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0 Introduction
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Fixed effect panel threshold model  wwe-tecnen

@ Threshold model has been widely used in economics and
finance, monetary policy, economic growth etc.

@ Hansen (1999) proposed the threshold model for panel data. The
model is only used for balanced panel.

@ For unbalanced panel, the user need to transform it to balanced
one.
© potential sample selection bias.

© subjectivity: longer period and less individual, or shorter period
and more individual.
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© fixed effect threshold model
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@ single threshold model

Vie = U+ Xit(qie < V)P + Xit(qie 2 V)B2 +u; + €. (1)

withi =1,2,..G,t =1,2,..,T;. The independent variable z is
regime independent and x is regime dependent.

@ written as
Yie = U+ Xit(qit, V)B + u; + €. (2)
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@ grid search to minimize S;(¥): [y, v].

y = argminS;(y) (3)
14

@ As proved by Hansen (1999), 7 is consistent, and has
non-standard distribution.
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@ threshold effect test:

Hy:B1 =P Hg:pBr# B

@ F-statistic
FO = (SO _Sl)/OA-lZ
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@ bootstrap p-value:
(1) estimate linear model, get é;;; estimate single threshold
model, get F,.
(2) cluster resampling of é;;, get bootstrap residual v},.
(3) bootstrap dependent variable

Vir = XitB-

(4) use y*, X, and q to compute F-statistic.
(5) (2) - (4) Btimes, get F-statistic (F;, F, ..., Fg).

Prob = P(F; > K).
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© simulation studies

QunyongWang@outlook.com (Nankai Univ.) Introduction 9/38



www. uone-tech.cn

© simulation studies
@ Consistency and coverage rate
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@ DGP (data generating process)
Yie = ptazy+Pix;e1(qie < T)+Pexie1(qic = T)+u;t+ey, (4)
@ Zit, Xit ~ Xz(l) -1,
individual effect: u; ~ y?(1) — 1,
the idiosyncratic error e;; ~ N(0, 1).
@ parameter: u=1,a=1,0,=1,3,=2,7=1.
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@ allow cluster sizes to vary systematically, we allocate N
observations among G clusters using the formula

N exp(yi/G)
Y71 exp(yj/6)

Ni=

], i=12.,6—1 (5)

@ [-] denotes the integer part of the argument, and
N; =N — ZN]-Gz_llNg. Wheny = 0 and N/G is an integer, the
panel is balanced and N; = N /G for all i. As y increases, cluster
size becomes more unequal.
For example, when G = 50 and N = 500, if y = 1, the largest
cluster size is 24, and the smallest cluster size is 6.
If y = 2, the largest cluster size is 24, and the smallest cluster
size is 3.
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Table: Simulation result for balanced and unbalanced panel

y=0 y=1 y=2
G T Obs RMSE(103) Rate RMSE(103) Rate RMSE(103) Rate
50 5 250 8.3 0.537 34.4 0.481 24.3 0.463
50 10 500 1.7 0.633 2.9 0.579 3.0 0.574
50 20 1,000 0.4 0.815 0.8 0.763 0.8 0.755
200 5 1,000 0.5 0.775 0.9 0.734 1.2 0.709
200 10 2,000 0.1 0.921 0.2 0.890 0.2 0.864
200 20 4,000 0.05 0.977 0.077 0.962 0.071 0.958
500 5 2,500 0.104 0.935 0.195 0.888 0.196 0.889
500 10 5,000 0.041 0.994 0.049 0.981 0.059 0.967
500 20 10,0000.026 1.00 0.0.032  0.995 0.031 0.996
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@ Given the number of observations and the number of clusters,
the more unbalanced the panel is, the higher the RMSE is.

@ The RMSE decreases with a larger number of groups or a larger
number of observations. This is true for both balanced and
unbalanced panels. That implies the estimator is consistent in
unbalanced panel data, so is the regression coefficient.

@ The coverage rate increases with sample size. But the coverage
rate gets higher than the nominal level when the sample size gets
larger after some point. Too small sample tends to get a tighter
interval and too large sample tends to get a wider interval.

@ The RMSE increases and coverage rate decreases as the panel
data become more unbalanced.
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© simulation studies

@ size distortion

QunyongWang@outlook.com (Nankai Univ.) Introduction 15/38



www. uone-tech.cn

@ DGP:
Yie =1+ 2 + X + u; + €. (6)

where z;;, x;p ~ ¥2(1) — 1. u; ~ x*(1) — 1, e;t ~ N(0,1).
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@ (1) Draw a random sample. First estimate a fixed effect linear
model under the null hypothesis, and get the estimate ﬁ, the
fitted value .

Vie = A+ xf + U,
the residual é;; = y;; — V;¢, and the sum of squared residuals Sj.
(2) Estimate the fixed effect single threshold model under the
alternative hypothesis, and get the sum of squared residuals S;.
The F-statistic is computed as
S —
_ 90 51_ 7)
01
(3) Repeat step (1) - (2) S times, and get a series of probability
values (P, B,, ..., P5). The test size is
i 1R < a)

Pr = 5 , a=20.1,0.05,0.01. (8)
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@ The probability of F-statistic: wild cluster bootstrap method.
(a) draw a random wild weight vib from Rademacher distribution

b _ 1, with prob. 1/2
“|-1, withprob.1/2°
The bootstrap error is
e = &}

and the bootstrap dependent variable is

vl =9 +évp. (9)
(b) Repeat step (a) R times, get a series of F-statistic
F,G=12,.,R).

R
p = izt 155" > F), (10)

QunyongWang@outlook.com (Nankai Univ.) Introduction 18/38




Several notes S

@ We can also use y;; = xit[? in the bootstrap.

@ The constant and individual effect will dropped off in the
within-deviation transformation.
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@ vP can also be drawn from other distributions with mean 0 and

variance 1. Some options for v? include:
(a) Mammen (1993) two-point distribution

» |1 —¢, withprob. /5
E e, with prob. (1 ++/5)/2°

The golden ratio is ¢ = (1 +V/5)/2.

(b) Webb (2014) six-point distribution which assigns probability
1/6 to each of 6 points, namely, +,/1/2, +1, and +,/3/2.
Rademacher and Mammen distribution can yield only 2¢ distinct
bootstrap samples. Webb distribution reduces, but not eliminate
this problem.

(c) Standard normal distribution.

(d) Gamma distribution with shape parameter 4 and scale
parameter 1/2 as suggested by Liu(1988).
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@ As described in Mackinnon (2018), simulation studies suggest
that wild bootstrap tests based on the Rademacher distribution
perform better than ones based on other auxiliary distributions;
see, among others, Davidson, Monticini, and Peel (2007);
Davidson and Flachaire (2008); Finlay and Magnusson (2016).
However, the Webb six-point distribution is preferred to the
Rademacher when G is less than 10 or perhaps 12.
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@ which residual to use: restricted model (null hypothesis) or
unrestricted model (alternative)?

@ Itis generally better use the wild cluster bootstrap under
restrictions, MacKinnon et al.(2018).

@ Intuitively, since inference involves estimating the probabilities of
obtaining certain results under the assumption that the null is
true, inference is improved by using bootstrap datasets in which
the null in fact holds. Simulation evidence on this issue is
presented in, among many others, Davidson and MacKinnon
(1999) and Djogbenou, MacKinnon, and Nielsen (2018).
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Table: Test size of balanced and unbalanced panel

G T Obs «a y=0 y=05 y=1 y=15 y=2
50 10 500 0.10 0.112 0.118 0.108  0.096 0.13
0.05 0.062  0.05 0.04 0.048 0.058
0.01 0.014 0.026 0.008 0.014 0.026
200 10 2,000 0.1 0.138 0.124 0.104  0.126 0.118
0.05 0.078  0.004 0.054  0.062 0.066
0.01 0.03 0.008 0.014  0.016 0.016

QunyongWang@outlook.com (Nankai Univ.)

Introduction

23/38



CO nte ntS www. uone-tech.cn

© simulation studies

@ Test power
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simulation result S

@ DGP:

Yie = U+ azy + Brxi1(qie < T) + Boxit1(qir = 7) +u; + €y,
(11)

If 81 = B,, then the threshold effect disappears. The bigger
difference between f; and f3,, the higher the test power.

o Setf, =1,B, = (1.1,1.2). y = (0,0.5,1,1.5,2)
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Table: Test power of balanced and unbalanced panel (¢ = 0.05)

G T Obs B, y=0 y=05 y=1 y=15 y=2
50 10 500 1.1 0.248 0.18 0.132 0.164 0.178
1.2 0.722 0.49 0.492 0.486 0.492
200 10 2,000 1.1 0.748 0.498 0.466 0.454 0.446
1.2 1.000 0.966 0.976 0.970 0.946
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Several notes S

@ The test power is relatively low for small sample with G = 50 and

T = 10. An G gets bigger, the test power is improved quite a lot.

@ With the same number of observations, the test power for
unbalanced panel is lower than that for balanced panel. But, the
test power doesn’t seem to be affected much by the extent of
the unbalancedness.
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0 Syntax
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@ Basically, xthreg?2 inherits the syntax from xthreg.

xthreg2 depvar [indepvars][if] [in] , rx(varlist) qx(varname) [
thnum(integer) grid(integer) trim(numlist) bs(numlist) thlevel (#)
gen(newvarnamg noreg nobslog wc(string) opt‘ions]

@ xthreg?2 will give the same point and confidence interval
estimation with xthreg, but the threshold effect significance
test may give different critical values and different probability
value because of the different bootstrap design.
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@ Hansen (1999)

. use hansenl1999, clear

. set seed 123

. xthreg2 i qi g2 g3 di qdi, rx(cl) gqx(dil) thnum(2) trim(0.01) bs(300)
There exist time-invariant individual(s) (maybe only one obs): di qdi
Estimating the threshold parameters: 1st ... 2nd ... Done
Bootstrap for single threshold

.................................................. + 300
Bootstrap for double threshold model:
.................................................. + 300
Threshold estimator (level = 95):
model | Threshold Lower Upper
Th-1 | 0.0158 0.0139 0.0177
Th-21 | 0.0158 0.0139 0.0177
Th-22 | 0.5394 0.5321 0.5470
Threshold effect test (bootstrap = 300):

Threshold | RSS MSE Fstat Prob Crit10 Critbs Critl
Single | 16.7953 0.0024 30.25 0.047 26.942 29.982 37.916
Double | 16.7457 0.0023 21.14 0.207 25.339 28.949 36.070
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@ unbalanced example

. use hansenl1999,clear

. set seed 123

. drop if (year<=1977 | year>=1985) & inrange(runiform(0, 566), 1, 200) & rnormal()<0.1
(740 observations deleted)

. Xtdes
id: 1, 2, ..., 565 n 565
year: 1974, 1975, ..., 1987 T = 14
Delta(year) = 1 year
Span(year) = 14 periods
(id*year uniquely identifies each observation)
Distribution of T_i: min 5% 25% 50% 75% 957, max
10 11 12 13 13 14 14
Freq. Percent Cum. | Pattern
138 24.42  24.42 | 11111111111111
39 6.90 31.33 | 11.11111111111
32 5.66 36.99 | .1111111111111
30 5.31  42.30 | 1.111111111111
29 5.13  47.43 | 11111111111.11
27 4.78 52.21 | 111.1111111111
26 4.60 56.81 | 1111111111111,
23 4.07 60.88 | 111111111111.1
10 1.77 62.65 | ..111111111111
211 37.35 100.00 | (other patterns)

565 100.00 XXXXXXXXXXXXXX
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@ triple threshold model

. set seed 123

. xthreg2 i qi1 g2 g3 d1 qd1, rx(c1) gx(d1) thnum(3) trim(0.01) bs(300)
There exist time-invariant individual(s) (maybe only one obs): di qdi
Estimating the threshold parameters: ist ... 2nd ... 3rd ... Done
Bootstrap for single threshold

.................................................. + 300
Bootstrap for double threshold model:
.................................................. + 300
Bootstrap for triple threshold model:
.................................................. + 300
Threshold estimator (level = 95):

model | Threshold Lower Upper

Th-1 | 0.0154 0.0121 0.0173

Th-21 | 0.0154 0.0129 0.0173

Th-22 | 0.5421 0.5252 0.5487

Th-3 | 0.9230 . .
Threshold effect test (bootstrap = 300):

Threshold | RSS MSE Fstat Prob Crit10 Critbs Critl
Single | 17.3886 0.0027 36.65 0.010 24.212 27.861 36.592
Double | 17.3201 0.0027 25.41 0.077 24.423 28.217 31.632
Triple | 17.2933 0.0027 9.99 0.470 21.504 24.319 32.615
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@ double threshold reg. result

. xthreg2 i q1 g2 g3 dl qdi1, rx(cl) qx(d1) thnum(2) trim(0.01)

Fixed-effects (within) regression Number of obs = 6,992
Group variable: id Number of groups = 550
R-sq: Obs per group:
within = 0.1099 min = 10
between = 0.1166 avg = 12.7
overall = 0.1064 max = 14
F(8,6434) = 99.29
corr(u_i, Xb) = -0.1886 Prob > F = 0.0000
il Coef. Std. Err. t P>t [95% Conf. Intervall
ql | .0115655  .0009494 12.18  0.000 .0097043 .0134267
q2 | -.0248182  .0028863 -8.60  0.000 -.0304763 -.0191602
q3 | .0013585  .0002162 6.28  0.000 .0009348 .0017823
di | -.0249041  .0041553 -56.99  0.000 -.0330498 -.0167583
qdl | .0010209  .0013583 0.75  0.452 -.0016418 .0036837
_cat#c.cl
o | .0580387 .0066704 8.70 0.000 .0449624 .071115
11 .1353776 .0176681 7.66 0.000 .1007422 .1700131
2 | .0861913  .0054647 15.77  0.000 .0754787 .0969039
_cons | .0636492  .0017055 37.32  0.000 .0603059 .0669925
sigma_u | .03530003
sigma_e | .04558565
rho | .37486107 (fraction of variance due to u_i)
F test that all u_i=0: F(549, 6434) = 6.88 Prob > F = 0.0000
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a Conclusions
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@ A more unbalanced panel will result in more volatile threshold
estimate and tighter coverage rate

@ The test size is not affected by the unbalancedness.

@ The test power is affected by the unbalancedness, but it does’t
deteriorate when the panel becomes more unbalanced.
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@ Our conclusions don’t mean that it is be always better to use the
unbalanced panel than to transform it into balanced one.

@ Two choices for a unbalanced panel:
First, transform the panel data into balanced one by dropping
some observations, then estimate the threshold model using the
balanced panel.
Second, directly estimate the threshold model using the
unbalanced panel.

@ Both choices have pros and cons. The balanced panel has a less
volatile estimate for the threshold, but less efficient estimate for
regression coefficient due to less observations. The unbalanced
panel has a more volatile estimate for the threshold, but more
efficient estimate for regression coefficient beneficial from more
observations.
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Further questions ——

@ the effect of heteroscedasticity
@ sample selection bias
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Thank you
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