Generalized method of moments estimation in Stata 11

David M. Drukker

 ${\sf StataCorp}$

Stata Conference Washington, DC 2009

A quick introduction to GMM

gmm examples

- Ordinary least squares
- Two-stage least squares
- Cross-sectional Poisson with endogenous covariates
- Fixed-effects Poisson regression

Method of Moments (MM)

- We estimate the mean of a distribution by the sample mean, the variance by the sample variance, etc
- We want to estimate $\mu = E[y]$
 - We use $\widehat{\mu} = (1/N) \sum_{i=1}^{N} y_i$
 - This estimator has nice properties because it solves the sample moment condition

$$(1/N)\sum_{i=1}^{N}(y_i - \mu) = 0$$

which is the sample analog of the population moment condition

$$E[y-\mu]=0$$

- Estimators that solve sample moment equations to produce estimates are called method-of-moments (MM) estimators
 - This method dates back to Pearson (1895) (●) (■) (■) (■)

Generalized method-of-moments (GMM)

- The MM only works when the number of moment conditions equals the number of parameters to estimate
 - If there are more moment conditions than parameters, the system of equations is algebraically over identified and cannot be solved
 - Generalized method-of-moments (GMM) estimators choose the estimates that minimize a quadratic form of the sample moment conditions
 - GMM gets as close to solving the over-identified system of sample moment equations as possible
 - GMM reduces to MM when the number of parameters equals the number of moment conditions

 Hansen (1982) produced many of the key results; Wooldridge (2002); Cameron and Trivedi (2005) provide good introductions

Definition of GMM estimator

- Our research question implies q population moment conditions $E[\mathbf{m}(\mathbf{w}_i, \boldsymbol{\theta})] = \mathbf{0}$
 - **m** is *q* × 1 vector of functions whose expected values are zero in the population
 - **w**_i is the data on person i
 - $oldsymbol{ heta}$ is k imes 1 vector of parameters, $k\leq q$
- The sample moments that correspond to the population moments are

$$\overline{\mathbf{m}}(\boldsymbol{\theta}) = (1/N) \sum_{i=1}^{N} \mathbf{m}(\mathbf{w}_i, \boldsymbol{\theta})$$

 When k < q, GMM chooses the parameters that are as close as possible to solving the over-identified system of moment equations

$$\widehat{\boldsymbol{\theta}}_{GMM} \equiv \arg \min_{\boldsymbol{\theta}} \quad \overline{\mathbf{m}}(\boldsymbol{\theta})^{\prime} \mathbf{W} \overline{\mathbf{m}}(\boldsymbol{\theta})$$

Some properties of the GMM estimator

$$\widehat{\boldsymbol{\theta}}_{GMM} \equiv \operatorname{arg min}_{\boldsymbol{\theta}} \quad \overline{\mathbf{m}}(\boldsymbol{\theta})' \mathbf{W} \overline{\mathbf{m}}(\boldsymbol{\theta})$$

- When k = q, the MM estimator solves $\overline{\mathbf{m}}(\theta)$ exactly so $\overline{\mathbf{m}}(\theta)' \mathbf{W} \overline{\mathbf{m}}(\theta) = \mathbf{0}$
- ullet W only affects the efficiency of the GMM estimator
 - $\bullet~$ Setting $\boldsymbol{W}=\boldsymbol{I}$ yields consistent, but inefficient estimates
 - Setting $\mathbf{W} = \text{Cov}[\overline{\mathbf{m}}(\theta)]^{-1}$ yields an efficient GMM estimator
 - We can take multiple steps to get an efficient GMM estimator

1 Let
$$\mathbf{W} = \mathbf{I}$$
 and get

$$\widehat{\boldsymbol{ heta}}_{GMM1} \equiv {
m arg min}_{\boldsymbol{ heta}} \quad \overline{\mathbf{m}}(\boldsymbol{ heta})'\overline{\mathbf{m}}(\boldsymbol{ heta})$$

2 Use $\widehat{\theta}_{GMM1}$ to get $\widehat{\mathbf{W}}$, which is an estimate of $Cov[\overline{\mathbf{m}}(\theta)]^{-1}$ 3 Get

$$\widehat{\boldsymbol{\theta}}_{GMM2} \equiv \arg\min_{\boldsymbol{\theta}} \quad \overline{\mathbf{m}}(\boldsymbol{\theta})' \widehat{\mathbf{W}} \overline{\mathbf{m}}(\boldsymbol{\theta})$$

• Repeat steps 2 and 3 using $\widehat{\theta}_{GMM2}$ in place of $\widehat{\theta}_{GMM1}$

The gmm command

- The new command gmm estimates parameters by GMM
- gmm is similar to nl, you specify the sample moment conditions as substitutable expressions
- Substitutable expressions enclose the model parameters in braces $\{\}$

The interactive syntax of gmm

• For many models, the population moment conditions have the form

 $E[ze(eta)] = \mathbf{0}$

where z is a $q \times 1$ vector of instrumental variables and $e(\beta)$ is a scalar function of the data and the parameters β

• The corresponding syntax of gmm is

```
gmm (eb_expression) [ if ][ in ][ weight ],
instruments(instrument_varlist) [ options]
```

where some options are

<u>one</u>step <u>winit</u>ial(*wmtype*) <u>wmat</u>rix(*witype*) vce(*vcetype*) use one-step estimator (default is two-step estimator) initial weight-matrix **W** weight-matrix **W** computation after first step *vcetype* may be robust, cluster, bootstrap, hac

Ordinary least squares (OLS) is an MM estimator

- We know that OLS estimates the parameters of the conditional expectation of y_i = x_iβ + ε_i under the assumption that E[ε|x] = 0
- Standard probability theory implies that

$$E[\epsilon|\mathbf{x}] = \mathbf{0} \Rightarrow E[\mathbf{x}\epsilon] = \mathbf{0}$$

So the population moment conditions for OLS are

$$E[\mathbf{x}(y-\mathbf{x}\boldsymbol{\beta})]=\mathbf{0}$$

• The corresponding sample moment conditions are

$$(1/N)\sum_{i=1}^{N}\mathbf{x}_{i}(y_{i}-\mathbf{x}_{i}\boldsymbol{\beta})=\mathbf{0}$$

Solving for β yields

$$\widehat{\boldsymbol{\beta}}_{OLS} = \left(\sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i}\right)^{-1} \sum_{i=1}^{N} \mathbf{x}_{i}' y_{i}$$

Modeling crime data I

• We have (fictional) data on crime in 3,000 communities

. use cscrime2, clear										
. describe										
Contains data	Contains data from cscrime2.dta									
obs:	3,000									
vars:	5			29 Jul 2009 12:02						
size:	132,000 (98.7% of	memory free)	(_dta has notes)						
	storage	display	value							
variable name	0	format	label	variable label						
policepc	double	%10.0g		police officers per thousand						
arrestp	double	%10.0g		arrests/crimes						
convictp	double	%10.0g		convictions/arrests						
legalwage	double	%10.0g		legal wage index 0-20 scale						
crime	double	%10.0g		property-crime index 0-50 scale						

Sorted by:

Modeling crime data II

• We specify that

```
crime_i = policepc_i\beta_1 + legalwage_i\beta_2 + \beta_3 + \epsilon_i
```

• We want to model

 $E[\texttt{crime}|\texttt{policepc},\texttt{legalwage}] = \texttt{policepc}\beta_1 + \texttt{legalwage}\beta_2 + \beta_3$

 If *E*[*\epsilon*|policepc, legalwage] = 0, the population moment conditions are

$$E\left[egin{pmatrix} ext{policepc} \ ext{legalwage} \end{pmatrix} (ext{crime} - ext{policepc}eta_1 - ext{legalwage}eta_2 - eta_3) \end{bmatrix} = egin{pmatrix} 0 \ 0 \end{pmatrix}$$

OLS by GMM I

```
. gmm (crime - policepc*{b1} - legalwage*{b2} - {b3}), ///
> instruments(policepc legalwage) nolog
Final GMM criterion Q(b) = 2.62e-31
GMM estimation
Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 3000
GMM weight matrix: Robust
```

	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
/b1	4226003	.0100658	-41.98	0.000	4423289	4028716
/b2	-7.543894	.3969104	-19.01	0.000	-8.321824	-6.765964
/b3	27.79852	.0546507	508.66	0.000	27.69141	27.90563

Instruments for equation 1: policepc legalwage _cons

OLS by GMM II

	regress	crime	policepc	legalwage,	robust
--	---------	-------	----------	------------	--------

Linear regres:	sion				Number of obs F(2, 2997) Prob > F R-squared Root MSE	
crime	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
policepc legalwage _cons	4226003 -7.543894 27.79852	.0100709 .397109 .054678	-41.96 -19.00 508.40	0.000 0.000 0.000	4423468 -8.322528 27.69131	4028538 -6.765261 27.90573

IV and 2SLS

- For some variables, the assumption E[ε|x] = 0 is too strong and we need to allow for E[ε|x] ≠ 0
- If we have q variables z for which E[ε|z] = 0 and the correlation between z and x is sufficiently strong, we can estimate β from the population moment conditions

$$E[\mathbf{z}(y-\mathbf{x}\boldsymbol{\beta})]=\mathbf{0}$$

- z are known as instrumental variables
- If the number of variables in z and x is the same (q = k), solving the the sample moment conditions yields the MM estimator known as the instrumental variables (IV) estimator
- If there are more variables in z than in x (q > k) and we let $\mathbf{W} = \left(\sum_{i=1}^{N} \mathbf{z}'_{i} \mathbf{z}_{i}\right)^{-1}$ in our GMM estimator, we obtain the two-stage least-squares (2SLS) estimator

2SLS on crime data I

- The assumption that *E*[ε|policepc] = 0 is false if communities increase policepc in response an increase in crime (an increase in ε_i)
- The variables arrestp and convictp are valid instruments, if they measure some components of communities' toughness-on crime that are unrelated to ϵ but are related to policepc

• We will continue to maintain that $E[\epsilon|legalwage] = 0$

2SLS by GMM I

```
. gmm (crime - policepc*{b1} - legalwage*{b2} - {b3}), ///

> instruments(arrestp convictp legalwage ) nolog onestep

Final GMM criterion Q(b) = .0001736

GMM estimation

Number of parameters = 3

Number of moments = 4

Initial weight matrix: Unadjusted Number of obs = 3000
```

	Coef.	Robust Std. Err.	Z	P> z	[95% Conf	. Interval]
/b1	9516683	.0785137	-12.12	0.000	-1.105552	7977844
/b2	-2.304205	.9648523	-2.39	0.017	-4.195281	4131291
/b3	29.88578	.3135637	95.31	0.000	29.2712	30.50035

Instruments for equation 1: arrestp convictp legalwage _cons

2SLS by GMM II

. ivregress 2sls crime legalwage (policepc = arrestp convictp) , robust									
Instrumental variables (2SLS) regression Number of obs = 3000									
					Wald chi2(2)	= 696.63			
					Prob > chi2	= 0.0000			
					R-squared				
					Root MSE	= 3.0516			
		Robust							
crime	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]			
policepc	9516683	.0785137	-12.12	0.000	-1.105552	7977844			
legalwage	-2.304205	.9648523	-2.39	0.017	-4.195281	4131291			
_cons	29.88578	.3135637	95.31	0.000	29.2712	30.50035			

Instrumented: policepc Instruments: legalwage arrestp convictp

Poisson with endogenous covariates

- We want to model to $E[y_i|\mathbf{x}_i, \nu_i] = \exp(\mathbf{x}_i \boldsymbol{\beta}) \nu_i$
- This setup allows the distribution of ν_i to depend on \mathbf{x}_i
- Mullahy (1997) showed that we can use instrumental variables z_i and the population moment conditions

$$E\left[\mathbf{z}_{i}(y_{i}\exp(\mathbf{x}_{i}eta)-1)
ight]=\mathbf{0}$$

to estimate eta

. use accident2, clear . describe										
Contains data from accident2.dta										
obs:	948									
vars:	6			29 Jul 2009 11:59						
size:	26,544 (99.7% of 1	nemory free)							
	storage	display	value							
variable name	type	format	label	variable label						
kids	float	%9.0g								
cvalue	float	%9.0g								
tickets	float	%9.0g								
traffic	float	%9.0g								
male	float	%9.0g								
accidents	float	%9.0g								

Sorted by:

- traffic and male are exogenous variables
- tickets is an endogenous variable
- kids and cvalue are instrumental variables

```
.gmm (accidents*exp(-tickets*{b1} - traffic*{b2} - male*{b3} - {b4}) - 1), ///
> instruments(kids cvalue traffic male) onestep nolog
Final GMM criterion Q(b) = .0109217
GMM estimation
Number of parameters = 4
Number of parameters = 5
Initial weight matrix: Unadjusted Number of obs = 948
```

	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
/b1	1.745919	.1984268	8.80	0.000	1.357009	2.134828
/b2	.1216527	.0421674	2.88	0.004	.0390061	.2042993
/b3	4.693161	.5129505	9.15	0.000	3.687797	5.698526
/b4	-11.51383	1.208924	-9.52	0.000	-13.88327	-9.144379

Instruments for equation 1: kids cvalue traffic male _cons

More complicated moment conditions

- The structure of the moment conditions for some models is too complicated to fit into the interactive syntax used thus far
- For example, Wooldridge (1999, 2002); Blundell, Griffith, and Windmeijer (2002) discuss estimating the fixed-effects Poisson model for panel data by GMM.
- In the Poisson panel-data model we are modeling

$$E[y_{it}|\mathbf{x}_{it},\eta_i] = \exp(\mathbf{x}_{it}\boldsymbol{\beta}+\eta_i)$$

 Hausman, Hall, and Griliches (1984) derived a conditional log-likelihood function when the outcome is assumed to come from a Poisson distribution with mean exp(**x**_{it}β + η_i) and η_i is an observed component that is correlated with the **x**_{it} • Wooldridge (1999) showed that you could estimate the parameters of this model by solving the sample moment equations

$$\sum_{i}\sum_{t}\mathbf{x}_{it}\left(\mathbf{y}_{it}-\mu_{it}\frac{\overline{\mathbf{y}}_{i}}{\overline{\mu}_{i}}\right)=\mathbf{0}$$

- These moment conditions do not fit into the interactive syntax because the term \$\overline{\mu}\$_i\$ depends on the parameters
- Need to use moment-evaluator program syntax

Moment-evaluator program syntax

- An abbreviated form of the program syntax for gmm is gmm moment_program [if][in][weight], equations(moment_cond_names) parameters(parameter_names) [instruments() options]
- The moment_program is an ado-file of the form

```
program gmm_eval
    version 11
    syntax varlist if, at(name)
    quietly {
        <replace elements of varlist with error
        part of moment conditions>
    }
end
```

Panel Accident data

. use xtaccid . describe	ents							
Contains data obs:	from xta 5,000	ccidents.d	ta					
vars:	5,000 7			31 May 2008 19:50				
size:	160,000 (98.5% of m	emory free)					
	storage	display	value					
variable name	type	format	label	variable label				
id	float	%9.0g						
male	float	%9.0g						
t	float	%9.0g						
kids	float	%9.0g						
cvalue	float	%9.0g						
tickets	float	%9.0g						
accidents	float	%9.0g						
Sorted by: i	d t							
. by id: egen	. by id: egen max_a = max(accidents)							
. drop if max								
(3750 observa	tions del	.eted)						

```
program xtfe
    version 11
    syntax varlist if, at(name)
    quietly {
        tempvar mu mubar ybar
        generate double 'mu' = exp(kids*'at'[1,1] ///
                                                    111
            + cvalue*'at'[1,2]
            + tickets*'at'[1,3]) 'if'
        egen double 'mubar' = mean('mu') 'if', by(id)
        egen double 'ybar' = mean(accidents) 'if', by(id)
        replace 'varlist' = accidents
                                                    111
                               - 'mu'*'ybar'/'mubar' 'if'
    }
```

end

FE Poisson by gmm

```
. gmm xtfe , equations(accidents) parameters(kids cvalue tickets)
                                                                   111
         instruments(kids cvalue tickets, noconstant)
                                                                   111
>
        vce(cluster id) onestep nolog
>
Final GMM criterion Q(b) = 1.50e-16
GMM estimation
Number of parameters = 3
Number of moments
                        3
                    =
Initial weight matrix: Unadjusted
                                                    Number of obs =
                                                                     1250
```

(Std. Err. adjusted for 250 clusters in id)

	Coef.	Robust Std. Err.	z	P> z	[95% Conf	. Interval]
/kids	4506245	.0969133	-4.65	0.000	6405711	2606779
/cvalue	5079946	.0615506	-8.25	0.000	6286315	3873577
/tickets	.151354	.0873677	1.73	0.083	0198835	.3225914

Instruments for equation 1: kids cvalue tickets

FE Poisson by xtpoisson, fe

. xtpoisson accidents kids cvalue tickets, fe nolog									
Conditional fixed-effects Poisson regression Number of obs =									
Group variable	e: id			Number	of groups =	= 250			
				Obs per	group: min =	= 5			
					avg =				
					max =	= 5			
				Wald ch	i2(3) =	= 104.31			
Log likelihood	i = -351.1173	39		Prob >	chi2 =	= 0.0000			
accidents	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]			
kids	4506245	.0981448	-4.59	0.000	6429848	2582642			
cvalue	5079949	.0549888	-9.24	0.000	615771	4002188			
tickets	.151354	.0825006	1.83	0.067	0103442	.3130521			

Bibliography

Blundell, Richard, Rachel Griffith, and Frank Windmeijer. 2002."Individual effects and dynamics in count data models," *Journal of Econometrics*, 108, 113–131.

Cameron, A. Colin and Pravin K. Trivedi. 2005. *Microeconometrics: Methods and applications*, Cambridge: Cambridge University Press.

Hansen, L. P. 1982. "Large-sample properties of Generalized Method-of-Moment Estimators," *Econometrica*, 1029–1054.

- Hausman, Jerry A., Bronwyn H. Hall, and Zvi Griliches. 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," *Econometrica*, 52(4), 909–938.
- Mullahy, J. 1997. "Instrumental variable estimation of Poisson Regression models: Application to models of cigarette smoking behavior," *Review of Economics and Statistics*, 79, 586–593.

Pearson, Karl. 1895. "Contributions to the mathematical theory of evolution—II. Skew variation in homogeneous material," (2) 2 00

Philosophical Transactions of the Royal Society of London, Series A, 186, 343–414.

Wooldridge, Jeffrey. 2002. Econometric Analysis of Cross Section and Panel Data, Cambridge, Massachusetts: MIT Press.

Wooldridge, Jeffrey M. 1999. "Distribution-free estimation of some nonlinear panel-data models," *Journal of Econometrics*, 90, 77–90.