Regulation and U.S. State-Level Corruption

Sanchari Choudhury
Southern Methodist University

STATA Conference
Columbus, Ohio
July 20, 2018
Motivation: a stylized fact

“It is the regulatory state with its elaborate system of permits and licenses that spawns corruption, and different countries with different degrees of insertion of the regulatory state in the economy give rise to varying amounts of corruption.”

— Bardhan (1997, p. 1330)

- Regulation and corruption
 - Extensively discussed
 - Widespread opinion: ↑ regulation ⇒ ↑ corruption
 - ↑ regulation ⇒ ↑ opportunities of interaction
 - ↑ regulation ⇒ ↑ incentives to avoid regulatory cost
Motivation: extant studies on the relationship

- Literature \Rightarrow inconclusive
 - Theories \rightarrow bidirectional causal relationship
 - Public Choice: benefit special interest groups
 - Public Interest: benevolent purpose
 - Empirical evidence \rightarrow contradictory
 - Majority \rightarrow positive correlation
 - Few \rightarrow negative association
 - *Causal* link \rightarrow nearly unexplored; few exceptions: cross-national studies
Motivation: in the U.S. context

- Evidence on the association
 - Empirical study → positive correlation
 - Anecdotes → Public Integrity Section (PIN) annual reports
 - Public officials convicted of bribery in exchange for business favors
 - Examples

- Corruption per se
 - Matters
 - Corruption Perception Index (Transparency International) → score 74
 → 0 (most corrupt) - 100 (cleanest)
 - Low among OECD countries
 - World Map
 - Varies across states (PIN data: 1990 - 2013)
 - U.S. Map
Variation of bureaucratic corruption across states

Measure: convictions of public officials per 1000 government employees, 1990-2013

Measure: convictions of public officials per 1000 government employees, 1990-2013
Given, association \rightarrow inconclusive and \textit{causal} relationship \rightarrow not substantiated, the question addressed:

\textbf{Does government regulation of industries have a causal effect on bureaucratic corruption?}
Pertinent econometric challenges

1. Corruption measure: one-sided measurement error
 - Non-classical
 - Non-positive or non-negative
 - Varies across states

2. Regulation measure: potential endogeneity
 - Traditional solution not viable
 - Regulation and corruption \rightarrow complicated phenomena

Solution: apply state-of-the-art econometric techniques
Main findings

1. Comprehensive model → both the issues addressed
 - Evidence of endogeneity of regulation
 - Absence of a causal link

2. Naive estimation strategies → either issue is ignored
 - Evidence of a spurious relationship
 - Statistically significant impacts
 - Conflicting signs
Outline

1. Data
2. Econometric Challenges
3. Solutions
4. Results
5. Conclusion
Outline

1. Data
2. Econometric Challenges
3. Solutions
4. Results
5. Conclusion
Corruption data

- Panel data → 50 states, 1990 - 2013
- State level convictions of public officials
 - Federal, state and local
 - PIN (Department of Justice)
- Circumvent timing issue
 - $Conviction_{t+1} = Corruption_t$
- Bureaucratic corruption: total number of convictions of public officials in a state per 1000 government employees
Regulation data

- First panel data on federal regulation of industries
 - RegData → Al-Ubaydli and McLaughlin (2015)
 - Four-digit level → 2007 North American Industrial Classification System (NAICS)

- Generate state level measure
 - Weighting by time invariant state-level employment composition across industries

 $$R_{st} = \sum_{i=1} \frac{Emp_{is,1990}}{Emp_{s,1990}} \ast R_{it}$$
Left Panel: Regulation grows over time
Right Panel: Bureaucratic corruption fluctuates over time
Regulatory constraints across states

Degree of regulation varies across states over time (1990-2013)
Issue one: one-sided measurement error in bureaucratic corruption

- ‘True’ corruption level \rightarrow unobserved
 - Not an issue per se
- Serious problem if
 - Observed measure \rightarrow strictly under-reported or over-reported
 - Varies across states contingent on state-specific characteristics
- If ignored \rightarrow biased and inconsistent estimates
Convictions → involve a few steps
- Crime is reported
- Criminal investigation
- Sent to Attorney’s office
- Successful prosecution → availability of resources → vary across states

Bureaucratic corruption → under-reported → varies → state-specific characteristics

Formally,

\[C_{st} = (C^*_{st} - u_{st}) \text{ and } u_{st} \geq 0, \]

where \(u_{st} \) → one-sided or strictly non-negative and heteroskedastic
Issue two: potential endogeneity of regulation

1. Reverse causality
 - Industries → special interest group

2. Omitted variables
 - Business environment, quality of politicians, de-facto decentralization of government, etc.

3. Measurement error: *de-jure* versus *de-facto* regulation
 - Official regulatory laws → observed
 - Actual implementation → unobserved
Traditional solution
 - Exogenous factor → impact corruption through regulation only → traditional instrumental variable

Not viable in current context
 - Difficult to comprehend one
 - Complex phenomena

Absence of a traditional solution, i.e., traditional instrumental variables
Outline

1. Data
2. Econometric Challenges
3. Solutions
4. Results
5. Conclusion
For issue one: stochastic frontier approach

- Explicitly model the one-sided measurement error
 - Formally,
 \[C_{st} = \beta_0 + X_{st}\beta_1 + \gamma R_{st} + \alpha_s + \delta t + \varepsilon_{st} - u_{st} \]
- \(\varepsilon_{st} \): standard two-sided error \(\rightarrow \) normal distribution
- \(u_{st} \): one-sided error \(\rightarrow \) half-normal distribution

- Resembles normal-half normal stochastic frontier model
 - Productivity analysis
 - Firm's (unobserved) inefficiency
Intuition in the current context

- \(u_{st} \) : allocation of prosecutorial resources
 - Non-negative
 - Mean → positive number
 - Modal value → zero
 - White-collar crime rarely prosecuted → resource constraints
 - Heteroskedasticity → mainly political indicators
 - Divided government, citizen’s ideology, government centralization and urbanization
 - Over-specified function better
For issue two: Lewbel (2012) approach

Generate valid instruments within the model

- Two conditions to be satisfied

1. Some covariates → correlated with first-stage error variance
 - Corresponds → standard relevance assumption

2. These covariates → uncorrelated with the product of first- and second-stage errors
 - Corresponds → standard exogeneity assumption
Intuition in the current context

- A common (unobserved) factor: discretionary power of bureaucrats (e.g.)
 - Affects both regulation and corruption
 - Mean zero
 - Used positively or abused
 - Independent of state-specific characteristics
 - Not legally binding → permissive but not mandatory
 - Its final impact on regulation → ↑ or ↓ by state-specific characteristics
 - Income inequality, education status, government centralization, divided government
Outline

1. Data
2. Econometric Challenges
3. Solutions
4. Results
5. Conclusion
Main results

Impact of Regulation on Bureaucratic Corruption: 1990-2013

<table>
<thead>
<tr>
<th>Variable</th>
<th>Traditional FE</th>
<th>FE-SFM</th>
<th>FE-IV</th>
<th>FE-SFM-IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulation</td>
<td>0.008</td>
<td>0.018†</td>
<td>-0.069*</td>
<td>-0.011</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.010)</td>
<td>(0.026)</td>
<td>(0.034)</td>
</tr>
<tr>
<td>N</td>
<td>1194</td>
<td>1194</td>
<td>1194</td>
<td>1194</td>
</tr>
</tbody>
</table>

State Covariates: Y

State-Fixed Effects: Y

Linear Time Trend: Y

Year-Fixed Effects: N

Underidentification: 0.042

Overidentification: 0.335

Rk F-Statistic: 11.665

Endogeneity Test: 0.082

Significance of Endog Var: 0.497, 0.054, 0.006, 0.742

Notes: † p<0.10, ‡ p<0.05, * p<0.01.
Outline

1. Data
2. Econometric Challenges
3. Solutions
4. Results
5. Conclusion
Question addressed:

- Does government regulation have a *causal effect* on bureaucratic corruption?

Analysis:

- Panel data for the U.S. → 1990-2013
- Controlled for associated econometric issues → state of the art econometric techniques

Found:

- Evidence of an *absence* of a causal link in the U.S.
 - Key → careful consideration of the associated issues
 - Implication → warning against ignoring such concerns
Theoretical prediction: public choice theory

- Public Choice Theory → a special interest group → own benefits
 - Capture Theory → industries → corruption causes regulation
 - reduce competition
 - retain monopoly power
 - Tollbooth Theory → government → regulation causes corruption
 - complicate procedures
 - greater opportunities to extract rents
Theoretical prediction: public interest theory

- Public Interest Theory → government a benevolent agent
 - address market failures
 - protect from monopoly power
 - ↑ competition ⇒ ↓ socially inferior outcomes (corruption)

- Effect of competition on corruption → ambiguous
 - rents available to each firm ↓
 - monitoring bureaucrats → difficult
Examples of anecdotal evidence

- Bribery offers ranging between $1500 and $24 million
 - Preferential treatment for awarding contracts and manipulation of bid
 - Federal Acquisition Regulation (Title 48, Chapter 1 of the Code of Federal Regulations)
 - Disclosure of bids, proposal information or any related information, and/or preferential treatment \Rightarrow violation of law
- Non-compliance with currency transaction reports (CTRs)
 - Liquor stores, grocery stores, car dealerships
 - Track cash transactions and monitor tax violation or illegal activity
U.S. scores lower than several other OECD countries (example: Sweden, Finland, United Kingdom, Belgium)

Also very close to some non-OECD countries (example: Uruguay)
Additional details on data

- Government employment data → U.S. Census Bureau
- Industry-level employment data → Quarterly Census of Employment and Wages (QCEW)
 - 2002 NAICS code
 - Transformed to 2007 NAICS using 2002 to 2007 concordances from Census Bureau
- Covariates → pooled from multiple sources
 - Income
 - Ideology
 - Income Inequality
 - Education
 - Unemployment
 - Centralization
 - Government Size
 - Divided Government
 - Urbanization
<table>
<thead>
<tr>
<th>Variables</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bureaucratic Corruption</td>
<td>1194</td>
<td>0.06</td>
<td>0.05</td>
<td>0.00</td>
<td>0.41</td>
</tr>
<tr>
<td>Regulation</td>
<td>1200</td>
<td>3.83</td>
<td>1.15</td>
<td>1.75</td>
<td>9.04</td>
</tr>
<tr>
<td>Income (in dollars)</td>
<td>1200</td>
<td>16707.12</td>
<td>2922.75</td>
<td>10170.06</td>
<td>27356.95</td>
</tr>
<tr>
<td>Ideology</td>
<td>1200</td>
<td>50.14</td>
<td>15.11</td>
<td>8.45</td>
<td>95.97</td>
</tr>
<tr>
<td>Income Inequality</td>
<td>1200</td>
<td>0.58</td>
<td>0.04</td>
<td>0.52</td>
<td>0.71</td>
</tr>
<tr>
<td>Education</td>
<td>1200</td>
<td>82.72</td>
<td>5.70</td>
<td>64.30</td>
<td>93.50</td>
</tr>
<tr>
<td>Unemployment (in hundreds)</td>
<td>1200</td>
<td>175630.40</td>
<td>232681.90</td>
<td>8074.00</td>
<td>2244326.00</td>
</tr>
<tr>
<td>Centralization</td>
<td>1200</td>
<td>0.66</td>
<td>0.08</td>
<td>0.44</td>
<td>1.00</td>
</tr>
<tr>
<td>Government Size (in dollars)</td>
<td>1200</td>
<td>3919.79</td>
<td>1201.33</td>
<td>1912.55</td>
<td>12700.09</td>
</tr>
<tr>
<td>Divided Government</td>
<td>1200</td>
<td>0.54</td>
<td>0.50</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Urbanization (in thousands)</td>
<td>1200</td>
<td>0.71</td>
<td>0.15</td>
<td>0.32</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Formally,

\[C_{st} = \beta_0 + X_{st}\beta_1 + \gamma R_{st} + \alpha_s + \delta t + \varepsilon_{st} - u_{st} \]

where

\[\varepsilon_{st} \sim N(0, \sigma^2_\varepsilon) \]
\[u_{st} \sim N^+(0, \sigma^2_u(h_{st})) \]
\[h_{st} \subseteq X_{st} \]
Assumption details: allocation of prosecutorial resources

- Theories in criminology:
 - System Capacity Theory: \uparrow in $u_{st} \Rightarrow \uparrow$ in C_{st}
 - Deterrence Theory: \uparrow in $u_{st} \Rightarrow \downarrow$ in C^*_st
 - $u_{st} \Rightarrow$ deviation of observed C_{st} from the ‘true’ unobserved C^*_st

- What determines u_{st}?
 - Decisions → Attorney’s Office
 - Attorneys → appointees of President
 - Appointment decisions → influenced by partisan factors
 - Partisanship → more in urban areas
Lewbel (2012) approach: formal representation

- First-stage:
 \[R_{st} = \pi_0 + X_{st}\pi_1 + \pi_s + \delta_1 t + \eta_{st} \]

- If there exists \(z_{st} \subseteq X_{st} \) such that
 \[\text{Cov}(z, \eta^2) \neq 0 \]
 \[\text{Cov}(z, \epsilon\eta) = 0 \]
 then \(\tilde{z} \equiv (z - \bar{z})\eta \) are valid instruments

- First condition → Breusch-Pagan test for heteroskedasticity
- Second condition → \(\tilde{Z} \) are valid instruments → standard IV specification tests
Define ε and η as:

\[\varepsilon_{st} \equiv \sigma_\varepsilon \lambda_{st} \]
\[\eta_{st} \equiv \sigma_\eta(z) \lambda_{st} \]

where

\[\varepsilon_{st} \sim N(0, \sigma_\varepsilon^2) \]
\[\eta_{st} \sim N(0, \sigma_\eta(z)) \]
\[\lambda_{st} \sim N(0, 1) \]

- λ_{st}: unobserved discretionary power of bureaucrats

- Effect on regulation $\rightarrow \uparrow$ or \downarrow by state-specific characteristics \rightarrow captured by $\sigma_\eta(z)$
Results for alternative specification

Impact of Regulation on Bureaucratic Corruption: 1990-2013

<table>
<thead>
<tr>
<th>Variable</th>
<th>Traditional FE</th>
<th>FE-SFM</th>
<th>FE-IV</th>
<th>FE-SFM-IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulation</td>
<td>0.024</td>
<td>0.033*</td>
<td>-0.028</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.012)</td>
<td>(0.022)</td>
<td>(0.037)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1194</td>
<td>1194</td>
<td>1194</td>
<td>1194</td>
</tr>
<tr>
<td>State Covariates</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>State-Fixed Effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Linear Time Trend</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Year-Fixed Effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Underidentification</td>
<td></td>
<td>0.225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overidentification</td>
<td></td>
<td>0.143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rk F-Statistic</td>
<td></td>
<td>9.127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endogeneity Test</td>
<td></td>
<td>0.109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significance of Endog Var</td>
<td>0.113</td>
<td>0.006</td>
<td>0.002</td>
<td>0.939</td>
</tr>
</tbody>
</table>

Notes: ‡ p<0.10, † p<0.05, ⋆ p<0.01.
Policy Relevance

- Crucial empirical question \rightarrow corruption may be
 - Unintended consequence
 - Deregulation \rightarrow not a solution then
 - Regulation \rightarrow welfare enhancing purpose (Public Interest Theory)
 - Alternative tool \rightarrow combat corruption
 - Reduced
 - Above tool \rightarrow may be counter-productive
 - No causal link at all
 - All the discussions \rightarrow irrelevant
 - Shift focus \rightarrow other plausible causes