

BOLD THINKERS DRIVING REAL-WORLD IMPACT

Unbiased Instrumental Variables (IV) in Stata

Austin Nichols

@austnnchols

2019 **STata** Conference

Chicago 11-12 July

Magic Bullets

- Instrumental Variables (IV) methods are the only way to estimate causal effects in a variety of settings, including experiments (randomized control trials or RCTs) with imperfect compliance
- IV methods often exhibit poor performance
 - Bias & size distortion with many weak instruments
 No finite moments when exactly identified
- Andrews and Armstrong (2017) offer a solution

Causal Diagram

- Conditioning on confounders does not in general solve the problem of endogenous participation in a treatment of interest
- The receipt of a treatment (R=1) whose effect β we want to measure may be randomly assigned (Z=1), but we still need IV to estimate impact

Conditioning on confounders X and U can eliminate bias, but conditioning on X alone can either reduce or amplify bias. Instrumenting for R with Z asymptotically eliminates that bias.

Sign restriction allows unbiased IV

- IV has one fewer moments than overid restrictions, so exactly identified IV has no moments
 - Hirano and Porter (2015) show that mean, median, and quantile unbiased estimation are all impossible in the linear IV model with an unrestricted parameter space for the first stage
- This result no longer holds when the sign of the first stage is known (e.g. no defiers, some compliers):
 - In models with a single instrumental variable, <u>Andrews and Armstrong</u> (2017) show that there is a unique unbiased estimator based on the reduced form and first-stage regression estimates
 - This estimator is substantially less dispersed than the usual 2SLS estimator in finite samples
- In an RCT, we are very confident the first stage is positive

Model and Estimator

Y=Zπβ+u ← reduced form coef ξ_1 =(Z'Z)⁻¹(Z'Y)

R=Z π +v \leftarrow first stage coef ξ_2 =(Z'Z)⁻¹(Z'R)

IV estimator constructs Wald ratio ξ_1 / ξ_2

Assume u,v normal so $(\xi_1, \xi_2) \sim N(\mu, \Sigma)$ w/variance $\Sigma = (\sigma_1^2, \sigma_{12} \setminus \sigma_{12}, \sigma_2^2)$

Let d=($\xi_1 - \xi_2 \sigma_{12} / \sigma_2^2$). E[d]= $\pi\beta - \pi\sigma_{12} / \sigma_2^2$

Voinov and Nikulin (1993) show that unbiased estimation of $1/\pi$ is possible if its sign is known:

Let t= $\Phi(-\xi_2/\sigma_2)/\phi(\xi_2/\sigma_2)\sigma_2$ then E[t]= 1/ π and E[dt]= E[d]E[t]= $\beta-\sigma_{12}/\sigma_2^2$ Estimator b_U=dt+s₁₂/v₂

Further considerations

- b_U is asymptotically equivalent to 2SLS when instruments are strong and thus b_U can be used together with conventional 2SLS standard errors
- Optimal estimation and optimal testing are distinct questions in the context of weak instruments
 - b_U is uniformly minimum risk unbiased for convex loss, but it follows from the results of Moreira (2009) that the Anderson– Rubin test is the uniformly most powerful unbiased two-sided test in the just-identified context (not a conditional t-test based on b_U)
 - more research needed on *tests* based on this unbiased IV estimator...

Small-Sample Properties

- Note this applies to bivariate normal errors with known variance, not the focal case of random assignment Z={0,1} and endogenous receipt of treatment R={0,1}
 - Appendix B (Nonnormal errors and unknown reduced-form variance) "derives asymptotic results for the case with nonnormal errors and an estimated reduced-form covariance matrix. Appendix B.1 shows asymptotic unbiasedness in the weak-instrument case. Appendix B.2 shows asymptotic equivalence with 2SLS in the strong-instrument case"

– How does this approach perform in finite samples?

Stata command

- Estimator implemented as aaniv on SSC
- **Download using** ssc install aaniv
- So far, just one endogenous treatment and one excluded instrument (as of today), as is ideal for an RCT, but the command will be updated in future releases to a larger set of use cases

Unbiased IV in Stata

Small-Sample Properties

 Even with binary R and Z, so non-normal errors by design, standard linear regression rejects the truth all the time, and unbiased IV outperforms standard IV/2SLS

> (this simulation has a high correlation between a normal variate that predicts R and the unobserved error that predicts the outcome Y)

Distributions of Estimators by Sample Size and Correlation

Rejection rates about right for IV models, in large samples

Conclusion

- Unbiased IV performs as well as IV-2SLS in a setting that it is not designed for, with no bias and lower evident dispersion (but neither has a finite variance)
 - Report unbiased IV for an experiment, if only to enable meta-analysis; use aaniv (ssc install aaniv) in Stata
- Rejection rates for both Unbiased IV and IV 2SLS approximately at the nominal rate when sample size is over a thousand
 - At smaller sample sizes, there is some under-rejection of a true null—needs further study

Contact Austin Nichols *Principal Scientist* austinnichols@gmail.com

BOLD THINKERS DRIVING REAL-WORLD IMPACT

abtassociates.com

