
Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Saving Time

Bill Rising

StataCorp LLC

2018 Stata Conference
Columbus, OH
July 20, 2018

Saving Time Handout page: 1



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Background
Stata’s User Interface

Saving time

Saving time is a Good Thing
Using time to save time can be a good thing

It can also be a bad thing if it takes too much time to save time

Saving Time Handout page: 1



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Background
Stata’s User Interface

Automation in Stata

For Stata, saving time means automating repetitive tasks
Do-files can be used for this
Ado-files are not very hard to write
Mata can also be used
At all times, one needs to thing of the time saved vs the time
used to save time

Saving Time Handout page: 1



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Background
Stata’s User Interface

Other Tools

There are other tools outside of Stata which are useful when
working with Stata
These include other text editors and version control
We’ll brush by all of these

Saving Time Handout page: 2



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Background
Stata’s User Interface

Built-in Time Savers

Stata has some time-savers
Dialog boxes

Save time for complicated graphs

Command-window shortcuts
Reusing commands with page up and page down
Tab-completion of variable names
Tab-completion of file names

Saving Time Handout page: 2



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Using the OS
Moving Around Quickly
Special Places
Editing Stata Code

Looking at Files

It’s nice to look at the files in your working directory
. dir

Sometimes, however, it would be nice really see the files

Saving Time Handout page: 2



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Using the OS
Moving Around Quickly
Special Places
Editing Stata Code

opendir

Here is a small community-contributed command for opening up
an Explorer/Finder/File window in any OS
. opendir

This can open other folders/directories, also
. opendir ..

This works in any OS

Saving Time Handout page: 2



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Using the OS
Moving Around Quickly
Special Places
Editing Stata Code

A Fractured Existence

Imagine a computer where
Hobbies are stored one place
Official projects are stored another place
Author Support projects are another place
Homebrewed projects are another place
Bug reports are in another place
etc.

So... a typical computer, but possibly with different types of
projects

Saving Time Handout page: 3



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Using the OS
Moving Around Quickly
Special Places
Editing Stata Code

Jumping from Place to Place

Now suppose that we would like to move from one place to
another
This can be done via the OS

On the Mac, this is not too onerous
In Windows it is

The dialog has no remembrance of things past

It can be done via the Command window, using tab completion
. cd "~/Desktop/2018columbus/data"

Saving Time Handout page: 3



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Using the OS
Moving Around Quickly
Special Places
Editing Stata Code

Making a Quick Visit

Sometimes it is worth visiting quickly . . .

. cd "~/Documents/Scratch"

. . . doing some work . . .

. * work work work

. . . and coming back

. cd "~/Desktop/2018columbus/data"

Doing this by hand is miserable
Copying and pasting can help, but you need to remember to copy!

Saving Time Handout page: 3



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Using the OS
Moving Around Quickly
Special Places
Editing Stata Code

pushd and popd

Here are two simple commands for jumping back and forth:
pushd changes directory, but keeps track of the current directory
for later
popd jumps back to the last pushed directory

You can push multiple times in a row and build a stack of
directories through which you can then backtrack

Though this isn’t all that useful

These get used just like cd

Saving Time Handout page: 4



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Using the OS
Moving Around Quickly
Special Places
Editing Stata Code

Example of Pushing and Popping

Here is the above example of jumping around using these
commands
First: go to the Scratch directory
. pushd "~/Documents/Scratch"

Do some work
. * work work work

Come back
. popd

This is nice, but not that nice

Saving Time Handout page: 4



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Using the OS
Moving Around Quickly
Special Places
Editing Stata Code

Known Special Locations

Better than this is some way to jump to specially named places
For this, there is the user-written go

Here is my current state of shortcuts
. go list

I could jump to the scratch directory . . .

. go scratch

. . . and come back

. popd

Saving Time Handout page: 4



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Using the OS
Moving Around Quickly
Special Places
Editing Stata Code

Aside: How go Works

It creates a do-file in your PERSONAL folder named
golookup_OS.do

The OS gets replaced by your operating system
This oddity is needed for someone working/testing for multiple
operating systems on one machine

The do-file gets read when setting up a Mata object to hold the
lookups

The object is called an associative array by Stata or a heap by
some other languages

Saving Time Handout page: 5



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Using the OS
Moving Around Quickly
Special Places
Editing Stata Code

Aside: Where the Shortcuts Get Saved

By default, the do-file gets written every time you make a change
You can squelch a write with the nowrite option

But then you should go write at some point before quitting
Stata

This is in case someone is, say, writing shortcuts en masse

The do-file is useful because it allows hand-editing
We can take a look at it; first jump to my PERSONAL folder
. go personal

Then look
. doedit "golookup_MacOSX"

Saving Time Handout page: 5



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Using the OS
Moving Around Quickly
Special Places
Editing Stata Code

Wrapup of go

I find go very handy, and it saves many many many small bits of
time
It did take a while to write, but it was done as an exercise to
learn the programming methods in Bill Gould’s book about
programming Mata
Let’s go back to the talk directory
. popd

Saving Time Handout page: 5



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Using the OS
Moving Around Quickly
Special Places
Editing Stata Code

Emacs and ado-mode

If you find the Do-file Editor limited, try looking for other text
editors
I use Emacs, and edit my do-files with a “mode” called ado-mode

I use Aquamacs (http://aquamacs.org) which makes Emacs
much nicer, but is Mac-only

This is available at https://www.louabill.org/Stata/

Saving Time Handout page: 6

http://aquamacs.org
https://www.louabill.org/Stata/


Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Using the OS
Moving Around Quickly
Special Places
Editing Stata Code

Advantages

Can submit code to Stata and have the commands in the Review
window
Can submit code with // and /// comments without issue
Can open help and/or code for commands easily

Even personal or downloaded commands

Has better syntax highlighting
Has supplied templates for ado, do, and help files

Saving Time Handout page: 6



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Using the OS
Moving Around Quickly
Special Places
Editing Stata Code

Disadvantages

Installation is not friendly
Emacs is an old text editor built in the early 1980’s

So it has strange keyboard shortcuts

Saving Time Handout page: 6



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Version Control
Producing Presentations
Statistics

Version Control

Version control in Stata means using a version command to
keep syntax valid for the future
Version control outside of Stata means keeping track of edits you
make to files

This is also called “revision control”

Using version control saves headaches and heartaches when
changing files, because it allows gracefully backing out of changes

It also allows working on long changes to critical files, because of
easy reversion

Version control allows many people to work on the same files

Saving Time Handout page: 6



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Version Control
Producing Presentations
Statistics

What Tools Are There?

There are any number of tools; these are open source
Subversion (or SVN)
Git
Mecurial

I use Git

Saving Time Handout page: 7



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Version Control
Producing Presentations
Statistics

The Good and Bad of Git

Good
It is decentralized, so it is better for someone who travels
It takes up very little disk space because it stores incremental
changes instead of complete backups
It has an active user base

Microsoft just bought github for several billion dollars

Bad
It redefines “cryptic”

Saving Time Handout page: 7



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Version Control
Producing Presentations
Statistics

What to Do?

In situations where things are really cryptic, try buying software!
I use Tower https://www.git-tower.com

This is paid software

It is meant as a frontend to Git which can be used by graphic
designers
So... time for a small demo which does not show in the slides

Saving Time Handout page: 7

https://www.git-tower.com


Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Version Control
Producing Presentations
Statistics

Presentations as Outlines

Presentations such as this are nothing more than outlines
With graphics
Sometimes with callouts

While there are a few outlining programs, not many save their
data in a useful form
OmniOutliner is a program which can save an outline in OPML
(Outline Processor Markup Language)
The OPML can be post-processed and turned into a LATEXfile
OmniOutliner is also commercial software

https://omnigroup.com

Saving Time Handout page: 7

https://omnigroup.com


Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Version Control
Producing Presentations
Statistics

StatWeave

StatWeave was the first piece of software for integrating Stata
input and output into either LATEXor docx files
It has a useful quirk which allows it to split input from output

This makes it good for, say, including output in handouts, but not
in slides

This is open source software
Old version:
http://homepage.divms.uiowa.edu/~rlenth/StatWeave/
New version: coming in September to github

Saving Time Handout page: 8

http://homepage.divms.uiowa.edu/~rlenth/StatWeave/


Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Version Control
Producing Presentations
Statistics

A Brief Example

We can typeset this lesson now as an example

Saving Time Handout page: 8



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Version Control
Producing Presentations
Statistics

Statistics

I save time by using Stata

Saving Time Handout page: 8



Introduction
Saving Time via Programming

Saving Time via Software
Conclusion

Conclusion

Conclusion

Saving time is a worthwhile endeavour
Saving time should not be at the cost of using more time
The trick is assessing the effort and the longevity of the shortcuts

Saving Time Handout page: 8


	Introduction
	Background
	Stata's User Interface

	Saving Time via Programming
	Using the OS
	Moving Around Quickly
	Special Places
	Editing Stata Code

	Saving Time via Software
	Version Control 
	Producing Presentations
	Statistics

	Conclusion
	Conclusion


