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Motivation: why should we use generalized linear models?

• Practitioners often prefer least squares when seemingly better alternatives exist. Examples:
• Linear probability model instead of logit/probit
• Log transformations instead of Poisson

• This comes with several disadvantages:
• Inconsistent estimates under heteroskedasticity due to Jensen’s inequality; bias can be quite
severe (Manning and Mullahy 2001; Santos Silva and Tenreyro 2006; Nichols 2010)

• Linear models might lead to a wrong support: predicted probabilities outside [0-1], log(0), etc.
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Digression: genesis of this paper

• We wanted to run pseudo-ML poisson regressions with fixed effects:
• Paulo: log(1 + 𝑤𝑎𝑔𝑒𝑠)
• Tom: log(1 + 𝑡𝑟𝑎𝑑𝑒)
• Sergio: log(1 + 𝑐𝑟𝑒𝑑𝑖𝑡)

• Should have been feasible:
• No incidental parameters problem in many standard panel settings (Wooldridge 1999;
Fernández-Val and Weidner 2016; Weidner and Zylkin 2019)

• Works with non-count variables (Gourieroux, Monfort, and Trognon 1984)
• Practical estimator through IRLS and alternating projections (Guimarães 2014; Correia 2017; Larch
et al. 2019)

• However, there was another obstacle we did not anticipate:
• Our implementation sometimes failed to converge, or converged to incorrect solutions.
• Problem was aggravated when working with many levels of fixed effects (our intended goal)
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How can maximum likelihood estimates not exist?

Consider a Poisson regression on a simple dataset without constant:

• Log-likelihood: ℒ(𝛽) = ∑[𝑦𝑖(𝑥𝑖𝛽) − exp(𝑥𝑖𝛽) − log(𝑦𝑖!)]
• FOC: ∑ 𝑥𝑖[𝑦𝑖 − exp(𝑥𝑖𝛽)] = 0

y x
0 1
0 1
0 0
1 0
2 0
3 0

• In this example, the FOC becomes exp(𝛽) = 0, maximized only at infinity!
• Note that at infinity the first two observations are fit perfectly, with ℒ𝑖 = 0

• More generally, non-existence can arise from any linear combination of regressors including
fixed effects.
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Existing literature

• Non-existence conditions have been independently (re)discovered multiple times:
• Log-linear frequency table models (Haberman 1974)
• Binary choice (Silvapulle 1981; Albert and Anderson 1984)
• GLM sufficient–but–not–necessary conditions (Wedderburn 1976; Santos Silva and Tenreyro 2010)
• GLM (Verbeek 1989; Geyer 1990, 2009; Clarkson and Jennrich 1991 - all three unaware of each
other).

• Most researchers still unaware of problem outside of binary choice models; no textbook
mentions as of 2019.

• Software implementations either fail to converge or inconspicuously converge to wrong results.
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Our contribution

1. Derive existence conditions for a broader class of models than in existing work
• Including Gamma PML, Inverse Gaussian PML

2. Clarify how to correct for non-existence of some parameters.
• Finite components of 𝛽 can be consistently estimated; inference is possible

3. Introduce a novel and easy-to-implement algorithm that detects and corrects for
non-existence

• Particularly useful with high-dimensional fixed effects and partialled-out covariates.
• Can be implemented with run–of–the-mill tools.
• programmed in our new HDFE PPML command ppmlhdfe (Correia, Guimarães, and Zylkin 2019)
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Proposition 1: non-existence conditions (1/4)

Consider the class of GLMs defined by the following log-likelihood function:

ℒ = ∑
𝑖

ℒ𝑖 = ∑
𝑖

[𝑎(𝜙) 𝑦𝑖 𝜃𝑖 − 𝑎(𝜙) 𝑏(𝜃𝑖) + 𝑐(𝑦𝑖, 𝜙)]

• 𝑎, 𝑏, and 𝑐 are known functions; 𝜙 is a scale parameter
• 𝜃𝑖 = 𝜃(𝑥𝑖𝛽) is the canonical link function; where 𝜃′ > 0
• 𝑦𝑖 ≥ 0 is an outcome variable. Potentially 𝑦 ≤ ̄𝑦 as in logit/probit but for simplicity we’ll
ignore this for the most part.

• Its conditional mean is 𝜇𝑖 = 𝐸[𝑦𝑖|𝑥𝑖] = 𝑏′(𝜃𝑖)
• Assume for simplicity that regressors 𝑋 have full column rank.
• Assume that ℒ𝑖 has a finite upper bound (rules out e.g. log link Gamma PML)

7



Proposition 1: non-existence conditions (2/4)

ML solution for 𝛽 will not exist iff there is a non-zero vector 𝛾 such that:

𝑥𝑖𝛾 = 𝑧𝑖

⎧{{
⎨{{⎩

≤ 0 if 𝑦𝑖 = 0
= 0 if 0 < 𝑦𝑖 < ̄𝑦
≥ 0 if 𝑦𝑖 = ̄𝑦

Intuition If ∃ a linear combination of regressors 𝑧𝑖 = 𝑥𝑖𝛾 satisfying these conditions, then

𝑑ℒ(𝛽 + 𝑘𝛾∗)
𝑑𝑘 = ∑

𝑦𝑖=0
𝛼𝑖 [−𝑏′(𝜃𝑖)] 𝜃′𝑧𝑖 + ∑

𝑦𝑖=𝑦
𝛼𝑖 [𝑦 − 𝑏′(𝜃𝑖)] 𝜃′𝑧𝑖 > 0,

for any 𝑘 > 0, which implies we can always increase the objective function by searching in the
direction described by 𝛾∗.
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Proposition 1: non-existence conditions (3/4)

ML solution for 𝛽 will not exist iff there is a non-zero vector 𝛾 such that:

𝑥𝑖𝛾 = 𝑧𝑖

⎧{{
⎨{{⎩

≤ 0 if 𝑦𝑖 = 0
= 0 if 0 < 𝑦𝑖 < ̄𝑦
≥ 0 if 𝑦𝑖 = ̄𝑦

Poisson PML example For PPML, ̄𝑦 = ∞, and only the first two conditions matter

𝑑ℒ(𝛽 + 𝑘𝛾∗)
𝑑𝑘 = ∑

𝑦𝑖=0
− exp (𝑥𝑖𝛽 + 𝑘𝑧𝑖) 𝑧𝑖 + ∑

𝑦𝑖>0
[𝑦𝑖 − exp (𝑥𝑖𝛽)] 𝑧𝑖 > 0,

Note the second term is 0 and the first term is positive and asymptotically decreasing towards 0 as
𝑘 → ∞ (finite solution for 𝛽 not possible!)
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Proposition 1: non-existence conditions (4/4)

• Linear combination 𝑧 is a “certificate of non-existence”: hard to obtain, but can be used to
verify non-existence

• If we add 𝑧 to the regressor set, its associated FOC will not have a finite solution.

• Observations where 𝑧𝑖 ≠ 0 will be perfectly predicted 0’s and ̄𝑦’s
• If ℒ𝑖 is unbounded above, conditions are more complex (and ultimately less innocuous)

• See proposition 2 of the paper.
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Addressing non-existence

• As in perfect collinearity, first look for specification problems:

• In a Poisson wage regression, did we add “unemployment benefits” as covariate?
• In a Poisson trade regression, did we add an “is embargoed?” indicator?

• If no specification problems, it’s due to sampling error

• Solution: allow estimates to take values in the extended reals: ℝ̄ = ℝ ∪ {+∞, −∞}
• Permits solutions like this: ̂𝛽1 = lim𝑎→∞ 𝑎 + 3, ̂𝛽2 = lim𝑎→∞ 𝑎 + 2, ̂𝛽3 = 1.5

• We are mostly interested in the non-infinite components:
̂𝛽1 − ̂𝛽2 = 1, ̂𝛽3 = 1.5

• Can show “separated” observations drop out of FOC’s for finite ̂𝛽’s (including that of ̂𝛽1 − ̂𝛽2)
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Proposition 3: Addressing non-existence

• Given a ℒ𝑖 bounded above, a unique ML solution in the extended reals will always exist.
• Given a 𝑧 identifying all instances of non-existence, if we first drop perfectly predicted
observations (and resulting perfectly collinear variables) ML solution in the reals will always
exist.

• It will consistently estimate the non-infinite components of 𝛽, allowing for inference on them
(proposition 3d)

• We can recover infinite components by regressing 𝑧 against 𝑥.
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Obtaining 𝑧: Existing Alternatives

1. Drop boundary observations with ℒ𝑖 close to 0 (Clarkson and Jennrich 1991)
• Slow under non-existence; often fails as “close to 0” is data specific.

2. Solve a modified simplex algorithm (Clarkson and Jennrich 1991)
• Cannot handle fixed effects or other high-dimensional covariates

3. Analytically solve computational geometry problem (Geyer 2009), or use eigenvalues of
Fischer information matrix (Eck and Geyer 2018).

• Extremely slow and complex (Geyer 2009); requires full working with full information matrix (Eck
and Geyer 2018); cannot handle fixed effects (both).

None works well with fixed effects!
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Obtaining 𝑧: Iterative Rectifier (our algorithm)

1. Define a working dependent variable 𝑧𝑖 = 1𝑦𝑖=0

2. Given an arbitrarily large integer K, set weights 𝑤𝑖 =
⎧{
⎨{⎩

1 if 𝑦𝑖 = 0
𝐾 if 𝑦𝑖 > 0

3. (Weighted least squares) Regress 𝑧 on 𝑋 with weights 𝑤 (fixed effects no problem!)
4. Stop if all ̂𝑧𝑖 ≥ 0
5. Else, update 𝑧𝑖 = 𝑚𝑎𝑥( ̂𝑧𝑖, 0) and repeat from step 3

• Steps 2-3 are the “weighting method” of solving least squares with equality constraints
(Stewart 1997); step 5 is a “rectifier” that enforces a positive dependent variable

• Proofs in proposition 4 and appendix
• Stata implementation in our ppmlhdfe package ; examples at our github
• Convergence usually achieved in a few iterations, but choosing weights too large could lead to
numerical instability.
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Other existing approaches

• Naïve approach: drop the regressors causing non-existence and proceed as usual
• Leads to nonsensical results (Zorn 2005; Gelman et al. 2008)

• Penalize estimates beyond plausible values (Firth regression, Bayesian aproach)
• “For Poisson regression and other models with the logarithmic link, we would not often expect
effects larger than 5 on the logarithmic scale” (Gelman et al 2008)

• Not a ML estimator
• Many datasets (e.g. in trade) can have plausible effects way beyond 5.

• Solutions specific to binary choice discussed in Konis (2007)
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Comparison of solutions

Method Advantages Concerns

1. Drop regressors - Nonsensical
2. Drop 𝜇𝑖 < 𝜀 observations Simple Fails often: 𝜀 is data dependent
3. Bayesian: penalize 𝜇𝑖 < 𝜀 It’s Bayesian It’s Bayesian.

𝜀 is data dependent
4. Modified simplex Fast for small 𝑘 Slow for large 𝑘

Can’t handle FEs
5. Directions of recession Exact answer “at infinity” Complex, very slow (?)

Can’t handle FEs
6. Iterative rectifier Simple

works well with large 𝑘 and FEs
Numerical accuracy (?)
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Example (1/3)

y x1 x2
0 2 -1
0 -1 2
0 0 0
1 0 0
2 5 -10
3 6 -12

• The first 𝑦 = 0 value in this data set is “separated” by the linear combination 𝑧 = 2𝑥1 + 𝑥2.

• In theory, the coefficients for 𝑥1 and 𝑥2 are both infinite, but we can still obtain a finite
estimate for the transformed parameter 𝛽1 − 2𝛽2

• Math + interpretation are analogous to the case of perfect collinearity
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Example (2/3)

Current workhorse Stata commands like poisson and ppml either fail to converge or give
incorrect estimates.

• poisson does not converge.

• ppml recognizes there is a problem, but incorrectly attributes it to the regressor 𝑥1:
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Example (3/3)

Here is an example of how ppmlhdfe handles this situation. The sep(ir) option specifies we
want to use our “IR” algorithm.

There are lots of other options as well (can use simplex method instead, can ask ppmlhdfe to
compute the contents of 𝑧). Read more here.
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Conclusion

Non-existence of estimates:

• Affects a broad class of GLMs beyond just binary choice models
• Poorly understood (no textbook mentions); not addressed in statistical packages
• Leads practitioners to stay with least squares despite limitations

This paper:

• Presents non-existence conditions for a broad class of GLMs
• Discusses how to address non-existence: drop perfectly predicted observations, then proceed
as normal

• Introduces an algorithm for detecting and addressing non-existence that is conceptually
simple, easy-to-implement, and allows for fixed effects

New “fast” FE-PPML command ppmlhdfe incorporates our methods: ssc install ppmlhdfe
20
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