Regression Discontinuity Designs in Stata

Matias D. Cattaneo

University of Michigan

July 30, 2015

Overview

- Main goal: learn about treatment effect of policy or intervention.
- If treatment randomization available, easy to estimate treatment effects.
- If treatment randomization not available, turn to observational studies.
 - Instrumental variables.
 - Selection on observables.

• Regression discontinuity (RD) designs.

- ▶ Simple and objective. Requires little information, if design available.
- Might be viewed as a "local" randomized trial.
- Easy to falsify, easy to interpret.
- Careful: very local!

Overview of RD packages

https://sites.google.com/site/rdpackages

- **rdrobust package**: estimation, inference and graphical presentation using local polynomials, partitioning, and spacings estimators.
 - ▶ rdrobust: RD inference (point estimation and CI; classic, bias-corrected, robust).
 - ▶ rdbwselect: bandwidth or window selection (IK, CV, CCT).
 - rdplot: plots data (with "optimal" block length).
- rddensity package: discontinuity in density test at cutoff (a.k.a. manipulation testing) using novel local polynomial density estimator.
 - rddensity: manipulation testing using local polynomial density estimation.
 - rdbwdensity: bandwidth or window selection.
- rdlocrand package: covariate balance, binomial tests, randomization inference methods (window selection & inference).
 - rdrandinf: inference using randomization inference methods.
 - rdwinselect: falsification testing and window selection.
 - ▶ rdsensitivity: treatment effect models over grid of windows, CI inversion.
 - rdrbounds: Rosenbaum bounds.

Randomized Control Trials

- Notation: $(Y_i(0), Y_i(1), X_i), i = 1, 2, ..., n.$
- Treatment: $T_i \in \{0, 1\}, \quad T_i \text{ independent of } (Y_i(0), Y_i(1), X_i).$
- **Data**: $(Y_i, T_i, X_i), i = 1, 2, ..., n$, with

$$Y_i = \begin{cases} Y_i(0) & \text{if } T_i = 0\\ Y_i(1) & \text{if } T_i = 1 \end{cases}$$

• Average Treatment Effect:

$$\tau_{\text{ATE}} = \mathbb{E}[Y_i(1) - Y_i(0)] = \mathbb{E}[Y_i|T=1] - \mathbb{E}[Y_i|T=0]$$

• Experimental Design.

Sharp RD design

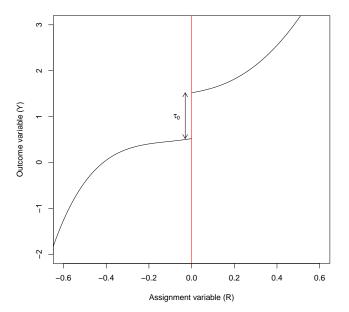
- Notation: $(Y_i(0), Y_i(1), X_i), i = 1, 2, ..., n, X_i$ continuous
- **Treatment**: $T_i \in \{0, 1\}, \quad T_i = \mathbf{1}(X_i \ge \bar{x}).$
- **Data**: $(Y_i, T_i, X_i), i = 1, 2, ..., n$, with

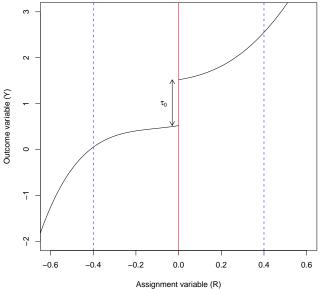
$$Y_i = \begin{cases} Y_i(0) & \text{if } T_i = 0\\ Y_i(1) & \text{if } T_i = 1 \end{cases}$$

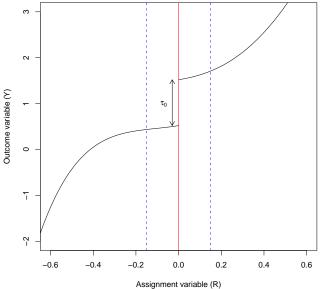
• Average Treatment Effect at the cutoff:

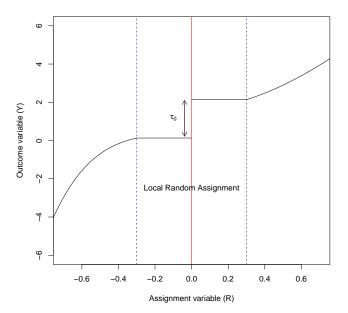
$$\tau_{\mathtt{SRD}} = \mathbb{E}[Y_i(1) - Y_i(0) | X_i = \bar{x}] = \lim_{x \downarrow \bar{x}} \mathbb{E}[Y_i | X_i = x] - \lim_{x \uparrow \bar{x}} \mathbb{E}[Y_i | X_i = x]$$

• Quasi-Experimental Design: "local randomization" (more later)









Empirical Illustration: Cattaneo, Frandsen & Titiunik (2015, JCI)

• Problem: incumbency advantage (U.S. senate).

• Data:

 $Y_i =$ election outcome.

 $T_i =$ whether incumbent.

 X_i = vote share previous election $(\bar{x} = 0)$.

 $Z_i = \text{covariates} (demvoteshlag1, demvoteshlag2, dopen, etc.).$

• Potential outcomes:

 $Y_i(0) =$ election outcome if had not been incumbent.

 $Y_i(1) =$ election outcome if had been incumbent.

• Causal Inference:

 $Y_i(0) \neq Y_i | T_i = 0$ and $Y_i(1) \neq Y_i | T_i = 1$

Graphical and Falsification Methods

- Always plot data: main advantage of RD designs!
- Plot regression functions to assess treatment effect and validity.
- Plot density of X_i for assessing validity; test for continuity at cutoff and elsewhere.
- Important: use also estimators that do not "smooth-out" data.

• RD Plots (Calonico, Cattaneo & Titiunik, JASA):

- Two ingredients: (i) Smoothed global polynomial fit & (ii) binned discontinuous local-means fit.
- Two goals: (i) detention of discontinuities, & (ii) representation of variability.
- Two tuning parameters:
 - ★ Global polynomial degree (k_n) .
 - ★ Location (ES or QS) and number of bins (J_n) .

Manipulation Tests & Covariate Balance and Placebo Tests

- Density tests near cutoff:
 - ▶ Idea: distribution of running variable should be similar at either side of cutoff.
 - Method 1: Histograms & Binomial count test.
 - Method 2: Density Estimator at boundary.
 - ★ Pre-binned local polynomial method McCrary (2008).
 - * New tuning-parameter-free method Cattaneo, Jansson and Ma (2015).
- Placebo tests on pre-determined/exogenous covariates.
 - ▶ Idea: zero RD treatment effect for pre-determined/exogenous covariates.
 - ▶ Methods: global polynomial, local polynomial, randomization-based.
- Placebo tests on outcomes.
 - ▶ Idea: zero RD treatment effect for outcome at values other than cutoff.
 - ▶ Methods: global polynomial, local polynomial, randomization-based.

Estimation and Inference Methods

- Global polynomial approach (not recommended).
- Robust local polynomial inference methods.
 - Bandwidth selection.
 - Bias-correction.
 - Confidence intervals.
- Local randomization and randomization inference methods.
 - Window selection.
 - Estimation and Inference methods.
 - Falsification, sensitivity and related methods

Conventional Local-polynomial Approach

- Idea: approximate regression functions for control and treatment units *locally*.
- "Local-linear" estimator (w/ weights $K(\cdot)$):

$$-h_n \leq X_i < \bar{x}: \qquad \qquad \bar{x} \leq X_i \leq h_n:$$
$$Y_i = \alpha_- + (X_i - \bar{x}) \cdot \beta_- + \varepsilon_{-,i} \qquad \qquad Y_i = \alpha_+ + (X_i - \bar{x}) \cdot \beta_+ + \varepsilon_{+,i}$$

- Treatment effect (at the cutoff): $\hat{\tau}_{\text{SRD}} = \hat{\alpha}_{+} \hat{\alpha}_{-}$
- Can be estimated using linear models (w/ weights $K(\cdot)$):

$$Y_i = \alpha + \tau_{\text{SRD}} \cdot T_i + (X_i - \bar{x}) \cdot \beta_1 + T_i \cdot (X_i - \bar{x}) \cdot \gamma_1 + \varepsilon_i, \qquad -h_n \le X_i \le h_n$$

- Once h_n chosen, inference is "standard": weighted linear models.
 - Details coming up next.

Conventional Local-polynomial Approach

- How to choose h_n ?
- Imbens & Kalyanaraman (2012, ReStud): "optimal" plug-in,

$$\hat{h}_{\mathrm{IK}} = \hat{C}_{\mathrm{IK}} \cdot n^{-1/5}$$

• Calonico, Cattaneo & Titiunik (2014, ECMA): refinement of IK

$$\hat{h}_{\rm CCT} = \hat{C}_{\rm CCT} \cdot n^{-1/5}$$

• Ludwig & Miller (2007, QJE): cross-validation,

$$\hat{h}_{CV} = \arg\min_{h} \sum_{i=1}^{n} w(X_i) (Y_i - \hat{\mu}_1(X_i, h))^2$$

• Key idea: trade-off bias and variance of $\hat{\tau}_{\text{SRD}}(h_n)$. Heuristically:

$$\uparrow \mathsf{Bias}(\hat{\tau}_{\mathsf{SRD}}) \implies \qquad \downarrow \hat{h} \qquad \text{and} \qquad \uparrow \mathsf{Var}(\hat{\tau}_{\mathsf{SRD}}) \implies \qquad \uparrow \hat{h}$$

Local-Polynomial Methods: Bandwidth Selection

- Two main methods: plug-in & cross-validation. Both MSE-optimal in some sense.
- Imbens & Kalyanaraman (2012, ReStud): propose MSE-optimal rule,

$$h_{\text{MSE}} = C_{\text{MSE}}^{1/5} \cdot n^{-1/5} \qquad \qquad C_{\text{MSE}} = C(K) \cdot \frac{\text{Var}(\hat{\tau}_{\text{SRD}})}{\text{Bias}(\hat{\tau}_{\text{SRD}})^2}$$

- IK implementation: first-generation plug-in rule.
- CCT implementation: second-generation plug-in rule.
- They differ in the way $Var(\hat{\tau}_{SRD})$ and $Bias(\hat{\tau}_{SRD})$ are estimated.
- Imbens & Kalyanaraman (2012, ReStud): discuss cross-validation approach,

$$\hat{h}_{\mathsf{CV}} = \arg\min_{h>0} \mathsf{CV}_{\delta}\left(h\right), \qquad \mathsf{CV}_{\delta}\left(h\right) = \sum_{i=1}^{n} \mathbf{1}(X_{-,[\delta]} \le X_{i} \le X_{+,[\delta]}) \left(Y_{i} - \hat{\mu}(X_{i};h)\right)^{2},$$

where

- $\hat{\mu}_{+,p}(x;h)$ and $\hat{\mu}_{-,p}(x;h)$ are local polynomials estimates.
- ► $\delta \in (0,1), X_{-,[\delta]}$ and $X_{+,[\delta]}$ denote δ -th quantile of $\{X_i : X_i < \bar{x}\}$ and $\{X_i : X_i \ge \bar{x}\}$.
- Our implementation uses $\delta = 0.5$; but this is a tuning parameter!

Conventional Approach to RD

• "Local-linear" estimator (w/ weights $K(\cdot)$):

$$-h_n \leq X_i < \bar{x}: \qquad \qquad \bar{x} \leq X_i \leq h_n:$$
$$Y_i = \alpha_- + (X_i - \bar{x}) \cdot \beta_- + \varepsilon_{-,i} \qquad \qquad Y_i = \alpha_+ + (X_i - \bar{x}) \cdot \beta_+ + \varepsilon_{+,i}$$

- Treatment effect (at the cutoff): $\hat{\tau}_{\text{SRD}} = \hat{\alpha}_{+} \hat{\alpha}_{-}$
- Construct usual t-test. For $H_0: \tau_{SRD} = 0$,

$$\hat{T}(h_n) = \frac{\hat{\tau}_{\text{SRD}}}{\sqrt{\hat{\mathsf{V}}_n}} = \frac{\hat{\alpha}_+ - \hat{\alpha}_-}{\sqrt{\hat{\mathsf{V}}_{+,n} + \hat{\mathsf{V}}_{-,n}}} \approx_d \mathcal{N}(0, 1)$$

• 95% Confidence interval:

$$\hat{I}(h_n) = \left[\ \hat{\tau}_{\text{SRD}} \ \pm \ 1.96 \cdot \sqrt{\hat{\mathsf{V}}_n} \
ight]$$

Bias-Correction Approach to RD

• Note well: for usual t-test,

$$\hat{T}(h_{\text{MSE}}) = \frac{\hat{\tau}_{\text{SRD}}}{\sqrt{\hat{V}_n}} \approx_d \mathcal{N}(\mathsf{B}, 1) \quad \neq \quad \mathcal{N}(0, 1), \qquad \mathsf{B} > \mathbf{0}$$

- ▶ Bias B in RD estimator captures "curvature" of regression functions.
- Undersmoothing/"Small Bias" Approach: Choose "smaller" h_n ... Perhaps $\hat{h}_n = 0.5 \cdot \hat{h}_{\text{IK}}$? \implies Not clear guidance & power loss!
- Bias-correction Approach:

$$\hat{T}^{\rm bc}(h_n, b_n) = \frac{\hat{\tau}_{\rm SRD} - \hat{\mathsf{B}}_n}{\sqrt{\hat{\mathsf{V}}_n}} \approx_d \mathcal{N}(0, 1)$$

 $\implies 95\%$ Confidence Interval: $\hat{I}^{bc}(h_n, b_n) = \left[\left(\hat{\tau}_{SRD} - \hat{\mathsf{B}}_n \right) \pm 1.96 \cdot \sqrt{\hat{\mathsf{V}}_n} \right]$

• How to choose b_n ? Same ideas as before... $\hat{b}_n = \hat{C} \cdot n^{-1/7}$

Robust Bias-Correction Approach to RD

• Recall:

$$\hat{T}(h_n) = \frac{\hat{\tau}_{\text{SRD}}}{\sqrt{\hat{V}_n}} \approx_d \mathcal{N}(0, 1) \quad \text{and} \quad \hat{T}^{\text{bc}}(h_n, b_n) = \frac{\hat{\tau}_{\text{SRD}} - \hat{B}_n}{\sqrt{\hat{V}_n}} \approx_d \mathcal{N}(0, 1)$$

• \hat{B}_n is constructed to estimate leading bias B.

• Robust approach:

$$\hat{T}^{\mathrm{bc}}(h_n, b_n) = \frac{\hat{\tau}_{\mathrm{SRD}} - \hat{\mathbf{B}}_n}{\sqrt{\hat{\mathbf{V}}_n}} = \underbrace{\frac{\hat{\tau}_{\mathrm{SRD}} - \mathbf{B}_n}{\sqrt{\hat{\mathbf{V}}_n}}}_{\approx_d \ \mathcal{N}(0,1)} + \underbrace{\frac{\mathbf{B}_n - \hat{\mathbf{B}}_n}{\sqrt{\hat{\mathbf{V}}_n}}}_{\approx_d \ \mathcal{N}(0,\gamma)}$$

• Robust bias-corrected t-test:

$$\hat{T}^{\texttt{rbc}}(h_n, b_n) = \frac{\hat{\tau}_{\texttt{SRD}} - \hat{\mathsf{B}}_n}{\sqrt{\hat{\mathsf{V}}_n + \hat{\mathsf{W}}_n}} = \frac{\hat{\tau}_{\texttt{SRD}} - \hat{\mathsf{B}}_n}{\sqrt{\hat{\mathsf{V}}_n^{\texttt{bc}}}} \approx_d \mathcal{N}(0, 1)$$

 $\implies 95\%$ Confidence Interval:

$$\hat{I}^{\rm rbc}(h_n, b_n) = \left[\begin{array}{c} \left(\hat{\tau}_{\rm SRD} - \hat{\sf B}_n \right) \ \pm \ 1.96 \cdot \sqrt{\hat{\sf V}_n^{\rm bc}} \end{array} \right], \qquad \hat{\sf V}_n^{\rm bc} = \hat{\sf V}_n + \hat{\sf W}_n$$

Local-Polynomial Methods: Robust Inference

• Approach 1: Undersmoothing/"Small Bias".

$$\hat{I}(h_n) = \left[\ \hat{\tau}_{\text{SRD}} \ \pm \ 1.96 \cdot \sqrt{\hat{\mathsf{V}}_n} \ \right]$$

• Approach 2: *Bias correction* (not recommended).

$$\hat{I}^{\rm bc}(h_n, b_n) = \left[\begin{array}{c} \left(\hat{\tau}_{\rm SRD} - \hat{\mathsf{B}}_n \right) \ \pm \ 1.96 \cdot \sqrt{\hat{\mathsf{V}}_n} \end{array} \right]$$

• Approach 3: Robust Bias correction.

$$\hat{I}^{\rm rbc}(h_n, b_n) = \left[\begin{array}{c} \left(\hat{\tau}_{\rm SRD} - \hat{\sf B}_n \right) \ \pm \ 1.96 \cdot \sqrt{\hat{\sf V}_n + \hat{\sf W}_n} \end{array} \right]$$

Local-randomization approach and finite-sample inference

- Popular approach: local-polynomial methods.
 - Approximates regression function and relies on continuity assumptions.
 - ▶ *Requires*: choosing weights, bandwidth and polynomial order.
- Alternative approach: local-randomization + randomization-inference
 - Gives an alternative that can be used as a robustness check.
 - Key assumption: exists window $W = [-h_n, h_n]$ around cutoff $(-h_n < \bar{x} < h_n)$ where

 T_i independent of $(Y_i(0), Y_i(1))$ (for all $X_i \in W$)

- In words: treatment is randomly assigned within W.
- Good news: if plausible, then RCT ideas/methods apply.
- Not-so-good news: most plausible for very small windows (very few observations).
- One solution: employ small window but use randomization-inference methods.
- Requires: choosing randomization rule, window and statistic.

Local-randomization approach and finite-sample inference

• Recall key assumption: exists $W = [-h_n, h_n]$ around cutoff $(-h_n < \bar{x} < h_n)$ where

```
T_i independent of (Y_i(0), Y_i(1)) (for all X_i \in W)
```

- How to choose window?
 - Use balance tests on pre-determined/exogenous covariates.
 - Very intuitive, easy to implement.
- How to conduct inference? Use randomization-inference methods.
 - O Choose statistic of interest. E.g., t-stat for difference-in-means.
 - Choose randomization rule. E.g., number of treatments and controls given.
 - Ompute finite-sample distribution of statistics by permuting treatment assignments.

Local-randomization approach and finite-sample inference

- Do not forget to validate & falsify the empirical strategy.
 - O Plot data to make sure local-randomization is plausible.
 - Conduct placebo tests.
 - (e.g., use pre-intervention outcomes or other covariates not used select W)
 - O sensitivity analysis.
- See Cattaneo, Frandsen and Titiunik (2015) for introduction.
- See Cattaneo, Titiunik and Vazquez-Bare (2015) for further results and implementation.