediction of different kinds of probabilities using gl | apr ed after
careful preparation of prediction dataset

# Simulation-based CI for predicted marginal probabilities using
new command ci _narg_nu

®» Methods work for any GLLAMM model, including random-coefficient
models and models for ordinal, nominal or count data

$» Assumed normal random effects distribution
» EB predictions not robust to misspecification of distribution

# Could use nonparametric maximum likelihood in gl | anm
followed by same gl | apred and ci _mar g_nu commands
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