
iefieldkit: Stata commands
for primary data collection
and data cleaning

Kristoffer Bjärkefur, Luı́za Cardoso de Andrade, and Benjamin Daniels

July 11, 2019

Development Impact Evaluation (DIME)
The World Bank



A brief introduction to iefieldkit

iefieldkit is designed to apply many
of the lessons from the last presentation
to other common tasks in the DIME
data collection workflow.

• Working with primary data from
developing contexts.

• Large teams with many projects
and diverse skillsets.

• Standardization of easy tasks adds
value and avoids error.

1



A brief introduction to iefieldkit

Data collection is a process that has
traditionally suffered from low levels of
documentation, standardization, and
replicability.

iefieldkit is meant to bring that
mindset to these tasks, which are often
partially conducted by staff with little or
no Stata skills.

We think it is a great example of using
Stata to bring ideals of standardization
and replicability to one of our core tasks
that is usually considered less technical.

2



A brief introduction to iefieldkit

Data collection requires lots of analytical work that we don’t necessarily
want to keep in Stata dofiles. iefieldkit provides a start-to-finish data
collection and cleaning workflow that is self-documenting.

Core commands:

• ietestform ensures that ODK surveys are Stata-optimized

• ieduplicates & iecompdup identify and resolve duplicates in data

• iecodebook uses spreadsheet codebooks to clean or append data

All iefieldkit commands automatically output human- and machine-readable
spreadsheet documentation as a functional part of the intended workflow.

https://dimewiki.worldbank.org/iefieldkit

3

https://dimewiki.worldbank.org/iefieldkit


ietestform



ietestform: Collecting Stata-optimized data in ODK

We believe that it is best to have automated quality control in place, even before
data is ready for Stata. Stata is a very convenient tool for this purpose because
our teams are already familiar with it. This idea can extend to any workflow
involving structured non-Stata components.

• Open Data Kit (ODK) is a common data collection software in the field
• Many of our teams use SurveyCTO, a proprietary variant of ODK, and almost

all our teams use Stata for data analysis
• But ODK data isn’t naturally preared for Stata, and Stata doesn’t know what

ODK data can look like
• Therefore it is very easy to make “non-errors” in ODK programming that are

time-consuming and challenging to fix for Stata after the data is already
collected

4



ietestform: Collecting Stata-optimized data in ODK

ODK data collection (and proprietary
implementations like SurveyCTO) are
common in primary data collection.

• Structured “pseudo-code” in
spreadsheet format is built into
survey

• Material is both human and
machine-readable

• Lots of options for controlling data
format

5



ietestform: Collecting Stata-optimized data in ODK

BUT... the survey forms are primarily built and operated by field staff or survey
firms, not by Stata coders!

So we designed ietestform to read the survey definition file and give instructions
on best practices and likely errors that are easier to fix during survey design than
after data collection.

Major tests for Stata optimization:

• All variable names are Stata-compliant, including auto-generated ones in
rosters and other dynamic fields

• All variables use multi-language support to create a “Stata” variable label that
is not the full text of the question

• All value labels are Stata-compliant

6



ietestform: Generating a flags report

Simple syntax:

ietestform

, surveyform("/path/to/survey.xlsx")

report("/path/to/report.csv")

• CSV format supports version
control in Git

• Flags report likely errors

• Sometimes functionality may be
desired, so you do not necessarily
want an “empty” report

7



ietestform: Generating a flags report

Additional syntax checks ensure
machine-compatibility after import. All
flags are linked with a complete
explanation for the practice on https://

dimewiki.worldbank.org/ietestform.

• All groups and loops open and
close correctly

• No leading or trailing spaces in
fields

• No repeated values or value labels,
and no unused values in value
labelling 8

https://dimewiki.worldbank.org/ietestform
https://dimewiki.worldbank.org/ietestform


ieduplicates & iecompdup



ieduplicates: Real-time data quality assurance

• Primary data coming in from the field can be very messy!

• Cleaning raw data and doing quality assurance is time-sensitive: it has to be
done while the survey team is still on site

• Entries with duplicated identifier variables are particularly bad: they prevent
the team from knowing the results of other quality checks, and therefore from
efficiently implementing things like followup surveys

• Therefore there is a huge value to our team for having a standardized and
pre-programmed process for handling duplicates coming in from the field

Additional challenges in this phase include interfacing with non-technical staff in
the field; and creating documentation of the resolution of issues.

9



ieduplicates: Real-time data quality assurance

ieduplicates implements a standard self-documenting workflow using Excel data
output and input. The command outputs a report of duplicates into Excel, and the
user responds in pre-defined ways to each flagged observation.

• Run ieduplicates on the raw data. If there are no duplicates, you are done!
• If there are duplicates in the Excel report, analyze them using Stata and/or

field records to find out the correct resolution.
• Enter the resolutions on the corresponding observations in the report

outputted by ieduplicates.
• After entering the corrections, save the report in the same location with the

same name.

Why Excel? Because it is easier for everyone to read and understand when there
are large numbers of information to process, rather than de-coding Stata code.

10



ieduplicates: Listing duplicates in data

On the first run, ieduplicates does two
main tasks:

• Lists all duplicates in data into a file
called iedupreport.xlsx and backs
up a dated copy

• Removes all copies of duplicates
from the data so other
quality-assurance tasks like
back-checks can be performed on
unambiguous portion of data

ieduplicates idvariable

, folder("/path/to/folder/")

uniquevars(keyvariable)

11



ieduplicates: Correcting duplicates in data

ieduplicates expects standardized, structured responses to the observations
flagged, so that they can be written and read quickly by any staff.

12



ieduplicates: Real-time data quality assurance

On future runs, ieduplicates will first apply all corrections in the current version
of the duplicates report to the raw data – accept as correct, drop, or change ID.

• Run ieduplicates on the raw data again. The corrections you have entered
will be applied, and only duplicates that are still not resolved are removed this
time. Note that the raw data is unchanged, and therefore the report leaves a
record of how all duplicates were resolved in the creation of the final dataset.

• Repeat these steps every time you get new data. Our recommendation is that
this is done every day that you have new data.

13



iecompdup: Analyzing duplicates in data

Used on the raw data, iecompdup will return basic information about how duplicate
observations are the same or different (with the relevant information stored in
return for programming of reports). Naturally there is no way to fully automate the
resolution process, but we look for three main groups:

Case 1. Double submission of the same observation, with the same data.
Resolution: Keep only one of the entries.

Case 2. Double submission of the same observation, with different data.
Resolution: Return to field team for audit.

Case 3. Incorrect ID variable.
Resolution: Return to field team to obtain correct ID.

14



iecompdup: Analyzing duplicates in data

Syntax:

iecompdup idvariable, id(idvalue)

Notes:

• Only accepts pairwise
comparisons; any help on reporting
about larger groups would be
appreciated!

• No other output or documentation;
intended to encourage careful
review and documentation in the
main ieduplicates report

15



iecodebook



Three tasks for reproducible data construction

• Data cleaning: iecodebook apply

Reads an Excel codebook that specifies renames, recodes, variable labels,
and value labels, and applies them to the current dataset.

• Dataset combination: iecodebook append

Reads an Excel codebook that specifies how variables should be harmonized
across two or more datasets - rename, recode, variable labels, and value
labels - applies the harmonization, and appends the datasets.

• Data documentation: iecodebook export

Creates an Excel codebook that describes the current dataset, and optionally
produces an export version of the dataset with only variables used in
specified dofiles.

https://dimewiki.worldbank.org/iecodebook
16

https://dimewiki.worldbank.org/iecodebook


iecodebook apply: Data cleaning made easy

iecodebook apply runs an arbitrary
number of rename, recode, and label

commands in a single line of code.

• Operates on dataset in memory

• Commands in structured
spreadsheet for future reference

• Eliminates repetitive coding

Syntax:

iecodebook apply

using "/path/to/codebook.xlsx"

17



iecodebook apply: Setting up a template

// Load data

sysuse auto.dta , clear

// Create cleaning template

iecodebook template

using "/path/to/codebook.xlsx"

The template subcommand sets up the
spreadsheet based on the data in
memory.

18



iecodebook apply: A step back

The codebook is nothing more than a structured way to write common Stata
commands outside of Stata. Why did we decide to spend time implementing this
additional layer of abstraction?

• These are easy tasks: any Stata user can write rename, recode, and label

• But doing it over and over again is extremely boring, and demands attention
to detail (such as the ordering of the commands) that can cause silly errors

• Development datasets are often really large and messy (such as a dataset
recieved from a partner agency)

• The goal of the Excel codebook is therefore to allow users to input large
amounts of information quickly;

• and to make sure that information is structured so that other users can review
it efficiently

19



iecodebook apply: Filling out the template

20



iecodebook apply: Applying the spreadsheet codebook to the data

// Load data

sysuse auto.dta , clear

// Apply cleaning template

iecodebook apply

using "/path/to/codebook.xlsx"

Simply changing template to apply in
the command gives the basic syntax.

The drop option removes all un-named
variables. The missingvalues() option
specifies extended missing value codes
for the whole dataset. 21



iecodebook append: Data combination

22



iecodebook append: Data combination

iecodebook append runs an arbitrary
number of rename, recode, and label

commands on two or more datasets
with the intention of harmonizing them.
It then runs an append command on the
harmonized data.

• Operates on datasets on disk

• All data structures in one
spreadsheet for future reference

// Create codebook template

iecodebook template

"baseline.dta" "endline.dta"

using "/path/to/codebook.xlsx"

, surveys(Baseline Endline)

The template subcommand sets up the
spreadsheet based on multiple datasets
on disk. The surveys() option names
the datasets in the template and is
required.

23



iecodebook append: Setting up a spreadsheet template

24



iecodebook append: Filling out the template

25



iecodebook append: Apply codebook to data

// Append the datasets

iecodebook template

"baseline.dta" "endline.dta"

using "/path/to/codebook.xlsx"

, surveys(Baseline Endline)

Simply changing template to append in
the command gives the basic syntax.

All un-named variables are removed by
default; nodrop cancels this. The
missingvalues() option specifies
extended missing value codes for the
whole dataset. 26



iecodebook export: Document data for release

Function 1: Just create the codebook
for documentation

Function 2: Trim dataset based on
variables used in dofiles:

• Reads your dofiles
• Keeps only the variables that are

used in analysis
• Creates a minimal codebook
• Rewards good syntax – you must:

Spell variable names completely
Avoid wildcards or lists: * ? -

Syntax:

iecodebook export [if] [in]

using "/path/to/codebook.xlsx"

and optionally:

, trim(

"/path/to/dofile1.do"

["/path/to/dofile2.do"]

[...]

)

27



Thank you!

For more information about
iefieldkit, contact us or visit our
online resources:

dimeanalytics@worldbank.org

dimewiki.worldbank.org/iefieldkit

github.com/worldbank/iefieldkit

28

dimeanalytics@worldbank.org
dimewiki.worldbank.org/iefieldkit
github.com/worldbank/iefieldkit

	 ietestform
	 ieduplicates & iecompdup
	 iecodebook

