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Motivation I: Prediction

What is a prediction?
Prediction is to predict an outcome variable on new (unseen) data
Good prediction minimizes mean-squared error (or another loss
function) on new data

Examples:
Given some characteristics, what would be the value of a house?
Given an application of a credit card, what would be the probability
of default for a customer?

Question:
Suppose I have many covariates, then which one should I include in
my prediction model?
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Motivation II: Inference

What we say
Causal inference
Somehow, we have a perfect model for both data and theory
Report point estimates and standard errors

What we do
Try many functional forms
Pick up a “good” model that supports our story in mind
Report the results as if there is no model-selection process

Question:
Suppose I have many potential controls, then which one should I
include in my model to perform valid inference on some variables of
interest? (Take into account the model-selection process.)
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Overview of Stata 16’s lasso features

Lasso toolbox for prediction and model selection
I lasso for lasso
I elasticnet for elastic-net
I sqrtlasso for square-root lasso
I For linear, logit, probit, and Poisson models

Cutting-edge estimators for inference after lasso model selection
I double-selection: dsregress, dslogit, and dspoisson
I partialing-out: poregress, poivregress, pologit, and popoisson
I cross-fit partialing-out: xporegress, xpoivregress, xpologit, and

xpopoisson
I For linear, linear IV, logit, and Poisson models
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Part I: Lasso for prediction
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Using penalized regression to avoid overfitting
Why not include all potential covariates?

It may not be feasible if p > N
Even if it is feasible, too many covariates may cause overfitting
Overfitting is the inclusion of extra parameters that reduce the
in-sample loss but increase the out-of-sample loss

Penalized regression

β̂ = argminβ

{
N∑

i=1

L(xiβ
′, yi) + P(β)

}
where L() is the loss function and P(β) is the penalization

estimator P(β)

lasso λ
∑p

j=1 |βj |
elasticnet λ

[
α
∑p

j=1 |βj |+ (1−α)
2
∑p

j=1 β
2
j

]
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Example: Predicting housing value

Goal: Given some characteristics, what would be the value of a house?
data: Extract from American Housing Survey

characteristics: The number of bedrooms, the number of rooms,
building age, insurance, access to Internet, lot size, time
in house, and cars per person

variables: Raw characteristics and interactions (more than 100
variables)

Question: Among OLS, lasso, elastic-net, and ridge regression,
which estimator should be used to predict the house value?
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Load data and define potential covariates

. /*---------- load data ------------------------*/

.

. use housing, clear

.

. /*----------- define potential covariates ----*/

.

. local vlcont bedrooms rooms bag insurance internet tinhouse vpperson

. local vlfv lotsize bath tenure

. local covars ‘vlcont’ i.(‘vlfv’) ///
> (c.(‘vlcont’) i.(‘vlfv’))##(c.(‘vlcont’) i.(‘vlfv’))
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Step 1: Split data into a training and hold-out sample

Firewall principle
The training dataset used to train the model should not contain
information from a hold-out sample used to evaluate prediction
performance.

. /*---------- Step 1: split data --------------*/

.

. splitsample, generate(sample) split(0.70 0.30)

. label define lbsample 1 "traning" 2 "hold-out"

. label value sample lbsample
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Step 2: Choose tuning parameter using training data
. /*---------- Step 2: run in traing sample ----*/
.
. quietly regress lnvalue ‘covars’ if sample == 1

. estimates store ols

.

. quietly lasso linear lnvalue ‘covars’ if sample == 1

. estimates store lasso

.

. quietly elasticnet linear lnvalue ‘covars’ if sample == 1, alpha(0.2 0.5 0.75
> 0.9)

. estimates store enet

.

. quietly elasticnet linear lnvalue ‘covars’ if sample == 1, alpha(0)

. estimates store ridge

if sample == 1 restricts the estimator to use training data only
By default, we choose the tuning parameter by cross-validation
We use estimates store to store lasso results
In elasticnet, option alpha() specifies α in penalty term
α||β||1 + [(1− α)/2]||β||22
Specifying alpha(0) is ridge regression
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Step 3: Evaluate prediction performance using
hold-out sample

. /*---------- Step 3: Evaluate prediciton in hold-out sample ----*/

.

. lassogof ols lasso enet ridge, over(sample)

Penalized coefficients

Name sample MSE R-squared Obs

ols
traning 1.104663 0.2256 4,425
hold-out 1.184776 0.1813 1,884

lasso
traning 1.127425 0.2129 4,396
hold-out 1.183058 0.1849 1,865

enet
traning 1.124424 0.2150 4,396
hold-out 1.180599 0.1866 1,865

ridge
traning 1.119678 0.2183 4,396
hold-out 1.187979 0.1815 1,865

We choose elastic-net as the best prediction because it has the
smallest MSE in the hold-out sample
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Step 4: Predict housing value using chosen estimator

. /*---------- Step 4: Predict housing value using chosen estimator -*/

.

. use housing_new, clear

. estimates restore enet
(results enet are active now)

.

. predict y_pen
(options xb penalized assumed; linear prediction with penalized coefficients)

.

. predict y_postsel, postselection
(option xb assumed; linear prediction with postselection coefficients)

By default, predict uses the penalized coefficients to compute xiβ
′

Specifying option postselection makes predict use
post-selection coefficients, which are from OLS on variables
selected by elasticnet
In the linear model, post-selection coefficients tend to be less
biased and may have better out-of-sample prediction performance
than the penalized coefficients
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A closer look at lasso
Lasso (Tibshirani, 1996) is

β̂ = argminβ


N∑

i=1

L(xiβ
′, yi) + λ

p∑
j=1

ωj |βj |


where

λ is the lasso penalty parameter and ωj is the penalty loading
We solve the optimization for a set of λ’s
The kink in the absolute value function causes some elements in
β̂ to be zero given some value of λ. Lasso is also a
variable-selection technique

I covariates with β̂j = 0 are excluded
I covariates with β̂j 6= 0 are included

Given a dataset, there exists a λmax that shrinks all the
coefficients to zero
As λ decreases, more variables will be selected

13 / 50



lasso output

. estimates restore lasso
(results lasso are active now)

. lasso

Lasso linear model No. of obs = 4,396
No. of covariates = 102

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .4396153 0 0.0004 1.431814
39 lambda before .012815 21 0.2041 1.139951

* 40 selected lambda .0116766 22 0.2043 1.139704
41 lambda after .0106393 23 0.2041 1.140044
44 last lambda .0080482 28 0.2011 1.144342

* lambda selected by cross-validation.

We see the number of nonzero coefficients increases as λ
decreases
By default, lasso uses 10-fold cross-validation to choose λ
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coefpath: Coefficients path plot
. coefpath
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lassoknots: Display knot table
. lassoknots

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

ID lambda coef. error or left (U)nchanged

2 .4005611 1 1.399934 A 1.bath#c.insurance
7 .251564 2 1.301968 A 1.bath#c.rooms
9 .2088529 3 1.27254 A insurance
13 .1439542 4 1.235793 A internet

(output omitted ...)

35 .0185924 19 1.143928 A c.insurance#c.tinhouse
37 .0154357 20 1.141594 A 2.lotsize#c.insurance
39 .012815 21 1.139951 A c.bage#c.bage

2.bath#c.bedrooms
39 .012815 21 1.139951 R 1.tenure#c.bage

* 40 .0116766 22 1.139704 A 1.bath#c.internet
41 .0106393 23 1.140044 A c.internet#c.vpperson
42 .0096941 23 1.141343 A 2.lotsize#1.tenure
42 .0096941 23 1.141343 R internet
43 .0088329 25 1.143217 A 2.bath#2.tenure

2.tenure#c.insurance
44 .0080482 28 1.144342 A c.rooms#c.rooms

2.tenure#c.bedrooms
1.lotsize#c.internet

* lambda selected by cross-validation.

One λ is a knot if a new variable is added or removed from the
model
We can use lassoselect to choose a different λ. See lassoselect
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How to choose λ?

For lasso, we can choose λ by cross-validation, adaptive lasso, plugin,
and customized choice.

Cross-validation mimics the process of doing out-of-sample
prediction. It produces estimates of out-of-sample MSE and
selects λ with minimum MSE
Adaptive lasso is an iterative procedure of cross-validated lasso. It
puts more penalty weights on small coefficients than a regular
lasso. Covariates with large coefficients are more likely to be
selected, and covariates with small coefficients are more likely to
be dropped
Plugin method finds λ that is large enough to dominate the
estimation noise
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How does cross-validation work?

1 Based on data, compute a sequence of λ’s as λ1 > λ2 > · · · > λk .
λ1 set all the coefficients to zero (no variables are selected)

2 For each λj , do K-fold cross-validation to get an estimate of
out-of-sample MSE

original data 

training test

test

average out-of-
sample MSE

3 Select the λ∗ with the smallest estimate of out-of-sample MSE,
and refit lasso using λ∗ and original data
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cvplot: Cross-validation plot
. cvplot
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lassoselect: Manually choose a λ
First, let’s look at output from lassoknots lassoknots

. estimates restore lasso
(results lasso are active now)

. lassoselect id = 37
ID = 37 lambda = .0154357 selected

.

. cvplot
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Use option selection() to choose λ

. quietly lasso linear lnvalue ‘covars’

. estimates store cv

.

. quietly lasso linear lnvalue ‘covars’ , selection(adaptive)

. estimates store adaptive

.

. quietly lasso linear lnvalue ‘covars’ , selection(plugin)

. estimates store plugin
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lassoinfo: Lasso information summary
. lassoinfo cv adaptive plugin

Estimate: cv
Command: lasso

No. of
Selection Selection selected

Depvar Model method criterion lambda variables

lnvalue linear cv CV min. .0034279 36

Estimate: adaptive
Command: lasso

No. of
Selection Selection selected

Depvar Model method criterion lambda variables

lnvalue linear adaptive CV min. .0183654 16

Estimate: plugin
Command: lasso

No. of
Selection selected

Depvar Model method lambda variables

lnvalue linear plugin .0537642 10

Adaptive lasso selects fewer variables than regular lasso
Plugin selects even fewer variables than adaptive lasso
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Lasso toolbox summary

Estimation:
I lasso, elasticnet, and sqrtlasso
I cross-validation, adaptive lasso, plugin, and customized

Graph:
I cvplot: cross-validation plot
I coefpath: coefficient path

Exploratory tools:
I lassoinfo: summary of lasso fitting
I lassoknots: detailed tabulate table of knots
I lassoselect: manually select a tuning parameter
I lassocoef: display lasso coefficients

Prediction
I splitsample: randomly divide data into different samples
I predict: prediction for linear, binary, and count data
I lassogof: evaluate in-sample and out-of-sample prediction

inference summary
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Part II: Lasso for inference
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Example: Air pollution effect

htimei = no2iγ + Xiβ + εi

htime measure of the response time on test of child i (hit time)
no2 measure of the pollution level in the school of child i
X vector of control variables that might need to be included

Extract from Sunyer et al. (2017)
There are 252 controls in X , but I only have 1,084 observations
I cannot reliably estimate γ if I include all 252 controls

Question:
Which controls X should I put in my model to get valid inference on γ?
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Load data and define controls

. /*------------ load data -------------------*/

.

. use breathe7

.

. /*------------ define controls -------------*/

.

. local ccontrols "sev_home sev_sch age ppt age_start_sch oldsibl "

. local ccontrols "‘ccontrols’ youngsibl no2_home ndvi_mn noise_sch"

.

. local fcontrols "grade sex lbweight lbfeed smokep "

. local fcontrols "‘fcontrols’ feduc4 meduc4 overwt_who"

.

. local controls i.(‘fcontrols’) c.(‘ccontrols’) ///
> i.(‘fcontrols’)#c.(‘ccontrols’)
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Mostly dangerous naive approach

htimei = no2iγ + Xiβ + εi

Naive approach
1 Select controls X ∗

I regress htime on no2 and all X . Drop controls that are not
significant at 5%

I lasso htime on no2 and all X . lasso chooses the controls

2 regress htime on no2 and X ∗

3 Perform inference on no2 coefficient γ as if we only ran one
regression

If you are doing this, the inference you get is mostly wrong.
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Things can go wrong even with only one control

Consider a simple model:

yi = diα+ xiβ + ε

Do the following naive approach:
1 regress y on d and x
2 Drop x if it is not significant at 5%
3 Rerun regress y on d if x is dropped; otherwise use the results

from the first step

Problem:
You will get wrong inference on α if |β| is close to zero but not equal to
zero.
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Why the naive approach fails?

0
5

1
0

1
5

.9 1 1.1 1.2
b_naive

Actual distribution Theoretical distribution

Naive approach

With real data, model-selection techniques inevitably make
mistake about missing small β’s
The actual distribution of α is not concentrated (it has multiple
modes). (Leeb and Pötscher, 2005) math

29 / 50



Solutions

Pseudo-solutions:
Assuming there is no small β’s in the true model. It is known as
the beta-min condition. (Too restrictive with real data)
Do not do any selection (not reliable estimates when p is large;
not feasible when p > N)

Realistic solutions: Be robust to model selection mistakes
Double selection: Belloni et al. (2014), Belloni et al. (2016)
(dsregress, dslogit, and dspoisson)
Partialing-out: Belloni et al. (2016), Chernozhukov et al. (2015)
(poregress, poivregress, pologit, and popoisson)
Cross-fit Partialing-out (double machine learning): Chernozhukov
et al. (2018) (xporegress, xpoivregress, xpologit, and
xpopoisson)
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Double selection works

0
5

1
0

.9 1 1.1 1.2
b_ds

Actual distribution Theoretical distribution

Double selection

Double-selection
1 lasso y on X , denote selected X as X ∗y
2 lasso d on X , denote selected X as X ∗d
3 regress y on d , X ∗y , and X ∗d

Intuition: The x ’s that are not selected in both step 1 and 2 have
negligible impact on the distribution of α math
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dsregress
. dsregress htime no2_class, controls(‘controls’)

Estimating lasso for htime using plugin
Estimating lasso for no2_class using plugin

Double-selection linear model Number of obs = 1,036
Number of controls = 252
Number of selected controls = 11
Wald chi2(1) = 23.71
Prob > chi2 = 0.0000

Robust

htime Coef. Std. Err. z P>|z| [95% Conf. Interval]

no2_class 2.370022 .4867462 4.87 0.000 1.416017 3.324027

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

dsregress selects only 11 controls among 252
Another microgram of NO2 per cubic meter increases the mean
reaction time by 2.37 milliseconds
No free lunch. We cannot get inference on controls
By default, lasso with plugin λ is used for all the variables
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Partialing-out works

0
5

1
0

.9 1 1.1 1.2
b_po

Actual distribution Theoretical distribution

Partialing−out

Partialing-out
1 lasso y on X , and get post-lasso residuals ỹ = y − X ∗y β̂y
2 lasso d on X , and get post-lasso residuals d̃ = d − X ∗d β̂d
3 regress ỹ on d̃

Intuition: Partialing-out is another form of double-selection

ỹ = d̃γ + ε =⇒ y − X ∗y β̂y = dγ − X ∗d β̂dγ + ε
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poregress

. poregress htime no2_class, controls(‘controls’)

Estimating lasso for htime using plugin
Estimating lasso for no2_class using plugin

Partialing-out linear model Number of obs = 1,036
Number of controls = 252
Number of selected controls = 11
Wald chi2(1) = 24.19
Prob > chi2 = 0.0000

Robust

htime Coef. Std. Err. z P>|z| [95% Conf. Interval]

no2_class 2.354892 .4787494 4.92 0.000 1.416561 3.293224

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

poregress selects only 11 controls among 252
Similar point estimate and standard error as in dsregress
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Cross-fit partialing-out approach
Why cross-fit?

To weaken sparsity condition
To have better finite-sample property

Basic idea
1 Split sample into auxiliary part and main part
2 All the machine-learning techniques are applied to the auxiliary

sample
3 All the post-lasso residuals are obtained from the main sample
4 Switch the role of auxiliary sample and main sample, and do

steps 2 and 3 again
5 Solving the moment equation using the full sample

Cross-fit needs to be combined with partialing-out; otherwise it has no
effect.
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2-fold cross-fit partialing-out (I)
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2-fold cross-fit partialing-out (II)
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xporegress
. xporegress htime no2_class, controls(‘controls’)

Cross-fit fold 1 of 10 ...
Estimating lasso for htime using plugin
Estimating lasso for no2_class using plugin

... output omitted

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 252

Number of selected controls = 16
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 23.59
Prob > chi2 = 0.0000

Robust

htime Coef. Std. Err. z P>|z| [95% Conf. Interval]

no2_class 2.360406 .4859668 4.86 0.000 1.407928 3.312883

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

By default, xporegress uses 10-fold cross-fitting
xporegress ran 20 lassos in total ( 2 variables x 10 folds)
By default, there is only one sample-splitting (resample = 1)
We can use option resample(#) to get even more stable estimates
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lassoinfo after xporegress
. lassoinfo

Estimate: active
Command: xporegress

No. of selected variables
Selection

Variable Model method min median max

htime linear plugin 3 5 6
no2_class linear plugin 6 6 7

. lassoinfo, each

Estimate: active
Command: xporegress

No. of
Selection xfold selected

Depvar Model method no. lambda variables

htime linear plugin 1 .1447945 5
htime linear plugin 2 .1448708 4
htime linear plugin 3 .1448708 5

(... output omitted)

no2_class linear plugin 8 .1447945 7
no2_class linear plugin 9 .1447945 6
no2_class linear plugin 10 .1447945 6

By default, lassoinfo displays summary of lassos by variable
Option each displays information of each lasso

39 / 50



Compare naive with DS, PO, and XPO
. /*-------- double selection -------*/
. quietly dsregress htime no2_class, controls(‘controls’)

. estimates store ds

.

. /*-------- partialing-out -------*/

. quietly poregress htime no2_class, controls(‘controls’)

. estimates store po

.

. /*-------- cross-fitting partialing-out -------*/

. quietly xporegress htime no2_class, controls(‘controls’)

. estimates store xpo

.

. /*-------- naive approach-------*/

. quietly naive_regress, depvar(htime) dvar(no2_class) controls(‘controls’)

. estimates store naive

.

. /*-------- compare naive with ds, po, and xpo-------*/

. estimates table naive ds po xpo, se

Variable naive ds po xpo

no2_class 1.6830394 2.3700223 2.3548921 2.4405325
.42522548 .48674624 .47874938 .48420429

legend: b/se
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Recommendations

1 If you have time, use the cross-fit partialing-out estimator
I xporegress, xpologit, xpopoisson, xpoivregress

2 If the cross-fit estimator takes too long, use either the
partialing-out estimator

I poregress, pologit, popoisson, poivregress
or the double-selection estimator

I dsregress, dslogit, dspoisson
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Control individual lasso
. /*-------- control lasso individually-------*/
. dsregress htime no2_class, controls(‘controls’) ///
> lasso(htime, selection(adaptive)) ///
> sqrtlasso(no2_class, selection(cv))

Estimating lasso for htime using adaptive
Estimating square-root lasso for no2_class using cv

Double-selection linear model Number of obs = 1,036
Number of controls = 252
Number of selected controls = 35
Wald chi2(1) = 23.76
Prob > chi2 = 0.0000

Robust

htime Coef. Std. Err. z P>|z| [95% Conf. Interval]

no2_class 2.457938 .5042238 4.87 0.000 1.469678 3.446199

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. estimates store ds_cv

Option lasso(): we use adaptive lasso for htime
Option sqrtlasso(): we use cross-validated square-root lasso for
no2_class
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cvplot for a specified lasso
. /*--------- cvplot for htime -----*/
. cvplot, for(htime)
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Cross−validation plot for htime

Option for(): target the lasso that we want to explore
The cross-validation function curve is pretty flat for htime
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Sensitivity analysis (I)

Question: How sensitive is my result to the choice of λ?
. /*-------- lassoknots for htime-------*/
. lassoknots, for(htime)

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

ID lambda coef. error or left (U)nchanged

28 1368.541 1 20437.58 A 1.grade#c.noise_sch
43 338.998 2 18141.23 A 0.sex#c.age
45 281.4421 3 17866.4 A age
51 161.0515 4 17317.3 A 4.feduc4#c.age
66 39.89369 5 16867.32 A 1.sex#c.age_start_sch
70 27.49717 6 16851.58 A 3.grade#c.ndvi_mn
74 18.95273 7 16805.28 A 3.grade#c.noise_sch
83 8.204186 8 16778.24 A 2.meduc4

* 89 4.694737 8 16758.55 U
92 3.551396 9 16771.73 A 1.grade#c.youngsibl
93 3.2359 10 16776.5 A 2.feduc4#c.noise_sch
108 .8015572 11 16781.55 A 1.sex#c.youngsibl
126 .1501972 11 16763.33 U

* lambda selected by cross-validation in final adaptive step.

.

. /*-------- select a different lambda for htime-------*/

. lassoselect id = 70, for(htime)
ID = 70 lambda = 27.49717 selected
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Sensitivity analysis (II)

. /*-------- reestimate model ---------------*/

. quietly dsregress, reestimate

. estimates store ds_sen

.

. /*-------- compare with old result ---------------*/

. estimates table ds_cv ds_sen, se

Variable ds_cv ds_sen

no2_class 2.4579381 2.4739541
.5042238 .50097675

legend: b/se

Option reestimate: re-estimate the model with changes in some
lassos while holding the other part fixed
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Big picture

E( y︸︷︷︸
outcome

) = G

 D︸︷︷︸
variables of interest

effect︷︸︸︷
α + m(x)︸ ︷︷ ︸

controls


G() is the link function
Goal: perform valid inference on α without knowing which controls
should be in the model
X is high-dimensional, and D is low-dimensional
We are assuming that m(x) can be reasonably approximated by a
sparse Xβ
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DS, PO, and XPO in a nutshell
DS, PO, and XPO methods can be summarized as constructing a
moment condition

E [ψ( W︸︷︷︸
data

;

effect︷︸︸︷
α , η︸︷︷︸

nuisance parameter

)] = 0

such that

∂ηE [ψ( W︸︷︷︸
data

;

effect︷︸︸︷
α , η︸︷︷︸

nuisance parameter

)]

∣∣∣∣
η=η0

= 0

Neyman orthogonality: ψ() is robust to mistakes in estimating
nuisance parameters
A broad class of machine-learning techniques (not just lasso) can
be used to estimate the nuisance parameters η (β in lasso case)
We can get valid inference on α
No free lunch. We cannot get inference on η
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Summary of Stata’s lasso inference commands

Estimation:
ds*, po*, and xpo* (11 estimation commands)
Robust to the model-selection mistakes
Valid inference on some variables of interest
High-dimensional potential controls
Partial linear, IV, logit, and Poisson models
Flexible control of individual lassos

Post-estimation:
Most post-estimation commands in the lasso toolbox also work
here (except lassogof) toolbox summary

Traditional post-estimation commands (test, contrast, etc. )
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Appendix: Why the naive approach fails?

Let’s define M as Model, R as Restricted model (β0 = 0), U as
Unrestricted model (β0 6= 0)

Pr(α̂ < t) = Pr(α̂R < t)Pr(M = R) + Pr(α̂U < t)Pr(M = U)

= Pr(α̂R < t)Pr(|β̂U/σ̂β| ≤ c) + Pr(α̂U < t)Pr(|β̂/σ̂β| > c)

If β0 ∝ 1√
N

, Pr(|β̂U/σ̂β| ≤ c)→ 1 (This means we are going to
choose the wrong model!)
In a finite sample, Pr(α̂ < t) is a mixture of two distributions, and
neither of them dominates (that’s why we see two modes)

back
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Appendix: Why double selection works?

Let’s consider this simple model

y = dα+ xβ + ε

d = xγ + u

If x is dropped , then
√

n(α̂− α) = good terms +
√

n(d ′d)−1(x ′x)βγ

Naive approach drops x if β ∝ 1/
√

n, so
√

n(d ′d)−1(x ′x)βγ ∝
√

n(d ′d)−1(x ′x)1/
√

nγ 6= 0

Double selection drops x if β ∝ 1/
√

n and γ ∝ 1/
√

n
√

n(d ′d)−1(x ′x)βγ ∝
√

n(d ′d)−1(x ′x)1/
√

n1/
√

n→ 0

back
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