Estimating High-Dimensional Fixed-Effects Models

Paulo Guimarães

guimaraes@moore.sc.edu

University of South Carolina
Motivation

- Data sets are getting larger.
- Estimation of models with many observations and variables poses new challenges.
- A case in point is estimation of models with high-dimensional fixed effects.
- With high-dimensional models explicit introduction of dummy variables to account for fixed effects is not an option.
- With one fixed effect there are other solutions:
 - Condition out the fixed effects (eg: linear regression, poisson, logistic regression)
 - use a modified iterative algorithm for ML maximization (see Greene(2004))
Our problem

In Carneiro, Guimaraes and Portugal (2009) we had a linked employer-employee panel data set with 26 millions observations.

Our objective was:

- To estimate a linear regression model with 26 variables plus two fixed effects (firm and worker).
- To obtain estimates of the fixed effects.

With 541,229 firms and 7,155,898 workers introduction of dummy variables was not an option.

The user written commands `a2reg` (A. Ouazad) and `felsdvreg` (T. Cornelissen) aborted due to memory problems in a Windows machine with 8G RAM running Stata MP.

We developed an alternative estimation strategy.
The Linear Regression

- Consider the linear model $\mathbf{Y} = \mathbf{X}\beta + \epsilon$

- Minimization of the sum of squares (SS) results in a set of equations:

$$\begin{align*}
\frac{\partial SS}{\partial \beta_1} &= \sum_i x_{1i}(y_i - \beta_1 x_{1i} - \beta_2 x_{2i} - \ldots - \beta_k x_{ki}) = 0 \\
\frac{\partial SS}{\partial \beta_2} &= \sum_i x_{2i}(y_i - \beta_1 x_{1i} - \beta_2 x_{2i} - \ldots - \beta_k x_{ki}) = 0 \\
&\quad \vdots \\
\frac{\partial SS}{\partial \beta_k} &= \sum_i x_{ki}(y_i - \beta_1 x_{1i} - \beta_2 x_{2i} - \ldots - \beta_k x_{ki}) = 0
\end{align*}$$

- These equations can easily be solved using

$$\mathbf{\hat{\beta}} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'\mathbf{Y}$$
The Linear Regression

An alternative approach: the partitioned ("cyclic-ascent" or "zigzag") algorithm:

1. Initialize $\beta_1^{(0)}, \beta_2^{(0)}, \ldots, \beta_k^{(0)}$

2. Solve for $\beta_1^{(1)}$ as the solution to
 \[
 \frac{\partial S}{\partial \beta_1} = \sum_i x_{1i}(y_i - \beta_1 x_{1i} - \beta_2^{(0)} x_{2i} - \ldots - \beta_k^{(0)} x_{ki}) = 0
 \]

3. Solve for $\beta_2^{(1)}$ as the solution to
 \[
 \frac{\partial S}{\partial \beta_2} = \sum_i x_{2i}(y_i - \beta_1^{(1)} x_{1i} - \beta_2 x_{2i} - \ldots - \beta_k^{(0)} x_{ki}) = 0
 \]

3. and so on...

4. Repeat until convergence.
Suppose we have a fixed effect: \(Y = X\beta + D\alpha + \epsilon \)

where \(X \) is \(n \times k \) and \(D \) is a \(n \times G_1 \) matrix of "dummies" and \(G_1 \) is a large number.

The normal equations are:

\[
\begin{bmatrix}
X'X & X'D \\
D'X & D'D
\end{bmatrix}
\begin{bmatrix}
\beta \\
\alpha
\end{bmatrix}
=
\begin{bmatrix}
X'Y \\
D'Y
\end{bmatrix}
\]

\[
\begin{align*}
X'X\beta + X'D\alpha &= X'Y \\
D'X\beta + D'D\alpha &= D'Y
\end{align*}
\]

\[
\begin{align*}
\beta &= (X'X)^{-1}X'(Y - D\alpha) \\
\alpha &= (D'D)^{-1}D'(Y - X\beta)
\end{align*}
\]
One Fixed Effect

This suggests the following "zigzag" estimation procedure:

\[
\begin{bmatrix}
\beta^{(j+1)} = (X'X)^{-1} X' \left(Y - D\alpha^{(j)} \right) \\
\alpha^{(j)} = (D'D)^{-1} D' \left(Y - X\beta^{(j)} \right)
\end{bmatrix}
\]

The key insight is that \(\eta = D\alpha \) is \(n \times 1 \).

The "zigzag" approach involves running several regressions with \(k \) explanatory variables (1st equation) and repeatedly computing means of residuals (2nd equation).

The variable \(\eta \) contains the estimated fixed effects and if added as a regressor will give the same SS as in a model with the fixed-effects.
One Fixed Effect

Note that

\[\begin{bmatrix} \beta_{(j+1)} \\ \alpha_{(j)} \end{bmatrix} = \begin{bmatrix} (X'X)^{-1}X' \left(Y - D\alpha_{(j)} \right) \\ (D'D)^{-1}D' \left(Y - X\beta_{(j)} \right) \end{bmatrix} \]

The key insight is that \(\eta = D\alpha \) is \(n \times 1 \).

The "zigzag" approach involves running several regressions with \(k \) explanatory variables (1st equation) and repeatedly computing means of residuals (2nd equation).

The variable \(\eta \) contains the estimated fixed effects and if added as a regressor will give the same SS as in a model with the fixed-effects.
One Fixed Effect - Example

- Estimation of a linear regression with one fixed effect.
- See EXAMPLE1.
Suppose we have two fixed effects:

\[Y = X\beta + D_1\alpha + D_2\gamma + \epsilon \]

\(D_1\) is \(n \times G_1\) and \(D_2\) is \(n \times G_2\) and both \(G_1\) and \(G_2\) are large numbers.

Estimation of this model is complicated. See Abowd, Kramarz and Margolis (Ectrca 1999).

A "zigzag" approach is simple to implement.

\[
\begin{align*}
\beta^{(j+1)} &= (X'X)^{-1}X' \left(Y - D_1\alpha^{(j)} - D_2\gamma^{(j)} \right) \\
\alpha^{(j)} &= (D_1'D_1)^{-1}D_1' \left(Y - X\beta^{(j)} - D_2\gamma^{(j)} \right) \\
\gamma^{(j)} &= (D_2'D_2)^{-1}D_2' \left(Y - X\beta^{(j)} - D_1\gamma^{(j)} \right)
\end{align*}
\]
Two Fixed Effects

- The final linear regression (with the two fixed effects variables) has the right SS.
- This means that we can estimate σ^2 if we can figure out the degrees of freedom.
- Because some coefficients of the fixed effects are not identifiable we need to use $N - k - G_1 - G_2 + M$ where M is the number of mobility groups (see Abowd et al 2002).

- To estimate $V(\hat{\beta}_j)$ we can use:

$$V(\hat{\beta}_j) = \frac{\sigma^2}{Ns_j^2(1 - R_{j.123}^2)}$$
Two Fixed Effects

In practical applications it may make more sense to estimate in steps using the Frisch-Waugh-Lovell theorem.

First remove the effects of D_1 and D_2 from Y and X.
Then regress the transformed Y on the transformed X to obtain the estimates for β.
Then (if needed) recover the estimates of the fixed effects by regressing $u = Y - X\beta$ on D_1 and D_2.

Regressions on D_1 and D_2 are fast because they only require computation of means.
We can sweep out one of the fixed effects by demeaning the variables.
Estimates a linear regression with two fixed effects
Check EXAMPLE2

A faster approach to the same problem
Check EXAMPLE3
Two command gpreg

The command `gpreg` programmed by Johannes F. Schmieder implements the two-step approach for estimation of linear regression models with two high dimensional fixed effects.

Command Syntax:
```
gpreg depvar indepvars [if] [in] ,
ivar(varname) jvar(varname) [ ife(new varname) jfe(new varname) 
maxiter(integer) tolerance(float) nodots 
Algorithm(integer) ]
```

There are 4 options for choice of algorithm 2 of them implemented in Mata.

`gpreg` is available on the SSC server
Non-linear Models: Poisson

- This approach can be extended to non-linear models.
- An example with Poisson regression:

\[E(y_i) = \lambda_i = \exp(x_i' \beta + \alpha_1 d_{1i} + \alpha_2 d_{2i} + \ldots + \alpha_J d_{Ji}) \]

- Using the first order conditions:

\[\exp(\alpha_j) = d_j'y \times [d_j' \exp(x_i' \beta)]^{-1} \]

- Optimization of the maximum-likelihood function requires recursive estimation of a Poisson regression with the \(x\) variables and an offset containing the estimates \(\alpha\) obtained from the expression above.
Non-linear Models: Examples

- A Poisson regression with one fixed effect
 see EXAMPLE4

- A Poisson regression with two fixed effects
 see EXAMPLE5

- A Negative Binomial regression with one fixed effect
 see EXAMPLE6
Final Remarks

- The main advantage of this approach is that it does not require much memory.
- The approach can be extended to non-linear models.
- The approach can be extended to 3 or more high-dimensional fixed effects.
- This approach tends to be slow but there is room for improvement.
- This presentation is based in: Guimaraes and Portugal (2009), "A simple feasible alternative procedure to estimate models with high-dimensional fixed-effects" IZA Discussion Papers 3935.