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Overview

1. Importance of using full propensity score vector

2. Common support in multiple treatment setting 

3. Transitive treatment effects

4. Weighting/Matching strategies

• Introduce new treatment effect estimator

5. Monte Carlo (MC) simulation design

6. Demonstrate bias and efficiency of estimators via MC simulations



Multiple Treatment Groups 

• Accounting for all values of a treatment variable in a single equation helps ensure propensity 

scores from a multinomial model leads to treatment effect estimation among patients with 

non-zero probabilities of receiving any of the other treatments (common support). 

• Multinomial choice model: Predicts several generalized propensity scores, each one 

representing probability of receiving one of the treatments. Predicted probabilities are 

represented by a propensity score vector of values for each observation. 



Common Support

Drop units outside range 
of common support



Transitive Treatment Effects*

• Treatment effect** estimation involves constructing 

counterfactual outcomes from a comparison group determined 

to be most “similar” to the reference group based on 

propensity scores. 

• Pairwise treatment effects are transitive iff conditioning on a 

sample eligible to receive the same treatment groups.

E[Y(A) – Y(C) | T = A] – E[Y(A) – Y(B) | T = A] 

= E[Y(B) – Y(C) | T = A]
*Lopez and Gutman (2017).

** All estimates are obtained as weighted mean differences of outcomes, with weights normalized to sum 

to 1 in each treatment group. 



Goals

• The degree to which different weighting or matching strategies lead to 
robust inferences in messy empirical scenarios with multiple treatment 
groups is unknown. We seek to understand the scenarios in which all 
methods perform similarly, as well as scenarios that produce divergent 
inferences. 

• To identify when estimators produce unbiased and efficient estimators in a 
variety of settings, we compare 4 estimators which each utilize propensity 
scores differently in treatment effect estimation: 

1. Inverse Probability of Treatment Weighting (IPTW) (weighting)

2. Kernel Weighting (KW) (weighting + matching)

3. Vector Matching (VM) (matching)

4. Vector-Based Kernel Weighting (VBKW) (weighting + matching)



Inverse Probability of Treatment Weights
• In estimating E[Y(A) – Y(B)], 
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• In estimating E[Y(A) – Y(B) | T = A], 
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• Incorrectly estimated IPTWs may have extreme values, increasing variance of 
treatment effect estimate, and potentially leading to biased estimates. 

• In pairwise comparisons, the IPTW estimator does not utilize the full propensity 
score vector. 



Kernel Weights
• In estimating E[Y(A) – Y(B) | T = A], 
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where i and j index T = A and T = B units, respectively, and NB is the total T = B units. 

• Weight for estimating E[Y(A) – Y(B)] = WE[Y(A) – Y(B) | T = A] + WE[Y(A) – Y(B) | T = B]

• In pairwise comparisons, the KW estimator does not utilize the full propensity score 
vector. 



Vector Matching*
• VM creates matched sets with units that are close on one component of the PS 

vector, and roughly similar on the other components. To estimate E[Y(A) – Y(B) | T 
= A],  E[Y(A) – Y(C) | T = A], or E[Y(B) – Y(C) | T = A]:

1. Refit PS model to obtain new propensity scores, take logit transform of scores. 

2. 1:1 greedy match T=A units to T = B units with replacement on logit(p(A|X)) within k-
means strata of logit(p(C|X)), within caliper.

3. 1:1 greedy match T=A units to T = C units with replacement on logit(p(A|X)) within k-
means strata of logit(p(B|X)), within caliper.

• Combination of multiple steps in creating this matched set makes VM relatively complex to 
implement.

• Weight = The number of times a subject is used to create a matched set.

* Lopez MJ, Gutman R. Estimation of causal effects with multiple treatments: A review and new ideas. 
Statistical Science 2017; 32(3): 432-454. 



Vector-Based Kernel Weighting
• In estimating E[Y(A) – Y(B) | T = A], 

W = ൝
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𝐷𝑖𝐶= | pj(C | X) – pi(C | X) |

where i and j index T = A and T = B units, respectively, and NB is the total T = B units. 

• Weight for estimating E[Y(A) – Y(B)] = WE[Y(A) – Y(B) | T = A] + WE[Y(A) – Y(B) | T = B]

• This translates to non-zero weight assignment to controls with a similar propensity score vector
instead of just being similar on p(A | X), as in KW. 

• Rather than matching in several steps, as in VM, VBKW takes one step to apply propensity score 
vector matching.



Vector-Based Kernel Weighting
Features VM KW VBKW

Requires one 
step to match

x x

Requires 
clustering

x

Weighting x x

Matching x x x

Utilizes full PS 
vector

x x

Transitivity of 
estimates

x x



Expectations

• We wish to identify scenarios in which inferences are most 

likely to diverge under finite samples. 

• We expect estimates from kernel weights (with a low emphasis 

on extreme weights) to be less biased than IPTW estimates 

when the data-generating process for the true propensity score 

is nonlinear and the estimated propensity score model is 

misspecified.

• We expect differences in inferences to be more likely when the 

presence of extreme weights is more likely or when 

identification of matches may be more difficult. 



Simulation   

• We report results from 3 treatment levels, n=999, as results 
from other simulation designs are qualitatively similar. 

• We look at 12 Estimands: 3 ATEs, 9 ATTs. True ATTs equal to 
true ATEs when treatment effects were homogeneous. 

• When the simulation included 3 treatment groups, the true 
ATEs, E[Y(A) – Y(B)], E[Y(A) – Y(C)], and E[Y(B) – Y(C)] 
were set to -0.1, -0.2, -0.1, respectively. 

• Model misspecification via estimation with (mlogit) main 
effects only. 



Monte Carlo simulation design
Simulation parameters* 

Functional form of the true propensity score model. Increasing model complexity through 

nonlinearity and/or nonadditivity. Based on Setoguchi et al. (2008).

Number of treatments (k = 3, 4)

Sample size (n = 999, n = 9,999)

Sample distribution across treatment groups: 

• Equal distribution of units into treatment groups

• 50% of sample in one group, remaining split equally

• 10% of sample in one group, remaining split equally

Treatment effect distribution: 

• Homogenous treatment effect

• Heterogeneous treatment effect (associated with confounder)

• Heterogeneous treatment effect (associated with outcome only variable)

*For a given k, and n, there are 7 model misspecifications x 12 Estimands x 3 sample dist. x 3 effect dist. 

=  756 unique analytic scenarios to compare estimator performance.



Monte Carlo simulation design

Evaluation metrics

• Bias*

• Bias as % of SD of effect estimate*

• Interquartile Range (IQR)

• Root-mean-squared-error (RMSE)

• Median absolute error (MAE)*

• Number of analytic scenarios with 
< 40% Bias %

*Kang and Schafer (2007)



VBKW led to least biased and most efficient estimates

Summary of Bias and Efficiency of Estimates 

 Number (%) Analytic 

Scenarios  

with < 40% Bias 

Median Bias as 

% of SD 

Median 

Absolute Bias 

Median 

IQR 

IPTW 221 (29) 

356 (47) 

542 (72) 

554 (73) 

69.626 

45.102 

26.362 

17.509 

0.051 

0.030 

0.018 

0.010 

0.095 

0.085 

0.103 

0.075 

KW 

VM 

VBKW 
 



VBKW less sensitive to PS model misspecification



When treatment effect is homogeneous, IPTW & KW are most likely to 
be biased



When treatment effect is homogeneous, IPTW & KW are most likely to 
be biased



In the presence of heterogeneous, confounder-dependent treatment 
effects, all strategies likely to produce biased ATEs



VBKW most efficient across various PS model misspecifications



VBKW most efficient across sample distributions



VBKW most efficient across effect distributions



Limitations/ Future directions

• Simulations based on imposed rather than empirical DGP. Future 
work will include plasmode simulations based on empirical DGP. 

• Our estimated PS model contained only main effects to test 
robustness to misspecification. Researchers should ensure 
propensity score leads to adequate covariate balance. 

• We did not test sensitivity of results to observed covariate choice or 
covariate measurement errors, nor do we examine doubly-robust 
estimates. 

• Future work: plasmode simulations, generalized boosted models, 
covariate balancing propensity scores, variable bandwidth, 
assessment of covariate balance, robustness to unobserved 
confounding. Creation of vbkw command. 



Discussion

• Simulation results suggest VBKW less sensitive to PS model 

misspecification & sample distribution across treatment groups 

than other methods. VBKW only slightly better than VM, but 

simpler to implement.

• IPTW & KW not well suited to produce unbiased estimates of 

transitive effects. 

• None of the estimators led to consistent unbiased estimation of 

heterogeneous treatment effect due to confounder. 
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