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The Synthetic Control Method

@ The synthetic control method (SCM), proposed by Abadie and
Gardeazabal (2003, AER), is a powerful tool for estimating average
treatment effects (ATE), and gains increasing popularity in fields such
as statistics, economics, political science, and marketing.

"The synthetic control approachr...”is.arguably the most important
innovation in the policy evaluation ditérature in the last 15 years."

—Athey and Imbens (2017, JEP)
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We code the treatment status of unit / using the binary variable D;,
so D; =1 if i is treated and D; = 0 otherwise.

We adopt the potential outcomes framework proposed by Rubin
(1974, JEP). Let Yi; and Y(; be random variables representing
potential outcomes under treatment and without treatment,
respectively, for unit i, and“the realized outcome is defined as
Y: = DiY1i + (1 — Dj) Yoi:

Let X; be a (d x 1) vector of pretreatment predictors.

Then, we observe (Yi, Xi) = (Yig Xi) for n treated units and

(Yi, Xi) = (Yoi, Xi) for ng control units? Combining these observables,
we obtain the pooled dataset, {(Y;, Dj, X;)}7_;, with n = ng + n.
For simplicity, we reorder the observations so that the ng control units
come first.
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o The quantity of interest is the treatment effect on the treated
units, A; = Yy, — Yy, for i = ng+1,...,n, and the average
treatment effect is given by

n

A= D (Vi = Yoi).

n
Lo+t

o The difficulty in estimating”A s that | { Yy, }/_, . | are not

observable, which has been a key ‘issue for researchers since the paper
by Rubin (1974).

o Now, the SCM solves this problem by assuming that a combination of
control units may approximate the characteristics of the treated unit
well, and this combination can be used to estimate { Yo}/, |-
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The Synthetic Control Method

Concretely, for each treated unit i = ng+ 1,...,n, we can construct a
synthetic control, which is a combination of control units represented by a
no x 1 vector of weights Wi = (W, ..., W/, ). Given a set of weights,
W, the synthetic control estimator of Yj; and A can be written as
no
Yo=Y WY, (1)
=1
and
1 n no 1 n 1 no
A= — A 2y | =2 AN Y
Ase D YWY s D Vi o) 9
i=ng+1 j=1 i=ng+1 j=1

* n *
where af =ng > L W /m.

Question: How to choose the weights {W";}, n x ny parameters?
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The SCM proposes to choosing W' such that the synthetic control
resembles the corresponding treated unit i in terms of the values of the
predictors of the outcome variable. Mathematically speaking, the SCM
seeks the solution to the following question:

.
no no
WieRno Xi = Z WisX. | V| Xi- Z Wi ;X
Jj=1 j=1
no
st W1 >0,..., Wi >0/ and Y W;=1, (2)
j=1

where V' is a d X d matrix with the elementson the diagonal being all
positive and reflecting the relative importance for each predictor.

8/69



@ The SCM has been widely applied in empirical research in economics
and other disciplines. The paper by Abadie (2021, JEL) presents a
thorough discussion on the advantages and the feasibility of the SCM.

o In the SCM, the weights are'restricted to be non-negative and sum to
one, which is called as the"convex hull constraint. This constraint
might not be needed nor necessarily satisfied in many cases. Several
modifications have been proposed to relaxing this constraint (see,
e.g., Doudchenko and Imbens (2016, WP), Li (2020, JASA), Kellogg
et al. (2021, JASA)).
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o For more econometric/statistical theories and inferences on the SCM
and its variants, the reader is referred to the paper by Li (2020) and
the special section in Journal of The American Statistical Association
in the last issue of 2021 on synthetic control methods edited by
Abadie and Cattaneo (2021, JASA), which covers some new research
directions on synthetic control estimation and inference, including the
following four aspects:

factor models and matrix.completion methods proposed by Agarwal et
al. (2021), Athey et al’(2021) and Bai and Ng (2021),

time series analysis approach ‘studied by Ferman (2021) and Masini and
Medeiros (2021),

extensions, modifications and generalizations investigated by Abadie
and L'Hour (2021), Ben-Michael, Feller-and Rothstein (2021) and
Kellogg et al. (2021), and

uncertainty quantification and inference explored by Cattaneo, Feng
and Titiunik (2021), Chernozhukov, Wiithrich and Zhu (2021), and
Shaikh and Toulis (2021).
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o It is easy to see from (1) that the SCM assumes implicitly that the
prediction function of Y{; given X; is a linear or close to linear
function of X;, which might not be satisfied in real applications.

o Also, as pointed out by Abadie (2021), the optimization problem in
(2) might not have a unique solution. Indeed, there are an infinite
number of solutions.

o Furthermore, it is important to’note-that for any particular data set
there are not ex ante guarantees on the size of the differences
Xi = 3272, WijX; in (2). When these differences are large, the papers
by Abadie, Diamond and Hainmueller (2010, JASA) and Abadie
(2021) recommend against the use of synthetic controls because of
the potential for substantial biases.
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o When ng is large, the computing burden to find the "optimal" weights
in (2) is troublesome. To see this issue, in our empirical study, we will
report the computing time based on our computing facility.

o In addition to the above computing issue, sparsities might exist
among {W,J .. To address these challenges, the paper by Abadie
and L'Hour (2021) propose’a synthetic control estimator, termed as
penalized synthetic control method (Pen-SCM), that penalizes the
pairwise discrepancies between the characteristics of the treated units
and of the corresponding synthetic‘control units. That is to add the
following penalty term into (2)

no

A WilIX = X1,
j=1
which is different from the conventional LASSO type methods

imposing the penalty on parameters.
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A Quasi Synthetic Control Method for Nonlinear Models

Quasi Synth’?‘tic Control Method
%
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Model Setup

Assume we observe n units, some of which are exposed to the treatment

or intervention of our interest. For each unit i =1,..., n, denote
o D; ={0,1} as the binary treatment variable

o Yi; and Yy, as the potential outcomes under treatment and no
treatment, respectively

o X; € RY as the d x 1 vector of pre-treatment predictors of Yp;!

Under the potential outcomes framework; the observed outcome Y;

satisfies Y; = D;Y1; + (1 — D;) Yo;. Thérefore, we obtain a pooled data set

{\/ia DI'7XI'}?:1-

1d might be very large.
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A Quasi Synthetic Control Method for Nonlinear Models Model Setup
Model Setup

Denote ny and ng as the number of the treated observations and the
untreated observations, respectively. For simplicity, we reorder the data so
that the ng untreated observations come first.

The quantity of our interest is the average treatment effect on the treated
(ATT):

AZE(A,‘)ZE(YH—YO;)7 i=no—|—1,...,n. (3)
Still, the difficulty in estimating A; and-A-is.that Y, is not observable for
i=nyp+1,...,n
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Model Setup

o To estimate the unobservables {Yy;}_, ., we assume that the
prediction function based on the conditional expectation of Y{; given
Xi, denoted by m(x) = E(Ypi|Xi = x), is in an index form as
m(x) = m(B, x) = m(z), where z = 3] x € R.2

o Then, fori=ny+1,....0n;
E(Yoi) = E1E(Ygi|Xi)] = E [E(Y0ilZi)]

where Z; = 3] X; for a given fy,:s0 that the estimation of m(z) is
one-dimensional, and the so-called ¢urse of dimensionality in a
nonparametric smoothing can be avoided.

2This covers a linear model as an special case. Of course, when d is small, one can
estimate directly m(x) by using a nonparametric method. Therefore, this case is much
easier.
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A Quasi Synthetic Control Method for Nonlinear Models Identification and Estimation Procedures

Identification

o From the above discussion, our method needs to identify both the
unknown index vector 3y and the function m(z). In fact, it is a
two-step procedure.

o Clearly, given zg = 3" x, the function m(z) can be identified
nonparametrically under certainZassumptions.

o To identify Sy, we introduce the following assumption.
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Identification and Estimation Procedures
|dentification of the First Step

Denote mc(x) = E[Yo; | X; = x] for j=1,...,ng and my(x) = E[Yo; | X; = x]
fori=ng+1,...,n.

Assumption 1 %

Assume that m.(x) = mt&!" ), where z = ﬁ(—)rx and By € B, where
B={BeRe: B >0,||8]|* 253¥A, 5% = 1}. Furthermore, assume that
the second order derivative of m(’dof?;&ntinuous.

NS

Yo 5\?‘

By Assumption 1, we can identify 3y usirf qg}{YJ,XJ}J”il
‘e
]
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Identification and Estimation Procedures

As introduced before, E(Yy;|X; = x) = m(37 x) is identical to the
well-known single index model (SIM), which assumes Yp; = m(BTX;) + €,
where E(ej|X;) = 0 and 3 is called the parametric index vector.

o Estimation of 3 is \v ttractive both in theory and practice.
o The papers by Po%i (1989, ECTA) and Hadle and Stoker
(1989, JASA) propo t@@erage derivative estimation (ADE)

method, which involves e&jmaging a high-dimensional density
function and its derivative. -¢, %y
0.4

@ The paper by Ichimura (1993, poses the semiparametric least
squares (SLS) estimation. But the’oB rization is very difficult to
impl % 9%

plement. et ?)

o The paper by Xia et al. (2002, JRSSB) 8roposes the minimum
average variance estimation (MAVE) method for the dimension
reduction problem, which can be applied to the SIM directly.

19/69



A Quasi Synthetic Control Method for Nonlinear Models Identification and Estimation Procedures

Estimation of the First Step: the MAVE Method

Under the least squares loss,

Bo = arg min E[Y — E(Y|3T X)) (4)
BER
In our setting, we have d {YJ,XJ}J’E1 Motivated by the local linear
smoothing technique, %Ie analogue of (4) can be written as
Bmave = arg min @f — aj — BT (Xi — X)Pwy}
BeRrd j
ng ng O "4 ~
= arggrenﬂ@ PDIINY 4a, BT (X — X)) w (5)
ab; Jj=1i=1 06 ‘q)

where a5 = m(3TX), by = Om(u) /0l wis = Kn(T (X — X))
with Kp(v) = K(v/h)/h and K(-) being a kernel function as well as h
being the bandwidth.
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Identification and Estimation Procedures
Estimation of the First Step: the MAVE Method

o The MAVE method solves (5) iteratively. First, given 3, optimize (5)
with respect to a; and bj, and then, given a; and b;, optimize (5)
with respect to B

@ During the iteration, ( ts wj; are updated simultaneously
accroding to the latest v J
\\

'<§

@ The paper by Xia (2006, ET) e asymptotic distribution of
the estimator of 3y based on the , nd shows that it can
achieve the information lower bound facﬁﬁ@emlparametrlc sense.
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A Quasi Synthetic Control Method for Nonlinear Models Identification and Estimation Procedures
The Second Step Estimation

Under Assumption 1, for any z, we can also derive the Nadaraya-Watson
estimator of m(z):

Z Gj.h( (6)

where ¢ 4(2) = Kn(Z; - 5;5* 2(Z) — 2), Kn(u) = K(u/h)/h, and
K(u) is a kernel functlon and /e bandW|dth

(,
Consequently, we can derive an mfe&b 1§\st|mator of Yp;:

/

. ‘ﬁ\
Y(] :m ZCJh O—|—1 (7)

3This estimator is infeasible because it is based on the unknown quantities {Zj};’il
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A Quasi Synthetic Control Method for Nonlinear Models Identification and Estimation Procedures

The Second Step Estimation

Then, the infeasible estimator of A, A is given by

5 1 n no no
A=— > ovi- n(Z) Z Y—anjhv,(s)
b not1 i i=no+1 0

where a; , = ap(Z;) and

f')
1 4\ 1
an(z) = — Z K {?{;3 —Z W(Zi — )
m i=ng+1 Oo'<r N0 I=
Clearly, (8) is similar to (1) and aj p, in (B@milar to a7 in (1). Therefore,

our method is called | quasi synthetic con @Inﬁ{ghod (QSCM). | Note that
the key difference between SCM and QSCM 12 that the SCM is only valid
for linear models but the QSCM can be accommodate nonlinear models.

-1
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A Quasi Synthetic Control Method for Nonlinear Models Identification and Estimation Procedures

Summary of the Estimation Procedure

We summarize our estimation procedure based on above discussion.
o Step 1. Using data {Y], X;}12,, estimate the index vector 3y by the
MAVE method, and denote the estimator as B

o Step 2. Set 2 — & j= 1,...,np and Z; = BT X; for
i=ny+1,.
o Step 3. Plug {Z} ©, and (lZg\ 1 into (8), and compute the
feasible estimator of A as %
- 1 <
A:Ei:%l Yll chh T %lyll__zajh

where & = 24(Z) = - 20, 41 Kn(Zi = Z)7s S0, Kn(Zi = 2))]

Ying Fang (XMU) 24 /69



A Quasi Synthetic Control Method for Nonlinear Models  [VASY 1ol (o1l 2I7eTo11 447

Notations

To derive the asymptotic property of the proposed estimator in (9), some
assumptions are needed. ore presenting these assumptions, we first
introduce some notatiqy®.

7,

o Let f.(z) be the density‘ﬁf,%rj =1,...,np and f(z) be the
density of Z; for i = ng + "O'@§

o Define C; to be the support ofoﬂz% =1,...,ny and Cy to be the
support of Z; for i =ng +1,..., g @}

% S
.o’)
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Asymptotic Property

{Y()j, Y1j7)<j}_],.721 for the control group and {Y(),', Yii, X;}?:nOJrl for the
treated group are independent and identically distributed, respectively.

Assume that E(|Yg;|®) ord =0,1 and some s > 2. We also assume
that Co C Cy and f.(z 0 for z € Co.
Y
W

Assume that the second order of deifSibve of r(z) is bounded, where
r(z) = f(2)/f-(z), the ratio function%g,t%facterize the distributional

changes of the single index between the }and control units.?
AR

“Indeed, r(z) is interpreted as “acceptance probaﬁﬂlty" in rejection sampling instead
of “importance re-weighting", or covariate shift in the machine learning literature,
especially in marketing science.
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A Quasi Synthetic Control Method for Nonlinear Models  [VASY 1ol (o1l 2I7eTo11 447

Assumptions

Assumption 4

The kernel function K(-) is symmetric, bounded and positive. Further
assume that the first derivative of K(-) is continuous.

Assumption 5 ,
Assume that ng h*> — W—) 0, and ny/ny — n as ny — oo, where

0<n<oo. ‘;2/;5«
@j‘
Assumption 6 /:*"

Assume that for any estimate of 3y Q%%/ts the following expression
_ _ N
Vi (8- fo) = W_O;qxxj, ) ?ep@% < N(0,%5)  (10)

for some function ¢(-) with variance X5, =Var(¢(X;j, Y;)) forj =1,..., no.
2769



aeel R
Asymptotic Property

Let gj = Yo; — (YOJ | X;) for j =1,...,ng. Define o7 = Var[Yy; — m(Z;)] for

i=ng+1,...,n 03 = Var[r(Zj)ej] for j=1,...,no, and 03 = 6, $,0, with
0,=E [m’(Z,)X,T] for i =ng+1,...,n, where m'(z) is the first order derivative
of m(z), and g, is given i umption 6. Define Xo3 =Cov(¢(X;, Y)), r(Z))e;).

Theorem 1 /'//;
B,

Under Assumptions 1 - 6, we hﬁeé}(i*

"
vir (A~ AYQ P85, 03).
RZARTA
2 2 2, 2 T ‘C, 4
where| 0% = 0% + 1 (03 + 05+ 26, Do3| | %

Ying Fang (XMU) 28 /69



Asymptotic Property

It follows from Theorem 1 that the asymptotic variance consists of four
terms.

o The first term in 0% stands for the variance of Yi; — m(Z;).

o The second term is aractering the variation for estimating Yy;.

o The third term o3 ariation carried over from the estimation of
p W

@ The last term depicts the"&%&ion between the first step and the
second step. ’(/09\;‘

This is typical for a two-stage proce &E%waddressed in Cai, Das, Wu and

Xiong (2006, JoE). Also, one can see th8 ining a consistent estimate
of O'ZA is not a straightforward task due to ita c‘@%plicated form of
involving several terms. However, a Bootstrap procedure can overcome
possibly this difficulty.
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Bootstrap Inference

To facilitate an easy inference, we propose the following (hybrid)
Bootstrap procedure to estimate O'QA

o Step 1. Given {Y}, X;}°; and {Y;, Xi}]_, .1, estimate the treatment
effect as A.

o Step 2. Generate %ootstrap sample {(Xj, Y")}/2, of the

control group, where Y”lrz;-:%‘g\ Xj) +€f with

m(BTX) = S (3T X TR0V S0 Kn(3TXG — ATX),
e = Y, — m(ﬂTX )]&;, and {?f} elng i d random disturbances
with mean zero and unit varlance @

o Step 3. Generate the nonparametric Boo)strap sample
{(X, Yi) -y 11 of the treated group by drawing with replacement
from the original dataset {(X;, Yi)}_, 11-
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Bootstrap Inference

o Step 4. Using the wild Bootstrap sample {(Xj, Y;*)}/2; to re-estimate
the index parameter as 3*. Set 21* = XJTB* for j=1,...,ng and
Z-* = (X,-*)Tﬁ* for i=ng+1,...,n. Then, obtain the quasi synthetic
control estimator A*

A 1 . Ak (5 * - 3 *
Se g X NG = 1 Y S
i=no+1 Z/\ i=ng+1

where ‘1:'4\

j,h - ah(Z*) = nl = n0+1 6?%
o Step 5. Repeat steps 2 to 4 a Iarg&zgﬁ\ ,er of times, say, B times to
obtain {A*(® )18 . Then o can be %t?r@ed as
B
GA = (AP — A)Q/(B - 1).
b=1

[ 0 Kn(ZF — 2} )} -
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A Quasi Synthetic Control Method for Nonlinear Models Bootstrap Inference

Bootstrap Theory

Theorem 2

Under the conditions imposed in Theorem 1, conditional on the original

sample {Xj, Y;}72, Q”W}Ln@ 41 and in probability, one has

y@%@) 4 N0, 03),

2, 2

where azA is defined in Theorem ]6/ ‘\§
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When the number of predictor variables is large, it is common that sparsity
exists so that it is necessary to discriminate relevant variables from
irrelevant variables, since the inclusion of irrelevant variables may harm
estimation accuracy and?del interpretability.

Generally, now we consi dy, < 1 vector of covariates X, which means
that the dimension of the co¥ari changes with the sample size of the
control group ng. That is dy = d@@g: O(n{) for some 0 < v < 1, see
Assumption 10 later on assumptib?ognﬁ@ which depends on ng.

e 7,

For the ultra-dimensional case that dj 9@ Ay, do = O(exp(n%)) for
some £ > 0, one need to use some screeni goaﬂ'\?roach first, such as the
sure independence screening (SIR) method in*Fan and Lv (2008, JRSSB),
and then, use a penalized method.
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QSCM With a Diverging Number of Covariates

Assume that the dimension of the covariates diverges with the sample size
of the control group and denote it as d,,. Without loss of generality, we
assume that the first s components of ) are non-zeros, i.e., 5y is

partitioned to By 4 = (o ..,BQS)T and 3y 4c = (0,... ,0)T with
dn, — s components, w% {1,---,stand AS={s+1,--,dp}.

7
To select the relevant covari ;\?p&\ e can add a penalty term to the
least-squares-form loss function@s {):*

no OO’;% dng
SOV — (8T X)) %@@IMGM, (11)

j=1 k= ?>
where = (51, - ,Bdno)T, m(-) is an estimate of the link function m(-),
PAnO(') denotes a penalty function and A, is the penalty parameter.
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QSCM With a Diverging Number of Covariates

o For a given 3, we can obtain m(B3"X;) using the local linear
smoothing method. Specifically, we let

(aj7 ) = argmm { —a;— b; BTX, BTXJ)]QK;,1 (BTX/ — BTXJ-)} ,
(12)
where Kp, (v 1 /71 K(-) is a kernel function and hy is the

bandwidth. Then we a%ﬁﬁT)g
o For the penalty function, we (({ e SCAD penalty and modify
the objective function in (10) as ~,@,§\
(o)
no % qo\ dng

fscap = argmin 3 3 [, - mmﬂ +noZpSCAD £
Jj=1
(13)
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VAl SEade . QSCM With a Diverging Number of Covariates

SCAD Algorithm

o Step 1. Given data {YJ,XJ}J'E1 calculate the initial estimator 3 by
the MAVE method. Set t = 1.

o Step 2. For t > 1, given A=) calculate

Ch B}f‘”w' Y= - ()T - )"

o Step 3. Given é}til) and B!

) , upR % e estimate of 3y by letting

I

d,
0 e N 2 0
[Yj—é}f‘l)—b}* RICE:S 1))TX,-] +noZp§f§\D(|ﬁkl)}
k=1

j=1

3

BeBo

B(t) = arg min {
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VAl SEade . QSCM With a Diverging Number of Covariates

SCAD Algorithm

o Step 4. Let 3(8) = sgn(Bit))ﬁA(t)/|\/3’(t)|| and t = t 4+ 1. Repeat Steps
2 and 3 until convergence reaches. Finally, let BSCAD = B(t).

In summary, we can fir%{to select relevant covariates and obtain
the control group and the treated

Bscap, then, set Z; = e, g
group, respectively. Finally, we éa imate the treatment effect using

(9), denoted by ASCAD. Oo’;ﬁ”

37/69
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VAl SEade . QSCM With a Diverging Number of Covariates

Asymptotic Property
To derive the asymptotic property of Ascap, we make following
assumptions.

Assumption 7

Forj=1,....no, Yo; =WOTXJ) +¢j, where E(gj|X;) = 0 and
E(EﬂXJ) < M for som

| )
Assumption 8
Denote By,—1 = (Bo,2,- -, Bo dng 5. J define a dp, X (dn, — 1) matrix as
Jg, = (C 5.~ 1/1Vd IJBO -1l ) where I?Q‘yﬁ the order dp, — 1 identity

matrix. Assume that the smallest elgen\?z)g?éf , 2Ja, is larger than a
positive constant c, where )ﬂ

» = E{[m(Z)PIEX1Z) - XIEX1Z) - X] "}
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QSCM With a Diverging Number of Covariates
Variable Selection Theory

Assumption 9

Forj=1,...,ng, the marginal density ofBTXJ- is positive and uniformly
continuous in a neighborhood of 3.

Assumption 10

dny /N0 b3 — 0 and ng h} IQ&@ goes to infinity.

Denote t";’

WSCAD—E{m( 0 Xi)* g, L[E(X J.A%é& X, Al[E(X;,4180 4X,.4)
—Xj. Al Jﬁo,A}v where X; 4 = (X1, - 63¢.}and Jg, denotes the

s X (S— 1) matrix ( 60’4 1/° 1= HBOA 1 ) Wlth BOA—I = (50’2,...,60,5)1—.
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VAl SEade . QSCM With a Diverging Number of Covariates

Variable Selection Theory

Theorem 3

Under Assumptions 4 and 7 - 10, if the tuning parameter \p, satisfies
Ang — 0 and \/no/dn, Any — 00, then, with probability approaching 1, we

have: ,

(a) Sparsity: Bscap,ac
(b) Asymptotic representat/égfﬁ 23

BSCAD,A_/BO,A— ZJBOAW&)’-%JW Bo Xi){Xj.a — E| JA|/30 AX.al}ej
n —1/2 (Q >,
OP( ) 06 q‘l?>

— 364X, V) + oy %
j=1
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QSCM With a Diverging Number of Covariates

From Part (b) of Theorem 3, it follows that

VTo(Bscap.a — Bo,a) % N(0, Zg,.4), where Y5, 4 = Var(¢.a(X;, Y})) for
j=1,...,n. It also indicates that Bscap satisfies Assumption 6. Hence,
according to Theorem 1} have the following corollary.

Under the conditions /mpose@wf ﬂgorem 1 and Assumptions 7 - 10, one
has
VNt <ASCAD - X%‘*:*:N 0,02 scap)
where 0% SCAD = =07+ A <02 + 03 A+ f&%% ) o2 and o3 defined in
é@g (

Theorem 1, 03 4 = 65,.455,40, 4, S5,.4 =VEHSA(X;, Y})), and
S5, = Cov(r(Z))e;, 6.4(X;, Y;)) for j = 1,.
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QSCM With Ultra-high Dimensional Covariates

In some real applications, the dimension of the covariates may be much
larger than the sample size, which is termed as ultra-high dimensional
covariates in the literature.

o For linear models wi aussian predictors and responses, Fan and Lv
(2008, JRSSB) pr he sure independence screening (SIS)
method.

o Fan, Feng, and Song 2@" A) developed a nonparametric
independence screening me 8 Ry sparse ultra-high dimensional
additive models. ("ﬁ;}'

o Li, Zhong and Zhu (2012, JASA) pgf d a sure independence
screening procedure based on the d|§én&f§orrelat|on (DC-SIS).

o Zhong et al. (2016, Stat. Sin.) develope'd a robust DC-SIS procedure
(DCRoSIS) that can be applied to the single index models.
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QSCM With Ultra-high Dimensional Covariates

When the dimension of covariates is ultra-high, we propose to first apply
the DC-RoSIS procedure t@reduce the dimensionality of the covariates,

then, use (13) to estim /e denote the ultimate estimator for Sy as
Bbc-RosIs-scaD and the W‘Iding estimator for A as Apc.RoSIS-SCAD-
7}
“%3,

Now, we let Fy o(y) be the CSE,O‘% for the control group, and define

P Q% T

Fyoly) = 22 (Y < y). De%%é‘ = (Xj1, -+, Xjdy,) - The

implementation of the corresponding & IS procedure is summarized
(S

as follows. (V%5
%oy
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Variable Selection QSCM With Ultra-high Dimensional Covariates

DC-RoSIS Procedure

o Step 1. For k = 1 -, dn,, we calculate the sample distance
—9
covarlances deov’ {Fy oY), Fy o(Y})}, dcov {Xj i, Xj i} and

dcov {Xi k, Fy,()( Y;j)} for the control group. Here the sample distance
covariance of two rangdom variables U; and V; is defined as

@Z{Uj, Vi} = S 253, where

S = %%;\U ullv; = v,

1 ng no < /}' ng no
- waf 1Y vl

and
no no no

=;ZZZWtwqu

0 j=1 /=1 g=1
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QSCM With Ultra-high Dimensional Covariates

@ Step 2. For k =1,--- ,dp,, calculate the sample distance correlation
— . deov{ X i, Fy.o(Y;
Wi :=deorr{X; x, Fy o (&)} = coviXiw: Fro(Yi)} .
) \deov{ Xk X Ydeov{ By o(Y)), Fyo(Y))}

% )
@ Step 3. Keep covariates X;ﬂ( ke A={k:&x>cng", k=1,...,dn},
where ¢ >0 and 0 < k < 1% é/pre -specified constants.

Using the DC-RoSIS, the number dﬁ jates is reduced from dy, to |A|.
Zhong et al. (2016, Stat. Sin.) demo that the DC-RoSIS has the
4

sure screening property; that is, Pr A C .é% 5as ng — 0.

*For the ultra-high dimensional case, the asymptotic property for the proposed ATE
estimator, similar to that in Corollary 1, should be investigated, which is very challenging

and warranted as a future research topic.
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Monte Carlo Simulations

Monte Carlo Simulations

Mo%rlo Simulations
7>
T
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Evaluating QSCM and the Bootstrap Procedure

o We consider several different data generating processes (DGP).

o We set the bandwidth h =1 % no_l/3 and use the Gaussian kernel

K(v) = exp v2/2).

o For each settlng lation is repeated 500 times.

o We use the mean o olute deviation errors (MADE) and root
mean square error ( the main evaluation metrics for
different estimators. /;g

iq’dr

$4

Example 1: For each DGP, we vary t‘?x % nsion of the covariates d and
the true index vector 3 as following twoSe

S
o Casel: d =5 and 5y = (1, 0.7, —0.5, 0250,9%
o Case Il: d = 10 with o = (1,0.7, —0.5,0.5, —0.75,0.8, —0.4,1,~0.2,0.2) .
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Monte Carlo Simulations Evaluating QSCM and the Bootstrap Procedure

Simulation Settings

We consider the following linear and nonlinear model for the potential
outcomes:

Y(0) = +¢e and Y(1)=Y(0)+2,
i .
where for k =1,...,d, X, ~ &, é\)}@ V/2) for the treated units and
Xk ~ N(0, 1) for the untreated urv;é@d e ~ N(0,1). In this example, we
consider two cases: m(u) = u and r%ﬁ%‘ % \/|u+ 1| + u respectively.
Y%
Clearly, the true treatment effect is A = % ﬁ)
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Evaluating QSCM and the Bootstrap Procedure

Performance of SCM and QSCM under Example 1.

m(u)=u

(no, n1) (200,100) (400,200) (800,400)
method MADE RMSE MADE RMSE MADE
g5 SCM 0.1287 0.1202 0.0969 0.0950  0.0740
= QSCM 0. ,45@\023 0.0886 0.0710 0.0618  0.0497
d—10 SM 0.1592 0.1186 0.0957 0.0771 0.0619
= QSCM  0.1282 dﬂ % 0.0801 0.0713 0.0620 0.0498

—%.3 Ll + u

(no, m) (200 100) ~,’P% 200) (800,400)
method RMSE  MADE RMS; q«@DE RMSE  MADE
des SCM  0.7781 0.7393 0. 80750/) b’ 7865 0.8729  0.8593
- QSCM  0.1280 0.0999 0.0870 0.0694 0.0618  0.0491
d—10 SCM 07192 06721 07864 0.7657 08701 0.8504
= QSCM  0.1333 0.1046 0.0886 0.0709 0.0624  0.0503
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Evaluating QSCM and the Bootstrap Procedure

From the top panel of Table 1, we can see that both methods
perform well with the linear potential outcome model, and our
method is comparable to the SCM.

From the bottom Table 1, where the potential outcome
model is nonlinear, ee that the SCM is invalid and our

method performs much lazly%g\
/;\‘

The finite sample performanc@gy" proposed estimator is well-
behaved in the sense that both tﬂe, E and RMSE are generally

small. Oé q)

The RMSE decreases as the sample size ny increases, and the
convergence rate is in line with our expectation.
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Evaluating QSCM and the Bootstrap Procedure

Coverage rates of the proposed Bootstrap procedure

m(u) =u

(400,200) (800,400)
d=5 d=10 d=5 d=10
0.89 0.899 0900 0.892 0.882

0.95 0.944 8’% 955 0.956 0.942 0.934
@

0.99  0.981 0.993 0.982 0.986
() - J0, 98 1] +
@ 'AX
(no, m)  (200,100) (v (800,400)
NCP  d=5 d=10 d=5 A4Sl d=5 d=10

09 0003 0896 0891 098 0897 0886
095 00940 0042 0030 0062 0044 0043
099 0090 0087 00985 00991 00982 0.989
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Evaluating QSCM with Variable Selection

Example 2: For simplicity, we illustrate the performance for
high-dimensional variates, with the same setting as in Example 1 except
that the number of covariates is set as d,, = |60 * né/ﬁj. And the true
index vector is set as By =41, 0.7, —0.5, 0.25, 0.8, 0,..., O)T.

1*n51/3 and hlzl*na4/l5

Zs.
o We use BIC to choose tﬂ’ ty parameter A, .
o For each setting, the smulat&n%epeated 500 times.

o We still use MADE and RMSE?@I’@‘ ain evaluation metrics for two
different estimators (QSCM and pé8 o&ﬂl

o We evaluate the performance of varlabio @?ectlon by the mean of true
positive rate (TPR) and false positive rate (FPR) based on 500
replications.

o We set the band
Gaussian kernel.

, and use the
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Evaluating QSCM with Variable Selection

Performance of QSCM with variable selection

m(u) =u
pen-QSCM Variable Selection

(no, m) RMSE MADE TPR  FPR
(200, 100) 0.2461 0.1303 0.1026 0.9176  0.0260
(400, 200) 0.1198 O 0865 0.0687 0.9724  0.0030
(800, 400) 0.0704 0.056% 06 0.0483 0.9996 0.0018

m(u):ZQ W 1|+ u
QSCM p‘ej&—@ﬁg Variable Selection
/

(no,m)  RMSE MADE RMSE QW TPR FPR
(200, 100) 0.5958 0.4863 0.1691 Of?lgl 0.9996  0.0196
(400, 200) 0.1822 0.1424 0.0915 0.0725 1.0000  0.0005
(800, 400) 0.0753 0.0614 0.0633 0.0510 1.0000 0.0001
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Monte Carlo Simulations Evaluating QSCM with Variable Selection

Example 2: Simulation Results

o Under both settings, the true positive rate is close to 1 and the false
positive rate is rela mall and tends to 0 as the sample size ng

increases.
7 2,

o Compared with the QSCI\%‘&s{E@tor without variable selection, the
penalized QSCM estimator b?oa(f%r etter with smaller RMSE and
MADE. % 4“5\
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Evaluating QSCM with Variable Selection

Example 3: For simplicity, we illustrate the performance for ultra-high
dimensional variates, with the same setting as in Example 1 except that
the number of covariates igset as d,, = 5 * ng. And the true index vector
is set as Bo = (1, 0.7, — 25,0.8, 0,...,0)".
o In the DC-Ro0SIS p rg, we choose ¢ =1 and kK = 1/3.
o For each setting, the sin’&){\ is repeated 500 times.
o We still use MADE and Rl\ffS é}‘&he main evaluation metrics for
ADC—RoSIS—SCAD- OO;"})%I
o We evaluate the performance of véﬁ,a%election by the mean of true
positive rate (TPR) and false positiv%aﬁe'?}FPR) based on 500
replications. %
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Evaluating QSCM with Variable Selection

Performance of QSCM with feature screening and variable selection

m(u) =u
,C-ROSIS-SCAD Variable Selection
E MADE TPR FPR

(200, 100) s 0.1033 08464  0.0056
(400, 200) 04\ 710 0.8968  0.0014
(800, 400) o.oeo@ - 0.9476  0.0005

m(u) = 10,887 1] +
DC-RoSIS- SOXB riable Selection
(no,m)  RMSE MADE énﬁ@ FPR

(200, 100) 0.1443 0.1149 03724  0.0006
(400, 200) 0.0997 0.0784 0.9116  0.0000
(800, 400) 0.0645 0.0512 0.9560  0.0000
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Monte Carlo Simulations Evaluating QSCM with Variable Selection

Example 3: Simulation Results

o Under both settings, true positive rate is close to 1 and the false
positive rate is rel all and tends to 0 as the sample size ng
increases. W/

W

4
o The RMSE and MADE vaIﬁEg/é\&éenerally small and approximately
decrease at a rate of 1/,/ny, &g%d.

‘e
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Empirical Example

Empirical Example

%ical Example
7

b, 9
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o We apply our quasi synthetic control method to evaluate the effect of
a labor market training program in the National Supported Work
(NSW) Demonstratiog. It was originally analyzed by Lalonde (1986,

AER), and subseq y researchers like Dehejia and Wahba
(1999, JASA), Sm odd (2005, JoE), and Abadie and Imbens
(2011, JBES). )
%P,
o The NSW program was aimegofa cﬁgproving employment opportunities
for individuals at the margins of'®h or market by providing them
with temporary subsidized jobs. It €% individuals with low levels

of education, individuals with criminalg s, former drug addicts,
and mothers who received welfare benefis for several years.
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@ In the original experiment, individuals from the targeted population
were randomly split between a treatment arm and a control arm, and
the quantity of interest is the impact of the participation in the NSW
program on 1978 y% earnings in dollars for this specific population.

o Here, we use the \% the data in Dehejia and Wahba (1999) as

experimental data.’ @\thls experimental data, the ATE
estimate is $1794, WhICh an experimental benchmark in the

literature. For details, see De‘%ﬂ@nd Wahba (1999).
e, +*‘

o To estimate the effect of NSW proé’@ sed on observational data,
scholars propose to replace individuals™ia ﬁ% control group of the
experimental dataset with observations ffom the Panel Study of
Income Dynamics (PSID).

5This data are available from Dehejia's website.
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Empirical Example

Empirical Example

We use the experimental participants and the non-experimental
comparison group from thgaPSID:
o Di={0,1}: ani or the participation of NSW program.

o Y;: 1978 yearly earni s llars

@ X;: an 10 x 1 vector of c(tc/ fges (age, education, black, hispanic,
married, no degree, earnings i 4 earnings in 1975, no earnings in
1974, and no earnings in 19755> 923

@ There are n; = 185 treated units f@:@— 2490 control units.

ENES

2
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Empirical Example

Empirical Example

Table 5:

Summary statistics of 10 covariates.

Covariates
Age
Education
Black
Hispanic
Married
No degree
Earnings in 1974
Earnings in 1975
Unemployment in 1974
Unemployment in 1975

Outcome variable
Earnings in 1978

Experimental data

Non-experimental data

np = 185) Control (ng = 260) PSID (ngp = 2490)
Std Mean Std Mean Std
v
25.32@/?,,&. 25.05 7.06 34.85 10.44
103574, ﬁ 10.09 1.61 12.12 3.08
084  “4o. A 0.83 0.38 0.25 0.43
0.06 OR44N o 0.11 0.31 0.03 0.18
0.19 né? GV 0,15 0.36 0.87 0.34
0.71 0.454) 0.37 0.31 0.46
209557 4886.62 O 274 5687.91  10428.75  13406.88
1532.06  3219.25 & 310298 1906334  13596.95
0.71 0.46 = 043 0.09 0.28
0.6 0.49 0" 'ﬁ?}u 0.1 03
.
B2
6349.14  7867.4 4554.8  5483.84  21553.92  15555.35

Ying Fang (XMU
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Empirical Example

Empirical Example

First, we would like to see if there exists a nonlinear relationship between
the outcome and the index.

40000~
30000~
20000~

10000~

i | e, | |

0 a 6‘ .q‘lo\ 8 12

Figure 1: Scatterplot of Y versus Z in PSID gr@y, together with the lowess
estimate of the unknown function m(-) in the dashed red line with its pointwise
95% confidence interval presented by the shaded area and a least-squares fitting
of m(-) in the solid blue line.
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@ As in Monte Carlo simulations, we use the Gaussian kernel, and the
bandwidth is selected by cross-validation to minimize the mean
squared error (MS timating Yp; for the control units.

o We compare our quasi i control estimator (QSCM) with a
series of existing estimatofg, ék«

o the conventional synthetié?@ﬁt;ﬁ;}estimator (SCM)

o the penalized synthetic contr pigtor which minimizes the bias
(Pen. SCM) as in Abadie and L'¢o{®2021)

o the one-match nearest neighbor mgﬁifgﬁ&}stimator (1-Matching)

2
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Non-experimental estimates for the NSW data for various methods

Method Benchmark  QSCM SCM Pen-SCM  1-Matching
Treatment effect 1794 1801.22  2118.61 1881.40 2236.87
Notes: The result for pen-SCM cg, |e and LHour (2021), and the result for 1-Matching is computed via the R

package Matching by Sekhon and

4‘\

o From Table 6, we can se‘@;f that our QSCM estimator is
1801.22 is closest to the b &rk

o The conventional SCM estimaté, @118 61, which is substantially
biased, as well as the one-match négr elghbor matching estimator.

o We also compute the standard error cﬁéﬁ@&SCM estimator using the
hybrid Bootstrap method and the stand4?d error of AQSCM is 883.50,
which is much smaller than 1725.38, the corresponding standard error
for the 1-Matching estimate as in Abadie and Imbens (2006, ECTA).
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Finally, | need to mention about the computing time issue as mentioned
earlier.

@ In the conventional SCM, we need to calculate a 2490 x 1 vector of
weights for each treated unit, so that this is computationally

expensive.

o Indeed, our comp rrled out on a IBM X3550M4 dual
processors server equippgg Twenty Four Core Intel Xeon E5-2620
v2 @ 2.10GHz CPU, 64 runnlng Windows Server 2019.
Using parallel computing in F& ge, it takes 1.69 hours to

compute the conventional SCI\/I"Est’?’ e. Whereas, given a selected
bandwidth, the computation time (or QSCM estimate is 13.6
seconds without parallel computatlonéB&&es, as pointed out by
Abadie and L'Hour (2021), the minimize? of (2) may not be unique
with many treated units and/or many control units. Therefore, to
search for the minimizer of (2), the computing is heavy.
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Conclusion Remarks

Conclusion Remarks

C
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To overcome the shortcomings of the conventional synthetic control
method, we propose a quasi synthetic control method, which can
accommodate nonlinearity and feature fast computing.

To address sparsity a iable selection, we propose to use the SCAD
method to deal wit ing number of covariates. And when the
number of covariates than the sample size, we suggest using a

robust sure independence n}?% procedure based on the distance
correlation to reduce the di &lty first.

o""f?
We provide the inference theory for € % method, and derive the
asymptotic distribution of the QSC A e%lators with and without a
penalty term. é.oq@

%

We also propose a carefully designed and easy-to-implement Bootstrap
method and establish the validity of the subsampling method for inference.
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