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Hello.

I was drawn into the problem of recentering and rescaling parameters a couple of 
years ago, when one of our post-docs came to me with a simulation she wanted help 
with.  

She was writing for a Psychology journal that required all results to include 
standardized coefficients, so she needed to simulate both her original model and the 
standardized one.

She had her original model, and the descriptive statistics, but she had changed 
Universities and no longer had access to the data.

A main point of her model was it’s interaction term.

Her model was simple enough that it could be solved with high-school algebra, but it 
got me interested in the bigger question.
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Recentering and rescaling data can be thought of as just a change of coordinates, or a 
change of basis.

Looking at a graph like this one, it is fairly intuitive that the relationships among the 
data points, and with the fitted line have not changed, but we have changed how the 
axis is labeled.

Here, the predicted values and the residuals are exactly the same.

A change of basis in the data induces a natural and intuitive change of basis for the 
parameters as well.  So there is a linear transformation that takes our parameters, 
expressed in the original terms, and converts them to the new basis.
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Just looking at the numerical results, it is less intuitive that the Centered coefficients 
are a linear transformation of the Original ones.

But they are.

And we can write this linear transformation as a matrix.

I have written a little Stata code that generates this matrix, and uses it as a post-
estimation command to center and standardize model coefficients.
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I want to outline the math first, and then sketch the Stata programming.

And this will be a hand-waving overview.

We’ll start with ….
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Recentering parameters in the simplest regression model is very simple.
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The change to the precision matrix is equally simple.

If we call the parameter transformation matrix C, we can use it to change the basis for 
the precision matrix this way.

In all the transformations that follow, this is how we deal with the precision matrix, so 
I won’t talk about it any more.

But this is kind of a useful matrix.
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Recentering y only changes the intercept in the model, and we could write this a 
couple of different ways.

The real point is that it doesn’t change the parameter transformation matrix, and we 
won’t need to consider it much further.
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Rescaling a simple regression is as simple as recentering.

The matrix looks like this.
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Rescaling y again has no effect within the transformation matrix, it is just a scalar 
transformation of the whole thing.

So we won’t worry about y in what remains.
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Standardizing is just centering and then rescaling.

12



Factorial models add interaction terms, and this is where we start to build.

Variable-wise recentering.

We combine our building blocks with a “direct product” or “Kronekcer product”.

There is a theorem about change of basis in tensors that underlies this step.

The resulting linear transformation has a characteristic pattern.

(It also implies a particular order to our vector of parameters.)
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If you don’t work with Kronecker products a lot, let me remind you of how this 
operation works.

Each element of the first matrix is used as a scalar to multiply by the second matrix, 
and they are arranged as a partitioned matrix.
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Rescaling transformations work the same way as recentering transformations, and we 
can again use both together to generate standardizing transformations.
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A bigger factorial design just extends the process.

(Point!  1 .. 2 ..3)
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Many models are less than full factorial:  among other things we want to be able to 
consider models that are specified with an odd number of terms, and not just even 
numbers!

We get these transformations by whittling down the full factorial transformation.

Here, if we set the three-way interaction to 0, we essentially zero out a column of our 
transformation matrix.  We can simplify by removing both the column from the 
matrix and the parameter from the parameter vector.

If we do that, we are left with a row of nothing but zeros.  So we can further simplify 
by dropping that row, and the parameter that is produces.
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An additive model, then, comes out something like this.

Notice the characteristic pattern:  none of the first order terms change, only the 
intercept, the zero-th order term, is changed.
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Now let’s think about the intercept, or multiple intercepts.

If we start with reference coding, and use indicators for out categories, we may not 
want to recenter or rescale.

Then our transformation matrix is just expanded into block diagonal form, and our 
direct product is equivalent to a direct sum.
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So with three categories and two continuous variables, if I want to leave the model 
reference coded my transformation matrix looks like this.

One way to think of this is that I can create the transformation matrix for my 
covariates, and reuse it.

20



We could also consider other approaches to coding categorical variables.

I haven’t built this into my little package, so I’m just mentioning that there is nothing 
that requires us to stick with reference coding.
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I think it is useful to think about how this matrix relates to the “data centering” 
matrix you find in textbooks.
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Finally we turn to polynomial models.

We can recast the polynomial terms as interactions.
(This is something you cannot do in R, by the way.)

Notice that we have only 1 first order term instead of the usual 2 terms that we see in 
other factorial models.

What we have done is collected our “x” terms.
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So we will need to collect terms in our transformation matrix.

Begin with the usual Kronecker operation for a factorial model.
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We start to simplify like we did with the partial factorial models.

However, now zeroing out a column no longer leaves us with any rows of zeros.

This transformation still produces two 𝛽1
Δ terms.

So we collect those terms:  we add them together.

This is the result.

There are more terms to collect in higher order models, but this is the basic idea.
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(I’m not going to go through these in order, but just highlight those parts I thought 
were obscure yet critically useful.)
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One  issue with these transformation matrices is keeping track of which rows and 
which columns relate to which parameters.

In the matrix language, Stata’s Kronecker operator makes it easy to keep track of your 
terms.
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It returns two-part names, with the equation part from the first matrix, and the name 
part from the second matrix.  The parts are separated by a colon.
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In subsequent operations, the equation part is lost, so we need to move term names 
around if we want to keep them.
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Another thing I want to do is separate out intercept terms from all the higher order 
terms.

The Stata command _ms_pars_parts is an amazingly useful tool!

You give it the name of a term, and it parses it into parts.
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Once we have sorted the covariates from the categorical variables, and formed our 
transformation matrix for the covariates, we can use matrix extraction and 
substitution to plug the components into a larger parameter transformation matrix 
that accommodates the categorical terms.

Here, it is useful to realize that factor variable notation is built into matrix extraction 
and substitution.
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So I’ve put these pieces together into a little software routine, that works after 
regress and glm.
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