The matching problem using Stata

July 11-12, 2019
 2019 Chicago Stata Conference

Choonjoo Lee*, Nam-Suk Cho**
Korea National Defense University
*bloom.rampike@gmail.com, **ncho64@gmail.com

CONTENTS

Motivation

Paired Live Kidney Exchange: Exemplary Solution

IJJ Remarks

I. Motivation

$\square 21,167$ people received a kidney in 2018 (USA), 2,855(ROK)
≈ 58 Kidney transplants each day

- 6,446 from living donor. (Some through kidney exchanges)
\square Kidney waiting list: over 103,029 (23,591, ROK)
[4,537 people died while waiting(2014)
≈ 13 people die each day while waiting
* Data source : Organ Procurement and Transplantation Network(OPTN)

I. Motivation

38,791 added to the national Kidney transplant waiting list in 2018 (17,397 added as of June 30 in 2019) \approx Every ten minutes, someone is added

Matching organs. Saving lives.

* Data source : Organ Procurement and Transplantation Network(OPTN)

I. Motivation

\square Kidney Exchange (Living donor kidney matching) Types

- Two-way exchange(all surgeries must be executed simultaneously)

Husband Wife

I. Motivation

- Three-way exchange(all surgeries must be executed simultaneously)

I. Motivation

- Chain(Simultaneous surgeries not required)

Altruistic donor

Matching solution for Efficient Live Kidney Exchange?

II. Paired Live Kidney Exchange: exemplary solution

- Problem Considered

O Find maximum matching sets with certain cycle constraints(considering simultaneous surgery capacity).

- v : incompatible donor-patient pair
- xij : takes value 1 if matched and included in cycle. Otherwise 0 . The same weight for xij is assumed.
- k : maximum number of cycle allowed

II. Paired Live Kidney Exchange: exemplary solution

O Problem Formulation

$$
\begin{equation*}
\operatorname{Max} \sum_{i, j \in N} x_{i, j} \tag{1}
\end{equation*}
$$

s.t.

$$
\begin{equation*}
\sum_{j \in N} x_{i, j} \leq 1 \quad \forall i, j \in N \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j \in N} x_{i, j}=\sum_{j \in N} x_{j, i} \forall i \in N \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
x_{i 1 i 2}+x_{i 2 i 3}+\cdots+x_{i k i k+1} \leq k-1 \tag{4}
\end{equation*}
$$

II. Paired Live Kidney Exchange: exemplary solution

O Problem Arrangement
[1] $z=x_{12}+x_{21}+x_{23}+x_{32}+x_{31}$
[2]
$x_{12} \leq 1$
$x_{21}+x_{23} \leq 1$
$x_{32}+x_{31} \leq 1$
[3]
$x_{21}+x_{31}=x_{12}$
$x_{12}+x_{32}=x_{21}+x_{23}$
$x_{32}=x_{32}+x_{31}$
[4]
$x_{12}+x_{23}+x_{31} \leq 2$
$x_{12}+x_{21} \leq 2$
$x_{23}+x_{32} \leq 2$

II. Paired Live Kidney Exchange: exemplary solution

\square Solution using the user written Command "lp"
O Data Input

x 12	x 21	x 23	x 32	x 31	rel	rhs
1	0	0	0	0	$<=$	1
0	1	1	0	0	$<=$	1
0	0	0	1	1	$<=$	1
-1	1	0	0	1	$=$	0
1	-1	-1	1	0	$=$	0
0	0	1	-1	-1	$=$	0
1	0	1	0	1	$<=$	2
1	1	0	0	0	$<=$	2
0	0	1	1	0	$<=$	2

II. Paired Live Kidney Exchange: exemplary solution

O Program Syntax
Ip varlists [if] [in] [using/] [, rel(varname) rhs(varname) min max intvars(varlist) tol1(real) tol2(real) saving(filename)]

- rel(varname) specifies the variable with the relationship symbols. The default option is rel.
- rhs(varname) specifies the variable with constants in the right hand side of equation. The default option is rhs.
- min and max are case sensitive. $\min (\max)$ is to minimize(maximize) the objective function.
- intvars(varlist) specifies variables with integer value.
- tol1(real) sets the tolerance of pivoting value. The default value is $1 \mathrm{e}-14$. tol2(real) sets the tolerance of matrix inverse. The default value is $2.22 \mathrm{e}-12$.

II. Paired Live Kidney Exchange: exemplary solution

O Result: Ip with maximization option.
. Ip x12 x21 x23 x32 x31,max intvars(x12 x21 x23 x32 x31) rel(rel) rhs(rhs)

Input Values:															
	z	x12	x21	x23	x32	$\times 31$	s1	s2	s3	s 4	s5	a1	a2	a3	rhs
r1	1	1	0	0	0	0	0	0	0	0	0	1	1	1	1
r2	0	0	1	1	0	0	1	0	0	0	0	0	0	0	1
r3	0	0	0	0	1	1	0	1	0	0	0	0	0	0	1
r4	0	-1	1	0	0	1	0	0	0	0	0	1	0	0	0
r5	0	1	-1	-1	1	0	0	0	0	0	0	0	1	0	0
r6	0	0	0	1	-1	-1	0	0	0	0	0	0	0	1	0
r7	0	1	0	1	0	1	0	0	1	0	0	0	0	0	2
r8	0	1	1	0	0	0	0	0	0	1	0	0	0	0	2
r9	0	0	0	1	1	0	0	0	0	0	1	0	0	0	2

LP Results: options (max)
opt_val
z
m

- The solution maximizes the total number of transplants performed. Two way matching solutions are possible and ($\mathrm{x} 12, \mathrm{x} 21$) is one of the solution.
- Different weights for xij can result different solutions.

III. Remarks

\square Remarks
O Attempt for matching problem to determine the efficient live kidney matching set is valuable and the following information are generally required.

- a list of altruistic donators
- a list of patient-donor pairs
- the compatibility information between all donors and patients
- the "weight," or priority, of each potential transplant, and
- a bound on the maximum cycle length.

III. Remarks

\square Remarks
O Real-time matching of target with assets?

Real-time verdict of Difficulty
incompatibility

BMOA1	BMOA2	BMOA3	BMOA4
Level III	Level I	Level II	Level II
Sa			2

O Some theoretical topics of matching problem in the reference.

References

- Roth, Alvin E., Tayfun Sommez, and M. Utku Unver. 2004, "Kidney Exchange" Quarterly Journal of Economics. 119(2): 457-88.
- Roth, Alvin E., Tayfun Sommez, and M. Utku Unver. 2007, "Efficient Kidney Exchange: Coincidence of Wants in Markets with CompatibilityBased Preferences" The American Economic Review.
- M. Grotschel and O. Holland. 1985, "Solving Matching Problems with Linear Programming" Mathematical Programming. 33:243-259.
- https://optn.transplant.hrsa.gov/ "This work was supported in part by Health Resources and Services Administration contract 234-2005-37011C. The content is the responsibility of the authors alone and does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government."
- Roth, Alvin E., Tayfun Sönmez, and M. Utku Ünver. 2005. "Pairwise Kidney Exchange." Journal of Economic Theory 125 (2) (December): 151-188.
* Acknowledgement : especially thank you to Sung-hoon Hong of KIPF for discussion and inspiration for the matching problem.

Thank

