

Conditional Average Treatment-Effects Estimation using Stata

Liu Di (刘迪)

Principal Econometrician

Stata

Table of Contents

Motivation: Go beyond the ATE

- 2 Overview of the cate suite
- 3 Example 1: Exploit treatment-effects heterogeneity
- Example 2: Group average treatment effect (GATE)
- Example 3: Sorted group average treatment effect (GATES)
- Example 4: Treatment-assignment policy evaluation
- The magic AIPW scores

B) Summary

ATE versus CATE

• ATE is a popular way to measure the treatment effects.

$$\mathsf{ATE} = \mathbf{E}[\mathbf{y}(1) - \mathbf{y}(0)] \tag{1}$$

When each individual or group has different (heterogeneous) treatment effects, ATE may oversimplify the treatment effects.

• Conditional Average Treatment Effects (CATE) measure the treatment effects conditional on a set of variables.

$$CATE = \mathbf{E}[\mathbf{y}(1) - \mathbf{y}(0)|\mathbf{X}]$$
(2)

CATE measures the treatment effects as a function of \mathbf{x} .

Advantages of studying CATE

- It improves the understanding of the treatment-effect heterogeneity.
 - Are the treatment effects heterogeneous?
 - How do the treatment effects vary with some variables?
 - Do the treatment effects vary between prespecified groups?
 - Do the data discover groups where treatment effects are different?
- It helps to evaluate the treatment-assignment policy.
 - If we implement a treatment-assignment policy, how would the average outcome in the population change?
 - Which policy is better among a candidate set of policies?

Different versions of CATE

 $CATE = \mathbf{E}[\mathbf{y}(1) - \mathbf{y}(0)|\mathbf{x}]$

Depending on the definition of x, CATE helps us to understand the heterogeneous treatment effects at different levels.

- IATE: Individualized average treatment effects when x is individual characteristics (finest level of treatment effects).
- GATE: Group average treatment effects when x is a group (prespecified group analysis).
- **GATES**: Sorted group average treatment effects when x ranks IATEs (data-driven group hypothesis testing).

Table of Contents

- Motivation: Go beyond the ATE
- Overview of the cate suite
- 3 Example 1: Exploit treatment-effects heterogeneity
- Example 2: Group average treatment effect (GATE)
- 5 Example 3: Sorted group average treatment effect (GATES)
- Example 4: Treatment-assignment policy evaluation
- The magic AIPW scores

B) Summary

The cate suite (I)

Estimation:

- cate po estimates IATE function (partialling-out model)
- cate aipw estimates IATE function (AIPW model)
- cate ..., group(varname) estimates GATE
- cate ..., group(#) estimates GATES
- **Prediciton**: predict observational level IATEs, its standard error and CI

Visualization

- categraph histogram: histogram of predictions of IATEs
- categraph gateplot: plot of GATE or GATES
- categraph iateplot: plot of the IATE function

The cate suite (II)

Inference:

- > estat heterogeneity: Heterogeneous treatment-effects test
- estat gatetest: GATE or GATES heterogeneity test
- estat classification: Classification analysis of the data-driven groups
- estat ate: ATE for a subpopulation
- estat projection: IATE function linear approximation
- estat series: IATE function series approximation
- estat policyeval: Treatment-assignment policy evaluation

Methodological building blocks

- Generalized random forest: estimates the IATE function $\tau(\mathbf{x}) = \mathbf{E}[\mathbf{y}(1) \mathbf{y}(0)|\mathbf{x}]$ (Athey et al., 2019)
- Debiased/double machine learning: partialling-out and AIPW estimators + cross-fitting (Athey et al. 2019, Semenova and Chernozhukov 2021, Nie and Wager 2021, Kennedy 2020, and Knaus 2022)

Benefits of modern methods:

- Flexible IATE estimation without assuming parametric assumptions
- High-dimensional controls in both the outcome and the treatment models
- Guard against machine learning bias

Table of Contents

- Motivation: Go beyond the ATE
- 2 Overview of the cate suite
- 3 Example 1: Exploit treatment-effects heterogeneity
- Example 2: Group average treatment effect (GATE)
- Example 3: Sorted group average treatment effect (GATES)
- Example 4: Treatment-assignment policy evaluation
- The magic AIPW scores

B) Summary

Partial linear outcome model

 We want to estimate the effect of 401(k) eligibility on net financial assets.

 $\mathbf{E}[\operatorname{asset}(1) - \operatorname{asset}(0)|\mathbf{X}]$

where \mathbf{x} are individual characteristics such as income, age, education, pension, marital status, etc.

The outcome model is

asset = $e401k * \tau(\mathbf{X}) + \mathbf{g}(\mathbf{X}, \mathbf{W}) + \epsilon$

where w is high-dimensional controls.

So the potential outcomes are

asset(1) =
$$\tau(\mathbf{x}) + \mathbf{g}(\mathbf{x}, \mathbf{w}) + \epsilon$$

asset(2) = $\mathbf{g}(\mathbf{x}, \mathbf{w}) + \epsilon$

Thus,

$$\mathbf{E}[\text{asset}(1) - \text{asset}(0) | \mathbf{X}] = \tau(\mathbf{X})$$

Partialling-out estimator

asset =
$$e401k * \tau(\mathbf{X}) + g(\mathbf{X}, \mathbf{W}) + \epsilon$$
 (3)
 $e401k = f(\mathbf{X}, \mathbf{W}) + u$ (4)

Taking conditional expectation in eq. (3) on both sides

$$\mathbf{E}[\text{asset}|\mathbf{X}, \mathbf{W}] = f(\mathbf{X}, \mathbf{W}) * \tau(\mathbf{X}) + g(\mathbf{X}, \mathbf{W})$$
(5)

Eq. (3) minus (5) partialled-out $g(\mathbf{x}, \mathbf{w})$

$$\underbrace{\widetilde{\text{asset}} - \mathbf{E}[\text{asset}|\mathbf{x}, \mathbf{w}]}_{\text{asset}} = \underbrace{(e401\text{k} - \mathbf{f}(\mathbf{x}, \mathbf{w}))}_{e401\text{k}} * \tau(\mathbf{x}) + \epsilon$$
(6)

Estimate $\tau(\mathbf{x})$ by solving a local moment condition via generalized random forest.

$$\mathbf{E}\left[\alpha(\mathbf{x}) * \widetilde{\mathrm{e401k}} * \left(\widetilde{\mathrm{asset}} - \widetilde{\mathrm{e401k}} * \tau(\mathbf{x})\right)\right] = 0$$

Load data

. webuse assets3 (Excerpt from Chernozhukov and Hansen (2004))

- . global catecovars age educ i. (incomecat pension married twoearn ira ownhome)
- . global fvars incomecat pension married twoearn ira ownhome
- . global controls c.(educ age)#i.(\$fvars)
- catecovars refers to x
- controls refers to w

Using cate to estimate IATE

<pre>. cate po (ass > og</pre>	sets \$catecova	rs) (e401k)	, rseed(12345671)	controls(\$co	ontrols) noi
Conditional average treatment effects Estimator: Partialing out Outcome model: Linear lasso Treatment model: Logit lasso CATE model: Random forest		Number of obse Number of fold Number of outd Number of tree Number of CATH	ervations ds in cross-f come controls atment contro E variables	= 9,913 Fit = 10 = 47 Dls = 47 = 17	
assets	Coefficient	Robust std. err.	z P> z	[95% conf.	interval]
ATE e401k (Eligible vs		N. 40			
Not elig)	8107.563	1144.817	7.08 0.000	5863.763	10351.36
POmean e401k Not eligi	13902.88	838.5924	16.58 0.000	12259.27	15546.49

The output shows ATE. Under the hood, <code>cate</code> also estimates a nonparametric function for IATE via generalized random forest.

categraph histogram: IATE predictions histogram

IATE distribution has a fat right tail, so the ATE possibly overestimates the treatment effects.

estat heterogeneity: test of treatment-effects
heterogeneity

. estat heterogeneity

Treatment-effects heterogeneity test H0: Treatment effects are homogeneous

chi2(1) = 4.19 Prob > chi2 = 0.0406

We reject the null hypothesis of homogenenous treatment effects. In other words, treatment effects are heterogeneous.

estat projection: linear projection of IATE

. estat projection

Recei

_cons

1728.235

7880.15

Treatment-effects linear projection

	ects inical pr			F Pr R- Ac Rc	(11, 9901) = cob > F = -squared = dj R-squared = bot MSE =	5,913 5.12 0.0000 0.0047 0.0036 1.138e+05	
	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]	
age educ	164.3654 -440.1495	116.2698 472.5372	1.41 -0.93	0.157 0.352	-63.54715 -1366.419	392.2779 486.1197	
incomecat 1 2 3 4	-3093.247 2216.006 6116.068 18355.28	1981.377 2195.87 3244.506 5321.146	-1.56 1.01 1.89 3.45	0.119 0.313 0.059 0.001	-6977.15 -2088.346 -243.8253 7924.749	790.6558 6520.359 12475.96 28785.81	
pension ceives	4320.983	2439.087	1.77	0.076	-460.1247	9102.09	
married Married	-2103.475	3370.329	-0.62	0.533	-8710.007	4503.056	
twoearn Yes	-1957.787	4326.422	-0.45	0.651	-10438.45	6522.88	
ira Yes	-1284.949	3578.426	-0.36	0.720	-8299.392	5729.495	
ownhome Yes	2963.537	1630.756	1.82	0.069	-233.0765	6160.15	

0.22

0.826

-13718.46

17174.93

0 012

Number of obe -

categraph iateplot (I): IATE function plot

. categraph iateplot educ

Note: IATE estimated at fixed values of covariates other than educ.

Variable	Statistic	Value	Туре
age incomecat ira married ownhome pension twoearn	mean base base base base base	41.05891 0 0 0 0 0 0 0 0	continuous factor factor factor factor factor factor

Notice that $\tau(\mathbf{x})$ is a function of several parameters when $dim(\mathbf{x}) > 1$. To plot a multiple dimension function, we fix all the variables to specific values except educ.

categraph iateplot (II)

Think about this graph as a slice in a bread in a specific direction. Each point is $\tau(\mathbf{x})$ when \mathbf{x} takes a specific value. For example, $\mathbf{E}[\mathbf{y}(1) - \mathbf{y}(0)|\mathbf{educ} = 10, \mathbf{others} = \mathbf{fixed}].$

estat series: ATE over a continuous variable

. estat series educ, graph
warning: you have entered variable educ as continuous but it only has 18
distinct values. The estimates may differ substantially if you
inadvertently include a discrete variable as continuous
Computing approximating function
Minimizing cross-validation criterion
Iteration 0: Cross-validation criterion = 1.30e+10 Iteration 1: Cross-validation criterion = 1.30e+10
Computing average derivatives
Nonparametric series regression for IATE
Cubic B-spline estimation Number of obs = 9,913
Criterion: cross-validation
Robust
Effect std. err. z P> z [95% conf. interval]
educ 2532.489 1377.915 1.84 0.066 -168.1735 5233.152

Note: Effect estimates are averages of derivatives.

The output shows the marginal effects of education on the treatment effects.

estat series: ATE over a continuous variable

Notice that each point shows the ATE if the education is fixed at a specific value. For example, E[y(1) - y(0)|educ = 10].

Table of Contents

- Motivation: Go beyond the ATE
- 2 Overview of the cate suite
- 3 Example 1: Exploit treatment-effects heterogeneity
- Example 2: Group average treatment effect (GATE)
- Example 3: Sorted group average treatment effect (GATES)
- 6 Example 4: Treatment-assignment policy evaluation
- The magic AIPW scores

B) Summary

Using cate ..., group (varname) for GATE We want to know the effects of e401k on asset for each income category.

. cate aipw (assets \$catecovars) (e401k), rseed(12345671) /// controls (\$controls) group (incomecat) nolog Conditional average treatment effects Number of observations = 9,913 Estimator: Augmented IPW Number of folds in cross-fit = Outcome model: Linear lasso Number of outcome controls =

Treatment model: Logit lasso Number of treatment controls = CATE model . Random forest Number of CATE variables

assets	Coefficient	Robust std. err.	ill z	₽> z	[95% conf.	interval]
GATE		0	C. K.			
incomecat		1	14.			
0	4295.829	992.7063	4.33	0.000	2350.16	6241.497
1	628.2236	1690.636	0.37	0.710	-2685.362	3941.809
2	5562.85	1310.006	4.25	0.000	2995.284	8130.415
3	9058.087	2276.042	3.98	0.000	4597.125	13519.05
4	21275.42	4716.757	4.51	0.000	12030.74	30520.09
ATE				-7		
e401k						
(Eligible						
VS						
Not elig)	8164.364	1151.125	7.09	0.000	5908.2	10420.53
POmean						
e401k						
Not eligi	13910.87	842.0945	16.52	0.000	12260.39	15561.34

10

47

47 17

=

categraph gateplot: Visualize GATE

. categraph gateplot

estat gatetest: Test GATE homogeneity

. estat gatetest

Group treatment-effects heterogeneity test H0: Group average treatment effects are homogeneous

- (1) [GATE]Obn.incomecat [GATE]1.incomecat = 0
- (2) [GATE]Obn.incomecat [GATE]2.incomecat = 0
- (3) [GATE]Obn.incomecat [GATE]3.incomecat = 0
- (4) [GATE]0bn.incomecat [GATE]4.incomecat = 0

```
chi2(4) = 22.39
Prob > chi2 = 0.0002
```

Table of Contents

- Motivation: Go beyond the ATE
- 2 Overview of the cate suite
- 3 Example 1: Exploit treatment-effects heterogeneity
- Example 2: Group average treatment effect (GATE)
- 5 Example 3: Sorted group average treatment effect (GATES)
- 6 Example 4: Treatment-assignment policy evaluation
- The magic AIPW scores

B) Summary

Using cate ..., group(#) for GATES

<pre>. cate aipw (a > cont</pre>	assets \$cateco trols(\$control	ovars) (e401) .s) group(4)	k), rseed nolog	1(1234567	1) ///	
Conditional average treatment effects Estimator: Augmented IPW Outcome model: Linear Lasso Treatment model: Logit Lasso CATE model: Random forest			Numbe Numbe Numbe Numbe	er of obs er of fol er of out er of tre er of CAT	ervations ds in cross-f come controls atment contro E variables	= 9,913 it = 10 = 47 ls = 47 = 17
assets	Coefficient	Robust std. err.	z	₽> z	[95% conf.	interval]
GATES rank 1 2 3 4	14238.01 6565.533 6646.957 5190.023	3335.108 1482.069 1294.802 2487.992	4.27 4.43 5.13 2.09	0.000 0.000 0.000 0.037	7701.317 3660.732 4109.191 313.6494	20774.7 9470.334 9184.723 10066.4
ATE e401k (Eligible vs Not elig)	8164.364	1151.125	7.09	0.000	5908.2	10420.53
POmean e401k Not eligi	13910.87	842.0945	16.52	0.000	12260.39	15561.34

The group is defined by the IATE quantiles in a cross-fitting manner. So higher rank does not necessarily imply higher ATE.

categraph gateplot: Visualize GATES

. categraph gateplot

In this example, group 1 has higher ATE than group 4. We can test it!

estat gatetest: Test GATES homogeneity

```
. estat gatetest 1 4
Sorted group treatment-effects heterogeneity test
H0: Sorted group average treatment effects are homogeneous
( 1) [GATES]lbn.rank - [GATES]4.rank = 0
chi2(1) = 4.73
Prob > chi2 = 0.0297
```

- The test rejects the null hypothesis of homogeneous GATE between groups 1 and 4. So people in group 1 have higer ATE than those in group 4.
- Question: Do the people in groups 1 and 4 have different characteristics?

estat classification: Classification analysis

Question: Is a variable's mean different between groups 1 and 4?

. estat classification ownhome

Classification t test with equal variances

Group	Obs	Mean	Std. err.	Std. dev.	[95% conf.	interval]
1 4	2,482 2,469	.8585818 .4641555	.0069957 .0100387	.3485227 .4988145	.8448638 .4444703	.8722998 .4838407
Combined	4,951	.6618865	.0067239	.4731152	.6487047	.6750683
diff		.3944263	.0122248	TA.	.3704603	.4183923
diff : H0: diff :	= mean(1) - = 0	mean(4)	7	Degrees	t of freedom	= 32.2645 = 4949
Ha: d Pr(T < t	iff < 0) = 1.0000	Pr(Ha: diff != T > t) =	0.0000	Ha: d Pr(T > t	iff > 0) = 0.0000

. estat classification age

Classification t test with equal variances

Group	Obs	Mean	Std. err.	Std. dev.	[95% conf.	interval]
1 4	2,482 2,469	45.52337 37.2017	.1785502 .2236204	8.895315 11.11148	45.17325 36.7632	45.87349 37.6402
Combined	4,951	41.37346	.1547295	10.88729	41.07012	41.6768
diff		8.321667	.2859933		7.760993	8.882341
diff H0: diff	= mean(1) - = 0	mean(4)		Degrees	t = of freedom =	= 29.0974 = 4949
Ha: d Pr(T < t	iff < 0) = 1.0000	Pr(Ha: diff != T > t) = (0.0000	Ha: di Pr(T > t)	iff > 0 = 0.0000

Table of Contents

- Motivation: Go beyond the ATE
- 2 Overview of the cate suite
- 3 Example 1: Exploit treatment-effects heterogeneity
- Example 2: Group average treatment effect (GATE)
- 5 Example 3: Sorted group average treatment effect (GATES)
- 6 Example 4: Treatment-assignment policy evaluation
- The magic AIPW scores

B) Summary

Treatment-assignment policy

Policy value:

$$\Pi(\pi) = \mathbf{E} \left[\pi_i \mathbf{y}_i(1) + (1 - \pi_i) \mathbf{y}_i(0) \right]$$
(7)

where $\pi_i \in [0, 1]$ is a prespecified treatment-assignment probability for the *i*th observation. π_i is also referred to as the policy.

- Notice that, from IATE estimates, we can already estimate *y*(1) and *y*(0). Thus, policy evaluation is closely related to CATE.
- Compare two policies:

$$\Pi\left(\pi_{\boldsymbol{A}}\right) - \Pi\left(\pi_{\boldsymbol{B}}\right) \tag{8}$$

ATE is a special case of policy comparison

Let $\pi_A = 1$ and $\pi_B = 0$. Then

 $\begin{aligned} \mathsf{ATE} &= \mathbf{E}[\mathbf{y}(1)] - \mathbf{E}[\mathbf{y}(0)] \\ &= \mathbf{E}[\mathbf{1} * \mathbf{y}(1) + \mathbf{0} * \mathbf{y}(0)] - \mathbf{E}[\mathbf{0} * \mathbf{y}(1) + \mathbf{1} * \mathbf{y}(0)] \\ &= \Pi(\pi_{\mathcal{A}}) - \Pi(\pi_{\mathcal{B}}) \end{aligned}$

Thus, ATE is the contrast of the two special policy values. π_A means treat all the units, while π_B means treat none.

Lung transplant treatment-assignment policy evaluation

```
. webuse lung, clear
(Fictional data on lung transplant)
.
. global cvars bmip heightp o2amt lungals centervol walkdist ///
> bmid heightd distd lungpo2 hratio ischemict
. global fvars diabetesp karn racep sexp lifesvent assisvent ///
> o2rest raced smoked cmv deathcause diabetesd ///
> expandd sexd lungalloc genderm racem
.
. global controls c.($cvars)#i.($fvars)
.
. global catecovars c.($cvars) i.($fvars)
```

Treatment: Bilateral lung transplant vs. single lung transplant

Outcome: Forced expiratory volume in one second relative to a healthy person

Using cate to estimate IATE

. cate aipw (1 > cont	fevlp \$catecov trols(\$control	ars) (trans s) nolog	stype), r	seed (123	345671) //	/
Conditional average treatment effects Estimator: Augmented IPW Outcome model: Linear lasso Treatment model: Logit lasso CATE model: Random forest		Nui Nui Nui Nui Nui	mber of mber of mber of mber of mber of	observations folds in cross outcome contro treatment cont CATE variables	= 937 -fit = 10 ls = 454 rols = 454 = 46	
fevlp	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
ATE transtype (BLT vs SLT)	37.5243	.1646795	227.86	0.000	37.20153	37.84707
POmean transtype SLT	46.49502	.2025403	229.56	0.000	46.09805	46.892

Replicate ATE

.

- . generate treatall = 1
- . generate treatnone = 0
- . estat policyeval treatall treatnone

Treatment-assignment policy evaluation

Number of obs = 937

	2	Robust				
	Coefficient	std. err.	Z	P> z	[95% conf.	interval]
Value policy		10	Š.			
treatall	84.01932	.3085432	272.31	0.000	83.41459	84.62406
treatnone	46.49502	.2025403	229.56	0.000	46.09805	46.892
Contrast policy (treatall vs			Ch?			
treatnone)	37.5243	.1646795	227.86	0.000	37.20153	37.84707

Compare hypothetical policy with the observed policy

Hypothetical policy: Assigns patient to BLT if the patient's walking distance is greater than 500 meters in 6 mins and if the patient does not have diabetes.

. generate policy1 = walkdist > 500 & !diabetesp & !missing(walkdist)

. estat policyeval policy1 transtype Treatment-assignment policy evaluation

Number of obs = 937

	Coefficient	Robust std. err.	ź	₽> z	[95% conf.	interval]
Value policy policy1 transtype	72.66426 66.53891	.714435	101.71 129.20	0.000	71.26399 65.52954	74.06452 67.54828
Contrast policy (policyl vs transtype)	6.125348	.9130896	6.71	0.000	4.335725	7.91497

Table of Contents

- Motivation: Go beyond the ATE
- 2 Overview of the cate suite
- 3 Example 1: Exploit treatment-effects heterogeneity
- Example 2: Group average treatment effect (GATE)
- 5 Example 3: Sorted group average treatment effect (GATES)
- Example 4: Treatment-assignment policy evaluation
- 7 The magic AIPW scores
 - Summary

AIPW scores are useful

- We have PO and AIPW estimators. PO is for the partial linear model, and AIWP is for the fully interactive model. For both models, we can derive the AIPW scores.
- AIPW scores are essential computational elements in the IATE estimator (AIPW estimator), linear projection, series projection, GATE, GATES, and policy evaluation.

We will illustrate the use of AIPW scores using the fully interactive model.

Fully interactive model

$$\mathbf{y}(1) = \mathbf{g}_1(\mathbf{x}, \mathbf{w}) + \epsilon_1 \tag{9}$$

$$\mathbf{y}(0) = \mathbf{g}_0(\mathbf{x}, \mathbf{w}) + \epsilon_0 \tag{10}$$

$$\boldsymbol{d} = \boldsymbol{f}(\mathbf{X}, \mathbf{W}_2) + \boldsymbol{u} \tag{11}$$

The AIPW version of the potential outcomes are

$$\mathbf{y}(1)_{AIPW} = \mathbf{g}_1(\mathbf{x}, \mathbf{w}) + \frac{\mathbf{I}(\mathbf{d} = 1)(\mathbf{y} - \mathbf{g}_1(\mathbf{x}, \mathbf{w}))}{\mathbf{f}(\mathbf{x}, \mathbf{w}_2)}$$
(12)

$$y(0)_{AIPW} = g_0(\mathbf{x}, \mathbf{w}) + \frac{I(d=0)(y - g_0(\mathbf{x}, \mathbf{w}))}{1 - f(\mathbf{x}, \mathbf{w}_2)}$$
 (13)

We can estimate the function $g_1(\mathbf{x}, \mathbf{w})$, $g_0(\mathbf{x}, \mathbf{w})$, and $f(\mathbf{x}, \mathbf{w}_2)$, so we can also estimate $y(1)_{AIPW}$ and $y(0)_{AIPW}$. Let

$$\widehat{\Gamma} = \widehat{\mathbf{y}(1)}_{AIWP} - \widehat{\mathbf{y}(0)}_{AIWP}$$
(14)

The creative use of AIPW scores

• For IATE, solve $\tau(\mathbf{x})$ in

$$\sum_{i=1}^{N} [\alpha(\mathbf{x}_i)(\widehat{\Gamma}_i - \tau(\mathbf{x}))] = 0$$

We use $\widehat{\Gamma}$ as the dependent variable in a machine learning prediction problem.

• For GATE or GATES, we

regress $\widehat{\Gamma}$ on i.groupvar

Mean of $\widehat{\Gamma}$ within each group.

- For linear or series projection, we do linear or series projection of $\widehat{\Gamma}$ on the specific variables.
- For policy evaluation, we need to evaluate the weighted mean of the AIPW potential outcomes.

$$\Pi(\pi) = \mathbf{E}[\pi_i \mathbf{y}(1)_{AIPW} + (1 - \pi_i) \mathbf{y}(0)_{AIWP}]$$
(15)

Table of Contents

- Motivation: Go beyond the ATE
- 2 Overview of the cate suite
- 3 Example 1: Exploit treatment-effects heterogeneity
- 4 Example 2: Group average treatment effect (GATE)
- 5 Example 3: Sorted group average treatment effect (GATES)
- Example 4: Treatment-assignment policy evaluation
- The magic AIPW scores

B Summary

Discussion

What can cate do ?

- Study treatment-effects heterogeneity at different levels (IATE, GATE, and GATES) in cross-sectional data
- Policy evaluation
- Nonparametric (GRF), semiparametric (LASSO), or parametric (add linear interaction term) estimation of IATE
- Cross-fitting to guard against machine learning mistakes

The features that I wish to have in the future:

- Clustered data and panel data
- Optimal policy evaluation

Thank you! Your suggestions?

References

- Athey, S., J. Tibshirani, and S. Wager. 2019. Generalized random forests. *Annals of Statistics* 47: 1179–1203.
- Kennedy, E. H. 2020. Towards optimal doubly robust estimation of heterogeneous causal effects . URL

http://arxiv.org/abs/2004.14497.

- Knaus, M. C. 2022. Double machine learning-based programme evaluation under unconfoundedness. *Econometrics Journal* 25: 602–627.
- Nie, X., and S. Wager. 2021. Quasi-oracle estimation of heterogeneous treatment effects. *Biometrika* 108: 299–319.
- Semenova, V., and V. Chernozhukov. 2021. Debiased machine learning of conditional average treatment effects and other causal functions. *Econometrics Journal* 24: 264–289.