Extending the difference-in-differences (DID) to settings with many treated units and same intervention time: Model and Stata implementation

Giovanni Cerulli,
IRCrES-CNR
National Research Council of Italy
• Providing an original model extending the **Difference-In-Differences (DID)** to the case of a **binary treatment** having a **time-fixed** nature

• Overcoming the **Synthetic Control Model** limitations on inference

• Providing a **test** the **common-trend** assumption

• Presenting **tfdiff**: **Stata routine** to implement this model
Diffusion of the DID in Economics

Mentions in NBER working-paper abstracts, % of total papers*

- Difference-in-differences
- Dynamic stochastic general equilibrium
- Regression discontinuity
- Randomised controlled trial
- Laboratory (experiments)
- Machine learning or big data

Sources: NBER; The Economist

*Five-year moving average †To November
Counterfactual time-trend in Rome (assumed equal to that in Milan)

Observed time-trend in Milan

Observed time-trend in Rome

ATE: \(\delta = 3 > 0 \)

The basics of DID
DID modelling: a taxonomy

<table>
<thead>
<tr>
<th>NUMBER OF TREATED UNITS</th>
<th>TREATMENT TIMING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TIME-FIXED</td>
</tr>
<tr>
<td>ONE</td>
<td>Synthetic Control Method (Abadie et al., 2010; Cerulli, 2019)</td>
</tr>
<tr>
<td>MANY</td>
<td>TFDIFF (Cerulli, 2019)</td>
</tr>
</tbody>
</table>
Many untreated → DID

One treated → Parametric / Nonparametric

Many treated → Time-varying / Time-fixed

DID taxonomy tree

Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program
Alberto Abadie, Alexis Diamond & Jens Hainmueller

Estimation of pre- and posttreatment average treatment effects with binary time-varying treatment using Stata
Giovanni Cerulli
CNR-IRCES
National Research Council of Italy
Research Institute on Sustainable Economic Growth
Rome, Italy
giovanni.cerulli@irces.cnr.it

A flexible Synthetic Control Method for modeling policy evaluation
Giovanni Cerulli
CNR-IRCES
National Research Council of Italy
Institute for Research on Sustainable Economic Growth
Via dei Taurini 19, 00185, Rome, Italy
giovanni.cerulli@irces.cnr.it
Modeling TFDIFF
The **TFDIFF** model and its **Stata** implementation

- **Generalization** of the Difference–in–Differences estimator in a longitudinal data setting

- Treatment is **binary** and **fixed at a given time**

- Many **pre– and post–intervention periods** are assumed available

- **Stata routine** implementing this model in an **automatic** way:
 - graphical representation of the estimated causal effects
 - Testing **parallel-trend** assumption for the necessary condition of the identification of causal effects
Economics
In 2001, some European countries have adopted a common currency, the Euro. We would like to know whether this important economic reform has had an impact on adopters by comparing their economic performance over time with that of countries that did not adopt the Euro.

Medicine
At a given point in time, some patients affected by too high blood pressure were exposed to a new drug developed to be more effective than previous ones in stabilizing blood pressure. We are interested in assessing the effect of this new drug by comparing follow-up blood pressure of treated people with that of a placebo group. We might be also interested in detecting effect duration over the follow-up time span.

Environment
A group of regions decide to sign an agreement for reducing CO₂ emissions by promoting solar energy solutions. After some years, we are interested in assessing whether the level of CO₂ emissions in those regions is sensibly lower than the emissions in regions that did not sign the agreement.

Some examples where the TFDIFF model can come in handy
Longitudinal dataset with a **time-fixed** treatment at $t = 01$.

<table>
<thead>
<tr>
<th>id</th>
<th>t</th>
<th>w</th>
<th>D_0</th>
<th>D_1</th>
<th>D_2</th>
<th>y_{00}</th>
<th>y_{01}</th>
<th>y_{02}</th>
<th>y</th>
<th>y^1</th>
<th>y^0</th>
<th>$(y^1 - y^0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$y_{1,00}$</td>
<td>0</td>
<td>0</td>
<td>$y_{1,00}$</td>
<td>$y^1_{1,00} = y_{1,00}$</td>
<td>$y^0_{1,00} = . $</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$y_{1,01}$</td>
<td>0</td>
<td>$y_{1,01}$</td>
<td>$y^1_{1,01} = y_{1,01}$</td>
<td>$y^0_{1,01} = . $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>02</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$y_{1,02}$</td>
<td>$y_{1,02}$</td>
<td>$y^1_{1,02} = y_{1,02}$</td>
<td>$y^0_{1,02} = . $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>00</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$y_{2,00}$</td>
<td>0</td>
<td>0</td>
<td>$y_{2,00}$</td>
<td>$y^1_{2,00} = . $</td>
<td>$y^0_{2,00} = y_{2,00}$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>01</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$y_{2,01}$</td>
<td>0</td>
<td>$y_{2,01}$</td>
<td>$y^1_{2,01} = . $</td>
<td>$y^0_{2,01} = y_{2,01}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$y_{2,02}$</td>
<td>$y_{2,02}$</td>
<td>$y^1_{2,02} = . $</td>
<td>$y^0_{2,02} = y_{2,02}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Columns 11 and 12 set out the potential outcomes
- Column 13 shows the treatment effect.
Econometric set-up

According to Table 1, we can write the observed outcome $y_{i,t}$ using the following identity:

$$y_{i,t} = y_{i,00} + (y_{i,01} - y_{i,00}) \cdot D_{1,it} + (y_{i,02} - y_{i,00}) \cdot D_{2,it}$$

(1)

Given $y_{i,t}^w$, we can define the average treatment effect conditional on t as:

$$\text{ATE}(t) = E(y_{i,t}^1 - y_{i,t}^0 | t)$$

(2)

Average treatment effect at time t
We assume the **potential outcomes** to take on this form \((w = 0, 1)\):

\[
y_{i,t}^w = \mu_{t}^w + \theta_i + \lambda_t + g(x_{it}) + \varepsilon_{i,t}^w
\]

where \(\mu_t^w\) is a time-varying component dependent on the treatment status, \(\theta_i\) an idiosyncratic fixed-effect, \(\lambda_t\) a time fixed-effect, \(g(x_{it})\) a component depending on the characteristics of the unit \(i\) at time \(t\), and \(\varepsilon_{i,t}^w\) a random shock with finite variance and zero mean.

By taking the mean of Eq. (3), we have:

\[
E[y_{i,t}^w|w, t, \theta_i, x_{it}] = \mu_{t}^w + \theta_i + \lambda_t + g(x_{it})
\]

which entails that:

\[
\text{ATE}(t) = \mu_{t}^1 - \mu_{t}^0
\]

Average treatment effect at time \(t\)
The potential outcomes have a similar expression as the one of the observed outcome in Eq. (1). Thus, for both the treated and untreated status, we have:

\[
y_{i,t}^1 = \mu_{00} + (\mu_{01} - \mu_{00}) \cdot D_{1,it} + (\mu_{02} - \mu_{00}) \cdot D_{2,it} + \theta_i + \lambda_t + g(x_{it}) + e_{it}^1 \quad (6)
\]

\[
y_{i,t}^0 = \mu_{00} + (\mu_{01} - \mu_{00}) \cdot D_{1,it} + (\mu_{02} - \mu_{00}) \cdot D_{2,it} + \theta_i + \lambda_t + g(x_{it}) + e_{it}^0 \quad (7)
\]

where \(e_{it}^w = \varepsilon_{i,00}^w + (\varepsilon_{i,01}^w - \varepsilon_{i,00}^w) \cdot D_{1,it} + (\varepsilon_{i,02}^w - \varepsilon_{i,00}^w) \cdot D_{2,it} \), for \(w = 0, 1 \).

Using the Rubin’s potential outcome identity, i.e.:

\[
y_{i,t} = y_{i,t}^0 + w_{i,t} \cdot (y_{i,t}^1 - y_{i,t}^0) \quad (8)
\]
Baseline regression

By substitution, we get:

\[y_{i,t} = \mu_{00} + (\mu_{01}^0 - \mu_{00}^0) \cdot D_{1,it} + (\mu_{02}^0 - \mu_{00}^0) \cdot D_{2,it} + (\mu_{10}^1 - \mu_{00}^0) \cdot w_{i,t} + w_{i,t} \cdot [(\mu_{01}^1 - \mu_{00}^0) - (\mu_{00}^1 - \mu_{00}^0)] \cdot D_{1,it} + \\
\quad w_{i,t} \cdot [(\mu_{02}^1 - \mu_{00}^0) - (\mu_{00}^1 - \mu_{00}^0)] \cdot D_{2,it} + \theta_i + \lambda_t + g(x_{it}) + \eta_{it} \]

\[y_{it} = \mu + \beta_1 D_{1,it} + \beta_2 D_{2,it} + \phi \cdot w_{it} + \gamma_1 w_{it} D_{1,it} + \gamma_2 w_{it} D_{2,it} + \theta_i + \lambda_t + g(x_{it}) + \eta_{it} \]

Baseline fixed-effect regression
Recovering $\text{ATE}(t)$ from the baseline regression

$$y_{it} = \mu + \beta_1 D_{1, it} + \beta_2 D_{2, it} + \phi \cdot w_{it} + \gamma_1 w_{it} D_{1, it} + \gamma_2 w_{it} D_{2, it} + \theta_i + \lambda_t + g(x_{it}) + \eta_{it}$$

Causal effects

- $\text{ATE}(00) = \phi$
- $\text{ATE}(01) = \phi + \gamma_1$
- $\text{ATE}(02) = \phi + \gamma_2$
Generalization to \((T+1)\) times

A generalization of the previous model to \((T+1)\) times, i.e. \(T = \{0, 1, 2, \ldots, T - 1, T\}\) with \(t^*\) the year of treatment is as follows:

\[
y_{it} = \mu + \beta_1 D_{1, it} + \cdots + \beta_T D_{T, it} + \phi \cdot w_{it} + \gamma_1 w_{it} D_{1, it} + \cdots + \gamma_T w_{it} D_{T, it} + \theta_i + \lambda_t + g(x_{it}) + \eta_{it} \tag{14}
\]

with

\[
\begin{align*}
\text{ATE}(0) &= \phi \\
\text{ATE}(1) &= \phi + \gamma_1 \\
&\quad \cdots \\
\text{ATE}(t^*) &= \phi + \gamma_{t^*} \\
&\quad \cdots \\
\text{ATE}(T) &= \phi + \gamma_T
\end{align*}
\]

Causal effects over time
Testing the common-trend assumption

The previous model allows for a simple test for the common-trend assumption. This can be done by accepting this null:

\[H_0 : \phi = \gamma_1 = \cdots = \gamma(t^* - 1) = 0 \]

If accepted, this test leads to accept the presence of a common-trend between treated and untreated units, although the test is valid only under no-anticipatory behaviors.
Anticipation effect

- Contemporaneous Causal effect
- Anticipated causal effect
- Past Causal effect

- t-1: Actual treatment
- t: Expected treatment for t+1
- t+1: Actual treatment
Testing the **parallel-trend** (or **common-trend**) assumption

- The **common-trend** assumption is at the basis of DID identification

- In general it is **untestable**

- If a sufficiently long times-series is available, the common-trend can be "assessed", under **no-anticipatory effects**
Common-trend assumption: basis for DID to identify ATEs

Number of employees

Observed time-trend in Milan

Observed time-trend in Rome

Counterfactual time-trend in Rome (assumed equal to that in Milan)

ATE: \(\delta = 3 > 0 \)

\(t_0 \)

Policy

\(t_1 \)
Stata implementation via tfdiff
Stata syntax of `tfdiff`

```
. tfdiff outcome treatment [varlist] [if] [in] [weight], model(modeltype) t(year) [test_tt graph save_graph(graphname) vce(vcetype)]
```

`fweights`, `iweights`, and `pweights` are allowed;
where:

- **outcome**: is the target variable measuring the impact of treatment.
- **treatment**: is the binary treatment variable taking 1 for treated, and 0 for untreated units.
- **varlist**: is the set of pre-treatment (or observable confounding) variables.
Options of \texttt{tfdiff}

Options

- \textbf{model}(\textit{modeltype}) specifies the estimation model, where \textit{modeltype} must be one out of these two alternatives: “fe” (fixed effects), or “ols” (ordinary least squares). It is always required to specify one model.

- \texttt{t(year)} specifies the year of treatment

- \texttt{test_tt} allows for performing the parallel–trend test using the time–trend approach. The default is to use the leads.

- \texttt{graph} allows for a graphical representation of results. It uses the coefplot command implemented by Jann (2014).

- \texttt{save_graph(graphname)} permits to save the graph as \textit{graphname}.

- \texttt{vce(vcetype)} allows for robust and clustered regression standard errors in model’s estimates.
Simulation of the TFDIFF model

Time span: 2000-2020

Number of years: 21

Year of treatment: 2010

Treated units: 21 (441)

Untreated units: 79 (1,659)

N = 100 (2,100)

Outcome: Rate of GDP growth
Average Treatment Effect $= 1$
Average Treatment Effects at each t: estimates for ATE = 1

Average Treatment Effect = 1
Average Treatment Effects at each t: estimates for ATE = 1
Potential Outcomes Means: estimates for ATE = 0 (*no-effect setting*)

Average Treatment Effect = 0
Average Treatment Effects at each t: estimates for $ATE = 0$ (*no-effect setting*)

Average Treatment Effect = 0
Conclusions

- The model **TFDIFF** accommodates a large set of treatment/policy situations in several fields of application.

- Compared to the SCM which considers only one treated unit, **TFDIFF** uses many treated units and provides a more robust inference on the causal effects over time – i.e. ATE(t) - than SCM.

- Under no-anticipation, **TFDIFF** provides a straightforward way to test the common-trend.

- The Stata command I developed – **tfdiff** – is simple to use and provides a nice graphical representation of the results.
References

