Using lasso and related estimators for prediction

Di Liu

StataCorp

July 12, 2019

Prediction

What is a prediction?

- Prediction is to predict an outcome variable on new (unseen) data
- Good prediction minimizes mean-squared error (or other loss function) on new data

Examples:

- Given some characteristics, what would be the value of a house?
- Given an application of credit card, what would be probability of default for a customer?

Question:

Suppose I have many covariates, then which one should I include in my prediction model?

Using penalized regression to avoid overfitting

Why not include all potential covariates?

- It may not be feasible if *p* > *N*
- Even if it is feasible, too many covariates may cause overfitting
- Overfitting is the inclusion of extra parameters that reduce the in-sample loss but increase the out-of-sample loss

Penalized regression

$$\widehat{\beta} = \operatorname{argmin}_{\beta} \left\{ \sum_{i=1}^{N} L(x_i \beta', y_i) + P(\beta) \right\}$$

where L() is the loss function, and $P(\beta)$ is the penalization

estimator
$$P(\beta)$$
lasso $\lambda \sum_{j=1}^{p} |\beta_j|$ elasticnet $\lambda \left[\alpha \sum_{j=1}^{p} |\beta_j| + \frac{(1-\alpha)}{2} \sum_{j=1}^{p} \beta_j^2 \right]$

Example: Predicting housing value

Goal: Given some characteristics, what would be the value of a house? data: Extract from American Housing Survey characteristics: The number of bedrooms, the number of rooms, building age, insurance, access to internet, lot size, time in house, and cars per person

variables: Raw characteristics and interactions (more than 100 variables)

Question: Among **OLS**, **lasso**, **elastic-net**, and **ridge** regression, which estimator should be used to predict the house value?

Load data and define potential covariates

Step 1: Split data into training and hold-out sample

Firewall principle

The training dataset used to train the model should not contain information from hold-out sample used to evaluate prediction performance

- . /*----- Step 1: split data -----*/
- . splitsample, generate(sample) split(0.70 0.30)
- . label define lbsample 1 "traning" 2 "hold-out"
- . label value sample lbsample

Step 2: Choose tuning parameter using training data

```
. /*----- Step 2: run in traing sample ----*/
```

. quietly regress lnvalue `covars' if sample == 1

```
. estimates store ols
```

```
. quietly lasso linear lnvalue `covars' if sample == 1
```

. estimates store lasso

```
. quietly elasticnet linear lnvalue `covars' if sample == 1, alpha(0.2 0.5 0.75 > 0.9)
```

. estimates store enet

- . quietly elasticnet linear lnvalue `covars' if sample == 1, alpha(0)
- . estimates store ridge
- if sample == 1, restricts estimator to use training data only
- By default, we choose the tuning parameter by cross-validation
- We use estimates store to store lasso results
- In elasticnet, option alpha() specifies α in penalty term $\alpha ||\beta||_1 + [(1 \alpha)/2] ||\beta||_2^2$
- Specifying alpha(0) is ridge regression

Step 3: Evaluate prediction performance using hold-out sample

. /*----- Step 3: Evaluate prediciton in hold-out sample ----*/

•

. lassogof ols lasso enet ridge, over(sample)

Penalized coefficients

Name	sample	MSE	R-squared	Obs
ols				
	traning	1.104663	0.2256	4,425
	hold-out	1.184776	0.1813	1,884
lasso				
	traning	1.127425	0.2129	4,396
	hold-out	1.183058	0.1849	1,865
enet				
	traning	1.124424	0.2150	4,396
	hold-out	1.180599	0.1866	1,865
ridge				
-	traning	1.119678	0.2183	4,396
	hold-out	1.187979	0.1815	1,865

 We choose elastic-net as the best prediction because it has the smallest MSE in hold-out sample

Step 4: Predict housing value using chosen estimator

```
. /*----- Step 4: Predict housing value using chosen estimator -*/
.
. use housing_new, clear
. estimates restore enet
(results enet are active now)
.
. predict y_pen
(options xb penalized assumed; linear prediction with penalized coefficients)
```

```
. predict y_postsel, postselection (option {\bf xb} assumed; linear prediction with postselection coefficients)
```

- By default, predict uses the penalized coefficients to compute x_iβ'
- Specifying option postselection makes predict use post-selection coefficients, which are from OLS on variables selected by elasticnet
- In the linear model, post-selection coefficients tend to be less biased and may have better out-of-sample prediction performance than the penalized coefficients

A closer look at lasso

Lasso is

$$\widehat{\beta} = \operatorname{argmin}_{\beta} \left\{ \sum_{i=1}^{N} L(x_i \beta', y_i) + \lambda \sum_{j=1}^{p} \omega_j |\beta_j| \right\}$$

where

- λ is the lasso penalty parameter, and ω_i is the penalty loading
- We solve the optimzation for a set of λ's
- The kink in the absolute value function causes some elements in $\hat{\beta}$ to be zero given some value of λ . Lasso is also a variable selection technique
 - covariates with $\hat{\beta}_j = 0$ are excluded
 - covariates with $\hat{\beta}_j \neq 0$ are included
- Given a dataset, there exists a λ_{max} that shrink all the coefficients to zero
- As λ decreases, more variables will be selected

lasso output

. estimates restore lasso (results lasso are active now)					
. lasso					
Lasso linear model	No.	of	obs	=	4,396
	No.	of	covariates	=	102
Selection: Cross-validation	No.	of	CV folds	=	10

CV mean prediction error	Out-of- sample R-squared	No. of nonzero coef.	lambda	Description	ID
1.431814	0.0004	0	.4396153	first lambda	1
1.139951	0.2041	21	.012815	lambda before	39
1.139704	0.2043	22	.0116766	selected lambda	* 40
1.140044	0.2041	23	.0106393	lambda after	41

* lambda selected by cross-validation.

- We see the number of nonzero coefficients increases as λ decreases
- By default, **lasso** uses 10-fold cross-validation to choose λ

coefpath: Coefficients path plot

. coefpath

lassoknots: Display knot table

. lassoknots

ID	lambda	No. of nonzero coef.	CV mean pred. error	Variables (A)dded, (R)emoved, or left (U)nchanged
2 7 9 13	.4005611 .251564 .2088529 .1439542	1 2 3 4	1.399934 1.301968 1.27254 1.235793	A l.bath#c.insurance A l.bath#c.rooms A insurance A internet
(out	put omitted)		
35	.0185924	19	1.143928	A c.insurance#c.tinhouse
37	.0154357	20	1.141594	A 2.lotsize#c.insurance
39	.012815	21	1.139951	A c.bage#c.bage
				2.bath#c.bedrooms
39	.012815	21	1.139951	R 1.tenure#c.bage
* 40	.0116766	22	1.139704	A 1.bath#c.internet
41	.0106393	23	1.140044	A c.internet#c.vpperson
42	.0096941	23	1.141343	A 2.lotsize#1.tenure
42	.0096941	23	1.141343	R internet
43	.0088329	25	1.143217	A 2.bath#2.tenure
				2.tenure#c.insurance
44	.0080482	28	1.144342	A c.rooms#c.rooms
				2.tenure#c.bedrooms
				1.lotsize#c.internet

- \star lambda selected by cross-validation.
- One λ is a knot if a new variable is added or removed from the model
- We can use **lassoselect** to choose a different λ . See **lassoselect**

How to choose λ ?

For **lasso**, we can choose λ by cross-valiation, adaptive lasso, plugin, and customized choice.

- Cross-validation mimics the process of doing out-of-sample prediction. It produces estimates of out-of-sample MSE, and selects λ with minimum MSE.
- Adaptive lasso is an iterative procedure of cross-validated lasso. It puts more penalty weights on small coefficients than a regular lasso. Covariates with large coefficients are more likely to be selected, and covariates with small coefficients are more likely to be dropped
- Plugin method finds λ that is large enough to dominate the estimation noise

How does cross-validation work?

- Based on data, compute a sequence of λ's as λ₁ > λ₂ > ··· > λ_k. λ₁ set all the coefficients to zero (no variables are selected)
- Por each λ_j, do K-fold cross-validation to get an estimate of out-of-sample MSE

Select the λ* with the smallest estimate of out-of-sample MSE, and refit lasso using λ* and original data

cvplot: Cross-validation plot

. cvplot

lassoselect: Manually choose a λ

• First, let's look at output from lassoknots lassoknots

```
    estimates restore lasso
(results lasso are active now)
    lassoselect id = 37
    ID = 37 lambda = .0154357 selected
```

. cvplot

Use option **selection()** to choose λ

- . quietly lasso linear lnvalue `covars'
- . estimates store cv
- . quietly lasso linear lnvalue `covars', selection(adaptive)
- . estimates store adaptive
- . quietly lasso linear lnvalue `covars' , selection(plugin)
- . estimates store plugin

lassoinfo: lasso information summary

. lassoinfo cv adaptive plugin

Estimate: cv Command: lasso

No. of selected variables	lambda	Selection criterion	Selection method	Model	Depvar
36	.0034279	CV min.	cv	linear	lnvalue
				adaptive lasso	Estimate: Command:
No. of selected variables	lambda	Selection criterion	Selection method	Model	Depvar
16	.0183654	CV min.	adaptive	linear	lnvalue
				plugin lasso	Estimate: Command:
	No. of selected variables	lambda	Selection method	Model	Depvar
	10	.0537642	plugin	linear	lnvalue

Adaptive lasso selects less variables than regular lasso

• Plugin selects even less variables than adaptive lasso

Lasso toolbox summary

- Estimation:
 - lasso, elasticnet, and sqrtlasso
 - cross-validation, adaptive lasso, plugin, and customized
- Graph:
 - cvplot: cross-validation plot
 - coefpath: coefficient path
- Exploratory tools:
 - lassoinfo: summary of lasso fitting
 - lassoknots: detailed tabulate table of knots
 - lassoselect: manually select a tuning parameter
 - lassocoef: display lasso coefficients
- Prediction
 - **splitsample**: randomly divide data into different samples
 - **predict**: prediction for linear, binary, and count data
 - lassogof: evaluate in-sample and out-of-sample prediction