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The standard treatment effects model

X ∈ {0, 1} is a binary treatment

(Y1,Y0) are unobserved potential outcomes. We observe

Y = XY1 + (1− X )Y0

along with X and a vector of covariates W

Goal: Identify parameters like

ATE = E(Y1 − Y0) and QTE(τ) = QY1(τ)−QY0(τ)



The standard treatment effects model

Baseline assumptions:

1. Unconfoundedness:

Y1 ⊥⊥ X | W and Y0 ⊥⊥ X | W

2. Overlap:
0 < P(X = 1 | W = w) < 1

for all w ∈ supp(W )

Under these assumptions, ATE and QTE(τ) are point identified

Thus just go to the data and compute your treatment effects

Huge literature on how to do this: teffects



The standard treatment effects model

Baseline assumptions:

1. Unconfoundedness:

Y1 ⊥⊥ X | W and Y0 ⊥⊥ X | W

2. Overlap:
0 < P(X = 1 | W = w) < 1

for all w ∈ supp(W )

Under these assumptions, ATE and QTE(τ) are point identified

Thus just go to the data and compute your treatment effects

Huge literature on how to do this: teffects



The standard treatment effects model

Problem: Our treatment effect estimates are only as good as the
assumptions behind them...

...so what if our assumptions don’t hold?

Overlap: This assumption is solely about X and W . Hence it’s refutable

• Many ways to check this in finite samples, and it’s commonly done
(teffects overlap)

But what about unconfoundedness?

• Unlike overlap, it’s not refutable—It’s an assumption on unobservables

⇒ Much less clear how to “assess” this assumption
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Assessing unconfoundedness

Lots of approaches, including Rosenbaum and Rubin (1983), Mauro
(1990), Robins, Rotnitzky, and Scharfstein (2000), Imbens (2003), Altonji,
Elder, and Taber (2005, 2008), Hosman, Hansen, and Holland (2010),
Krauth (2016), Oster (2019), among others

These approaches rely on strong auxiliary assumptions, like

• Potential outcome functions which are linear in all variables

• Homogeneous treatment effects

Arguably goes against the spirit of sensitivity analysis



Assessing unconfoundedness
Nonparametric options in the literature:

1. Ichino, Mealli, and Nannicini (2008)

• Requires all variables to be discrete

• Uses lots of sensitivity parameters

• sensatt, discussed in Nannicini (2008) “A simulation-based sensitivity
analysis for matching estimators,” The Stata Journal

2. Rosenbaum (1995, 2002) and subsequent work

• Uses randomization inference

• mhbounds, discussed in Becker and Caliendo (2007) “Sensitivity
analysis for average treatment effects,” The Stata Journal

3. Our approach:

• Large population version of Rosenbaum’s approach

• Allows us to split the identification analysis from the estimation and
inference theory (don’t have to commit to a specific testing procedure)



Relaxing unconfoundedness

Unconfoundedness says Y1 ⊥⊥ X | W . That is,

P(X = 1 | Y1 = y1,W = w) = P(X = 1 | W = w)

for all w . Likewise for Y0
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Unconfoundedness says Y1 ⊥⊥ X | W . That is,

P(X = 1 | Y1 = y1,W = w)−P(X = 1 | W = w) = 0

for all w . Likewise for Y0

We relax it by supposing∣∣∣P(X = 1 | Y1 = y1,W = w)−P(X = 1 | W = w)
∣∣∣ ≤ c

for all w , for some known c ∈ [0, 1]. Likewise for Y0

We call this conditional c-dependence
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Identification

In the papers, we derive sharp bounds on ATE, ATT, QTEs, and other
parameters

We provide sample analog estimators, estimation theory, and inference
theory



Estimation

The bounds all depend on two objects:

1. The quantile regression QY |X ,W (q | x ,w)

2. The propensity score P(X = 1 | W = w)

You can use anything you’d like to estimate these

We start with probably the simplest approach:

1. Linear quantile regression of Y on (1,X ,W )

2. Logistic regression of X on (1,W )



Empirical illustration

We use the classic National Supported Work (NSW) demonstration
dataset (MDRC 1983), as analyzed by LaLonde (1986) and reconstructed
Dehejia and Wahba (1999)

Used by other sensitivity analysis papers—allows for direct comparison

In particular, we will compare our nonparametric results with the
parametric ones obtained in Imbens (2003)



Empirical illustration

The NSW experiment randomly assigned participants to either...

• (treatment) receive a guaranteed job for 9 to 18 months along with
frequent counselor meetings or

• (control) be left in the labor market by themselves

Outcome of interest is earnings in 1978



Empirical illustration

We use two subsamples:

1. Experimental data: The Dehejia and Wahba (1999) subsample of all
males in LaLonde’s NSW data where earnings are observed in 1974,
1975, 1978

• 445 people: 185 treated, 260 control

2. Observational data: The 185 NSW treatment group combined with
2490 people in a control group constructed from the PSID, and then
dropping anyone with earnings above $5,000

• 390 people: 148 treated, 242 control

These two subsamples were considered by Imbens (2003)



Empirical illustration: Baseline results

Table: Baseline treatment effect estimates (in 1978 dollars).

ATE ATT Sample size

Experimental dataset 1633 1738 445
(650) (689)

Observational dataset 3337 4001 390
(769) (762)

Standard errors in parentheses.

teffects ipw (‘Y’) (‘X’ ‘W’)

teffects ipw (‘Y’) (‘X’ ‘W’), atet



Empirical illustration: Sensitivity analysis

tesensitivity ‘Y’ ‘X’ ‘W’, ate atet breakdown



Empirical illustration: Bounds on ATE
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Empirical illustration: Bounds on ATT
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Calibrating c

How to determine what values of c are ‘large’ and which are ‘small’?

This is a key question for any sensitivity analysis—and it’s very difficult!

Two approaches:

1. Relative comparisons: Compare bounds across datasets or studies

2. Absolute comparison: Calibrate c within a single dataset



Calibrating c

To do an absolute comparison, we use a classic idea (Cornfield et al 1959,
Imbens 2003, Altonji, Elder, and Taber 2005, 2008, Oster 2019):

Use selection on observables to calibrate our beliefs about selection
on unobservables

Important caveat: We only provide a rule of thumb

• Not (yet) theoretically justified!

• Lots of research left to do before we have a fully satisfactory approach



Calibrating c

Say W = (W1,W2). Define

c1 = sup
w2

sup
w1

|P(X = 1 | W1 = w1,W2 = w2)−P(X = 1 | W2 = w2)|

This is a measure of the impact on the propensity score of adding W1

given that we already included W2

Can do the same, but swapping roles of W1 and W2; yields c2

Idea: c-dependence is the same thing, except we’re adding the
unobservable Y1 given that we already included W
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Calibrating c

Might expect the impact of adding Y1 in addition to W is smaller than c1
and c2, so can also look at the distribution of

|P(X = 1 | W1,W2)−P(X = 1 | W2)|

For example, the 50th, 75th, and 90th quantiles



Empirical illustration: Calibrating c
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Empirical illustration: Calibrating c

Variation in |p1|W (W−k ,Wk)− p1|W−k (W−k)| (experimental data)

p50 p75 p90 c̄k
Earnings in 1975 0.001 0.004 0.008 0.053

Black 0.007 0.009 0.014 0.082

Positive earnings in 1974 0.002 0.010 0.018 0.034

Education 0.012 0.022 0.031 0.087

Married 0.006 0.012 0.032 0.042

Age 0.015 0.024 0.034 0.099

Earnings in 1974 0.002 0.011 0.035 0.209

Positive earnings in 1975 0.013 0.017 0.062 0.082

Hispanic 0.007 0.017 0.099 0.124

Estimated breakdown point: 0.075



Empirical illustration: Calibrating c

Kernel density estimate of |p1|W (W−k ,Wk)− p1|W−k (W−k)| for
k = hispanic indicator (experimental data)
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Empirical illustration: Calibrating c

Variation in |p1|W (W−k ,Wk)− p1|W−k (W−k)| (observational data)

p50 p75 p90 c̄k
Earnings in 1974 0.000 0.001 0.009 0.065

Hispanic 0.003 0.011 0.024 0.214

Education 0.006 0.017 0.042 0.127

Earnings in 1975 0.002 0.010 0.057 0.276

Positive earnings in 1975 0.007 0.019 0.076 0.295

Positive earnings in 1974 0.012 0.028 0.099 0.423

Married 0.028 0.079 0.172 0.314

Age 0.035 0.093 0.205 0.508

Black 0.053 0.143 0.266 0.477

Estimated breakdown point: 0.02



Empirical illustration: Overall findings

Relative comparisons:

• The experimental dataset is relatively less sensitive to relaxations of
unconfoundedness than the observational dataset

• For most c ’s, the observational bounds are wider than the experimental
bounds, often substantially wider

Absolute comparisons:

• For the experimental dataset, most variation in leave-out-variable-k
propensity scores is smaller than the ATE and ATT breakdown points.

• But not for the observational dataset



Empirical illustration: Takeaways

Imbens (2003) found that this observational dataset was relatively robust

Our conclusion differs because our bounds do not impose the strong
parametric assumptions he made; in particular,

• homogeneous treatment effects

• normally distributed outcomes

• all violations occur solely through a single binary confounder

Ironic that many methods for sensitivity analyses themselves rely on strong
auxiliary assumptions

The conclusions of the sensitivity analysis may themselves be sensitive to
changing these auxiliary assumptions, as we see here

⇒ Use nonparametric methods for sensitivity analysis!



Conclusion

Estimates from teffects rely on two assumptions:

1. Unconfoundedness

2. Overlap

Overlap is easier to assess, but unconfoundedness is important too!

tesensitivity is a tool for assessing unconfoundedness which does not
require strong auxiliary assumptions

• Package will be online in the next few months

• We are very interested in feedback from practitioners, so please email
us if you have questions or problems, or use our (future) github issues
page!


