Two-Stage Residual Inclusion Estimation: A Practitioners Guide to

Stata Implementation

by

Joseph V. Terza

Department of Economics Indiana University Purdue University Indianapolis Indianapolis, IN 46202

(July, 2016)

Motivation: Smoking and Infant Birth Weight

-- As an example, we revisit the regression model of Mullahy (1997) in which

Y = infant birth weight in lbs.

 X_p = number of cigarettes smoked per day during pregnancy.

-- We seek to regress Y on X_p with a view toward the estimation of (and drawing

inferences regarding) the causal effect of the latter on the former.

Mullahy, J. (1997): "Instrumental-Variable Estimation of Count Data Models: Applications to Models of Cigarette Smoking Behavior," *Review of Economics and Statistics*, 79, 586-593.

Motivation: Smoking and Infant Birthweight

-- Two complicating factors:

-- the regression specification is nonlinear because Y is non-negative.

-- X_p is likely to be *endogenous* – correlated with unobservable variates that are also correlated with Y.

-- For example, unobserved unhealthy behaviors may be correlated with both smoking and infant birth weight.

-- If the endogeneity of X_p is not explicitly accounted for in estimation, effects on Y due to the unobservables will be attributed to X_p and the regression results will not be causally interpretable (CI).

Remedy: Two-Stage Residual Inclusion

-- In the generic version of the above model

 $Y \equiv$ dependent variable

and the covariates include:

 $X_p \equiv$ endogenous regressor (usually a policy-relevant variable) $X_0 \equiv$ vector of observable exogenous (non-endogenous) regressors and

 $X_u \equiv$ unobservable variable that is correlated with X_p but not correlated with X_o .

-- The presence of X_u in the model embodies the endogeneity of X_p .

-- Following Terza et al. (2008), we posit the following model

$$Y = \mu(X_{p}, X_{o}, X_{u}; \beta) + e$$

$$= \mu(X; \beta) + e \qquad [outcome regression] \qquad (1)$$
and

$$X_p = r(W; \alpha) + X_u$$
 [auxiliary regression] (2)

where β and α are the parameter vectors to be estimated

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_{\mathbf{p}} & \mathbf{X}_{\mathbf{o}} & \mathbf{X}_{\mathbf{u}} \end{bmatrix}$$

 $\mathbf{W} = \begin{bmatrix} \mathbf{X}_{\mathbf{0}} & \mathbf{W}^{+} \end{bmatrix}$

W⁺ is a vector of identifying instrumental variables (IV)

 μ () and r() are known functions

and e is the random error term, tautologically defined as

 $\mathbf{e} = \mathbf{Y} - \boldsymbol{\mu}(\mathbf{X}; \boldsymbol{\beta})$

so that E[e | X] = 0.

-- The auxiliary regression specification in (2) implies that X_u can be written as the following function of W and α

$$X_{u}(W; \alpha) = X_{p} - r(W; \alpha).$$
(3)

-- Given (3), an alternative and equivalent, representation of (1) is

$$Y = \mu(X_p, X_o, X_u(W; \alpha); \beta) + e.$$
(4)

-- The β parameters in expression (1) are not directly estimable [e.g. via the nonlinear least squares method (NLS)] because X_u is unobservable.

Terza et al. (2008) show that the following two-stage protocol is consistent.
 First Stage: Obtain a consistent estimate of α by applying NLS to (2) and compute the *residual* as the following estimated version of (3)

$$\hat{\mathbf{X}}_{\mathbf{u}} = \mathbf{X}_{\mathbf{p}} - \mathbf{r}(\mathbf{W}; \hat{\boldsymbol{\alpha}})$$
(5)

where $\hat{\alpha}$ is the first-stage estimate of α .

Second Stage: Consistently estimate β by applying NLS to

$$Y = \mu(X_p, X_o, \hat{X}_u; \beta) + e^{2SRI}$$
(6)

where e^{2SRI} denotes the regression error term that is not identical to e due to the

replacement of X_u with the residual \hat{X}_u .

Terza, J., Basu, A. and Rathouz, P. (2008): "Two-Stage Residual Inclusion Estimation: Addressing Endogeneity in Health Econometric Modeling," *Journal of Health Economics*, 27, 531-543.

Two-Stage Residual Inclusion – Alternatives to NLS

- -- It is not necessary that NLS be implemented in either or both of the stages of 2SRI. Any consistent estimator will do.
- -- For instance, a maximum likelihood estimator (MLE) can be used in either, or both, of the stages.
- -- For MLE in the first stage, specify a known form for the conditional density of $(X_p | W)$, say $g(X_p | W; \alpha)$.
- -- Such an assumption would, of course, imply a formulation for $r(W; \alpha)$ in (2) {the relevant conditional mean, i.e. $r(W; \alpha) = E[X_p | W]$ }.

-- In this case, the 2SRI first stage estimator would be the MLE of α.

Two-Stage Residual Inclusion – Alternatives to NLS (cont'd)

-- Similarly for MLE in the second stage, specify a known form for the conditional density of $(Y | X_p, W, X_u)$, say $f(Y | X_p, W, X_u; \alpha, \beta)$.

-- The second stage estimator would then be the MLE of β .

-- In the vast majority of applied settings, the 2SRI estimates of α and β are very easy to obtain via standard regression commands offered by Stata.

Back to the Example: Smoking and Infant Birth Weight

To the above smoking and birth weight model we add

 $X_0 = [PARITY WHITE MALE]$

 $W^+ = [EDFATHER EDMOTHER FAMINCOM CIGTAX]$

where

PARITIY = birth order

WHITE = 1 if white, 0 otherwise

MALE = 1 if male, 0 otherwise

EDFATHER = paternal schooling in years

EDMOTHER = maternal schooling in years

FAMINCOME = family income

and

CIGTAX = cigarette tax.

-- Mullahy's (1997) regression model can be written as the following version of (1) [see Terza (2006)]

(7)

$$Y = \exp(X_{p}\beta_{p} + X_{o}\beta_{o} + X_{u}\beta_{u}) + e$$
$$= \exp(X\beta) + e$$

where and $\beta' = [\beta_p \quad \beta'_o \quad \beta_u]$.

Terza, J. (2006): "Estimation of Policy Effects Using Parametric Nonlinear Models: A Contextual Critique of the Generalized Method of Moments," *Health Services and Outcomes Research Methodology*, 6, 177-198.

-- In the original study, the model was estimated via a GMM procedure that does not require specification of an auxiliary regression for X_p .

-- Mullahy's GMM method, though very clever, does not permit identification and estimation of β_u .

-- This precludes a direct test of endogeneity because, under the assumed regression specification in (7), X_p is exogenous is iff $\beta_u = 0$.

- -- Such a test is, however, supported in the 2SRI estimation framework.
- -- We specify the relevant auxiliary regression as the following version of (2)

$$X_{p} = \exp(W\alpha) + X_{u}.$$
 (8)

-- In this context the 2SRI protocol is:

First Stage: Consistently estimate α by applying NLS to (8) and save the residuals as defined in (5). In this case

$$\hat{\mathbf{X}}_{\mathbf{u}} = \mathbf{X}_{\mathbf{p}} - \exp(\mathbf{W}\hat{\boldsymbol{\alpha}}) \tag{9}$$

where $\hat{\alpha}$ is the NLS estimate of α .

In Stata use

glm CIGSPREG PARITY WHITE MALE EDFATHER EDMOTHER ///

```
FAMINCOM CIGTAX88, ///
```

family(gaussian) link(log) vce(robust)

predict Xuhat, response

CIGSPREG	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
PARITY WHITE	.2788441	.244504	0.56	0.576	200375	.7580632
MALE EDFATHER EDMOTHER	0341149 0991817	.1801299 .0184968 .0296607	0.86 -1.84 -3.34	0.391 0.065 0.001	1985785 070368 1573155	
FAMINCOM CIGTAX88	0183652 .0190194	.0069294 .0132204	-2.65 1.44	0.008 0.150	0319465 0068922	0047839 .0449309
_cons	2.043192	.3649598	5.60	0.000	1.327884	2.7585
. test (EDFATH	IER = 0) (EDMC	OTHER = 0) (FAMINCOM	= 0) (CI	GTAX88 = 0)	
(2) [CIGSPE	REG]EDFATHER = REG]EDMOTHER =	= 0				
<pre>(3) [CIGSPREG]FAMINCOM = 0 (4) [CIGSPREG]CIGTAX88 = 0</pre>						
		9.33).0000				

<u>Second Stage</u>: Consistently estimate β by applying NLS to this version of (6)

$$Y = \exp(X_p \beta_p + X_o \beta_o + \hat{X}_u \beta_u) + e^{2SRI}$$
(10)

In Stata use

glm BIRTHWTLB CIGSPREG PARITY WHITE MALE Xuhat, ///

family(gaussian) link(log) vce(robust)

BIRTHWTLB	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
CIGSPREG	0140086	.0034369	-4.08	0.000	0207447	0072724
PARITY	.0166603	.0048853	3.41	0.001	.0070854	.0262353
WHITE	.0536269	.0117985	4.55	0.000	.0305023	.0767516
MALE	.0297938	.0088815	3.35	0.001	.0123864	.0472011
Xuhat	.0097786	.0034545	2.83	0.005	.003008	.0165492
_cons	1.948207	.0157445	123.74	0.000	1.917348	1.979066

Standard Errors in a 2SRI Setting: Bootstrapping

-- The standard errors (t-z-statistics, p-values) of the estimates of the elements of $\hat{\beta}$ (the 2SRI elements of β) as displayed in the above Stata output are not correct (i.e. cannot be used to estimate asymptotic confidence intervals or to conduct asymptotic hypothesis tests).

-- Bootstrapping can be used to approximate the asymptotically correct standard errors (ACSE) for $\hat{\beta}$ (500 replications).

Stata Code for Bootstrapping

```
** Begin Stata program for bootstrapping.
                        **
program twosri, eclass
tempname b V
capture drop Xuhat
** Apply GLM for the 2SRI first stage.
                        **
glm CIGSPREG PARITY WHITE MALE EDFATHER EDMOTHER FAMINCOM CIGTAX88, ///
family(gaussian) link(log) vce(robust)
** Save the first stage residuals.
                        **
predict Xuhat, response
** Apply GLM for the 2SRI second stage.
                          **
glm BIRTHWTLB CIGSPREG PARITY WHITE MALE Xuhat, ///
family(gaussian) link(log) vce(robust)
**
** End Stata program for bootstrapping.
matrix b' = e(b)
ereturn post `b'
end
```

Stata Code for Bootstrapping (cont'd)

2SRI Results (n = 1,388; 500 replications)

	Observed	 Р		Normal-based		
	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
CIGSPREG	0140086	.0038255	-3.66	0.000	0215063	0065108
PARITY	.0166603	.005216	3.19	0.001	.0064372	.0268835
WHITE	.0536269	.0133074	4.03	0.000	.0275449	.079709
MALE	.0297938	.0094097	3.17	0.002	.0113511	.0482364
Xuhat	.0097786	.0038694	2.53	0.011	.0021947	.0173625
_cons	1.948207	.0170106	114.53	0.000	1.914867	1.981547

Standard Errors in a 2SRI Setting: ACSE

-- How good are the bootstrapped standard errors (BSE)? To evaluate this we need the true ACSE.

-- Underlying the ACSE is the estimated asymptotically correct covariance matrix of $\hat{\beta}$ -- EACCM($\hat{\beta}$).

-- The ACSE are the square roots of the diagonal elements of the EACCM($\hat{\beta}$).

-- Terza (2016) shows that the exact form of the EACCM($\hat{\beta}$) depends on the method implemented in the second stage of 2SRI – NLS or MLE.

Terza, J.V. (2016): "Simpler Standard Errors for Two-Stage Optimization Estimators," the Stata Journal, 16, 368-385.

EACCM($\hat{\beta}$) When 2nd Stage of 2SRI is NLS

$$\left(B_{\beta}^{\text{NLS'}}B_{\beta}^{\text{NLS}}\right)^{-1} \left(B_{\beta}^{\text{NLS'}}B_{\alpha}^{\text{NLS}}\right) \left(n \ \widehat{\text{AVAR}} * (\hat{\alpha})\right) \left(B_{\beta}^{\text{NLS'}}B_{\alpha}^{\text{NLS}}\right)' \left(B_{\beta}^{\text{NLS'}}B_{\beta}^{\text{NLS}}\right)^{-1} + \left(n \ \widehat{\text{AVAR}} * (\hat{\beta})\right)$$
(11)

where $AVAR^*(\hat{\alpha})$ and $AVAR^*(\hat{\beta})$ are the estimated covariance matrices obtained from the first and second stage packaged regression outputs, respectively

$$B_{\alpha}^{\text{NLS}} \equiv (n \times K_{\alpha}) \text{ matrix whose typical (ith) row (i = 1, ..., n) is}$$
(12)
$$\nabla_{\alpha} \mu(X_{\text{pi}}, X_{\text{oi}}, [X_{\text{pi}} - r(W_{\text{i}}; \hat{\alpha})]; \hat{\beta})$$

$$B_{\beta}^{\text{NLS}} = (n \times K_{\beta}) \text{ matrix whose typical (ith) row (i = 1, ..., n) is}$$
(13)
$$\nabla_{\beta} \mu(X_{\text{pi}}, X_{\text{oi}}, [X_{\text{pi}} - r(W_{\text{i}}; \hat{\alpha})]; \hat{\beta})$$

 K_{α} and K_{β} are the dimensions of α and β , respectively

 $\nabla_t s(t)$ is the gradient of the scalar function, s, with respect to the vector t. and i denotes the ith observation in a sample of size n.

EACCM($\hat{\beta}$) When 2nd Stage of 2SRI is MLE

$$\left(n \ \widehat{AVAR} * (\hat{\beta})\right) \left(B_{\beta}^{MLE'} B_{\alpha}^{MLE}\right) \left(n \ \widehat{AVAR} * (\hat{\alpha})\right) \left(B_{\beta}^{MLE'} B_{\alpha}^{MLE}\right)' \left(n \ \widehat{AVAR} * (\hat{\beta})\right) + \left(n \ \widehat{AVAR} * (\hat{\beta})\right)$$

where

$$B_{\alpha}^{MLE} \equiv (n \times K_{\alpha}) \text{ matrix whose typical (ith) row (i = 1, ..., n) is}$$
$$\nabla_{\alpha} f(Y_i \mid X_{pi}, W_i, [X_{pi} - r(W_i; \hat{\alpha})]; \hat{\beta})$$

$$B_{\beta}^{MLE} = (n \times K_{\beta}) \text{ matrix whose typical (ith) row (i = 1, ..., n) is}$$
$$\nabla_{\beta} f(Y_i \mid X_{pi}, W_i, [X_{pi} - r(W_i; \hat{\alpha})]; \hat{\beta}).$$

Back to the Smoking and Birth Weight Example

-- In this case

$$\mu(X_p, X_o, [X_p - r(W; \alpha)]; \beta)$$

= exp(X_p \beta_p + X_o \beta_o + [X_p - exp(W\alpha)] \beta_u)

and because the 2nd stage of our 2SRI estimator is NLS, the following versions of (12) and (13) are relevant:

$$\nabla_{\alpha}\mu(X_{pi}, X_{oi}, [X_{pi} - r(W_i; \hat{\alpha})]; \hat{\beta}) = -\hat{\beta}_u \exp(X_i\hat{\beta})\exp(W_i\hat{\alpha})W_i$$
(14)

$$\nabla_{\beta}\mu(X_{pi}, X_{oi}, [X_{pi} - r(W_i; \hat{\alpha})]; \hat{\beta}) = \exp(X_i \hat{\beta}) X_i$$
(15)

where $X_i = [X_{pi} \ X_{oi} \ \hat{X}_{ui}]$ and $\hat{\beta}' = [\hat{\beta}_p \ \hat{\beta}'_o \ \hat{\beta}_u]$.

Back to the Smoking and Birth Weight Example: Walking Through the Stata Code

-- After the 2SRI first stage, use the following to save the vector of first-stage coefficient estimates and its corresponding estimated covariance matrix so that they are accessible in Mata:

```
mata: alphahat=st_matrix("e(b)")'
```

```
mata: Valphahat=st_matrix("e(V)")
```

The first statement yields $\hat{\alpha}$.

The second statement yields $\overline{AVAR}^*(\hat{\alpha})$.

-- After the 2SRI second stage, use the following to save the vector of second-stage coefficient estimates and its corresponding estimated covariance matrix so that they are accessible in Mata (also single out $\hat{\beta}_{\mu}$):

```
mata: betahat=st_matrix("e(b)")'
```

```
mata: Vbetahat=st_matrix("e(V)")
```

```
mata: Bu=betahat[5]
```

The first statement yields $\hat{\beta}$.

The second statement yields $\widehat{AVAR}^*(\hat{\beta})$.

The third statement yields $\hat{\beta}_u$.

-- Construct x and W matrices, where x is the matrix whose columns are x_p , xo and a constant term (a column vector of 1s); and W has columns XO, Wplus and a constant term. Make sure that the ordering of the columns of X and W (including the constant term) conforms to the ordering of the estimated coefficients in $\hat{\beta}$ and $\hat{\alpha}$. putmata CIGSPREG BIRTHWTLB PARITY WHITE MALE EDFATHER /// EDMOTHER FAMINCOM CIGTAX88 Xuhat mata: X=CIGSPREG, PARITY, WHITE, MALE, /// Xuhat, J(rows(PARITY),1,1)

mata: W=PARITY, WHITE, MALE, EDFATHER, EDMOTHER, ///
FAMINCOM, CIGTAX88, J(rows(PARITY),1,1)

-- Use $\hat{\beta}$, $\hat{\beta}_u$, $\hat{\alpha}$, X, and W to construct the two gradient matrices needed to calculate the correct standard errors for $\hat{\beta}$ -- based on (14) and (15):

```
mata: Bbeta=exp(X*betahat):*X
```

mata: Balpha=-Bu:*exp(X*betahat):*exp(W*alphahat):*W

The first yields B_{β}^{NLS} based on (15).

The second yields B_{α}^{NLS} based on (14).

-- Calculate the EACCM of $\hat{\beta}$ based on (11).

mata: B1=Bbeta'* Bbeta

mata: B2=Bbeta'*Balpha

mata: EACCM=invsym(B1)*B2*Valphahat*B2'*invsym(B1)+Vbetahat

-- Calculate the vector of asymptotically correct standard errors for betahat

mata: ACSE=sqrt(diagonal(Dhat))

-- Calculate the vector of asymptotically correct t-statistics to be used to test the conventional null hypothesis regarding the elements of β (viz., $H_0 : \beta_k = 0$, where β_k denotes the kth element of β)

mata: tstats=betahat:/ACSE

Back to the Example: Results ACSE vs. BSE

2SRI Second Stage, GMM and NLS Estimates

	2SRI			GMM		OLS		
Variable	Estimate	Correct t-stat	Bootstrp t-stat (500reps)	Raw t-stat	Estimate	t-stat	Estimate	t-stat
CIGS	-0.01	-3.68	-3.66	-4.08	-0.01	-3.46	0.00	-5.62
PARITY	0.02	3.18	3.19	3.41	0.02	3.33	0.01	2.99
WHITE	0.05	4.22	4.03	4.55	0.05	4.44	0.06	4.75
MALE	0.03	3.13	3.17	3.35	0.03	2.95	0.03	2.90
X _u	0.01	2.56	2.53	2.83				
Constant	1.95	117.64	114.53	123.74	1.94	121.71	1.93	133.70

n = 1,388

Back to the Example: Bootstrapping Results

n = 1,388 CPU Time for ACSE = 0.618 (secs.)

Doplications	% Avg.	% Max.	CPU Time	
Replications	Absolute Bias	Absolute Bias	(secs.)	
100	7.10%	10.20%	16.967	
250	5.20%	8.30%	42.390	
500	1.80%	4.70%	83.691	
1000	1.20%	2.70%	218.160	
2000	1.90%	3.50%	340.284	
3000	1.11%	3.58%	489.870	

ACSE vs. BSE: Caveats

-- ACSE requires special programming (e.g. in Mata) but so does BSE (Stata programming).

-- BSE is only an approximation to ACSE, not clear how good that approximation is in a particular empirical context. Some sense of convergence must be achieved but this can be time consuming.

-- Elapsed computation time for ACSE in this example (n = 1,388) was less than a second.

ACSE vs. BSE: Caveats (cont'd)

-- Elapsed computation time for BSE in this example (n = 1,388; 500 replications) was 1.5 minutes, for analytic samples in health econ and health services research of sizes in the 10s of thousands, this may be an issue.

-- Convergence issues. For unstable estimation routines due to data or modeling issues, BSE may be additionally biased.

The Example: Alternative Specification

- -- A large proportion of the analysis sample are non-smokers.
- -- For the auxiliary regression we used the modified two-part model of Mullahy (1998).
- -- The two-parts of the auxiliary regression are (i.e. the first stage of 2SRI):

Part 1: Estimate α_1 by regressing I(X_p>0) on W using probit analysis and the full

sample, where I(C) is the index function = 1 if condition C holds, 0 otherwise.

Part 2: Estimate α_2 by applying NLS to

 $(X_p > 0) = exp(W\alpha) + v$

using the subsample of smokers (i.e., those for whom $X_p > 0$.

Mullahy, J. (1998). "Much ado about two: reconsidering retransformation and the two-part model in health econometrics." *Journal of Health Economics* 17(3): 247-281.

The Example: Alternative Specification (cont'd)

-- Second stage of 2SRI:

Consistently estimate β by applying NLS to this version of (6)

$$Y = \exp(X_p \beta_p + X_o \beta_o + \hat{X}_u \beta_u) + e^{2SRI}$$
(10)

with $\hat{X}_u = X_p - \Phi(W\hat{\alpha}_1)\exp(W\hat{\alpha}_2)$ -- the residuals from the first-stage two-part model, where $\Phi($) is normal cdf.

-- Note that in the two-part model for the auxiliary regression

 $\mathbf{E}[\mathbf{X}_{\mathbf{p}} | \mathbf{W}] = \Phi(\mathbf{W}\boldsymbol{\alpha}_1) \exp(\mathbf{W}\boldsymbol{\alpha}_2).$

Alternative Specification: Walking Through the Stata Code

-- First part of 2SRI first stage:
-- After the first part of the 2SRI first stage, use the following to save the vector of first part first-stage coefficient estimates and its corresponding estimated covariance matrix so that they are accessible in Mata:

```
mata: alpha1hat=st_matrix("e(b)")'
```

```
mata: Valpha1hat=st_matrix("e(V)")
```

The first statement yields $\hat{\alpha}_1$.

The second statement yields $\widehat{AVAR}^*(\hat{\alpha}_1)$.

-- Second part of 2SRI first stage:

predict CIGMEAN

test EDFATHER EDMOTHER FAMINCOM CIGTAX88

-- After the second part of the 2SRI first stage, use the following to save the vector of second part first-stage coefficient estimates and its corresponding estimated covariance matrix so that they are accessible in Mata:

```
mata: alpha2hat=st_matrix("e(b)")'
```

```
mata: Valpha2hat=st_matrix("e(V)")
```

The first statement yields $\hat{\alpha}_2$.

The second statement yields $\widehat{AVAR}^*(\hat{\alpha}_2)$.

-- 2SRI second stage:

-- After the 2SRI second stage, use the following to save the vector of second-stage coefficient estimates and its corresponding estimated covariance matrix so that they are accessible in Mata (also single out $\hat{\beta}_{\mu}$):

```
mata: betahat=st_matrix("e(b)")'
```

```
mata: Vbetahat=st_matrix("e(V)")
```

```
mata: Bu=betahat[5]
```

The first statement yields $\hat{\beta}$.

The second statement yields $\widehat{AVAR}^*(\hat{\beta})$.

The third statement yields $\hat{\beta}_u$.

-- In this case the relevant version of $\mu()$ in (1) is

$$\mu(X_p, X_o, [X_p - r(W; \alpha)]; \beta)$$

= exp(X_pβ_p + X_oβ_o + [X_p - Φ(Wa₁)exp(Wa₂)]β_u)

and the requisite gradients for the EACCM and ACSE (i.e. for B_{α}^{NLS} and B_{β}^{NLS}) are

$$\nabla_{\alpha}\mu(X_{pi}, X_{oi}, [X_{pi} - r(W_{i}; \hat{\alpha})]; \hat{\beta})$$

= $-[\hat{\beta}_{u}\exp(X_{i}\hat{\beta})\exp(W_{i}\hat{\alpha}_{2})\phi(W\hat{\alpha}_{1})W_{i} \quad \hat{\beta}_{u}\exp(X_{i}\hat{\beta})\exp(W_{i}\hat{\alpha}_{2})\Phi(W\hat{\alpha}_{1})W_{i}]$

and

$$\nabla_{\beta}\mu(X_{pi}, X_{oi}, [X_{pi} - r(W_i; \hat{\alpha})]; \hat{\beta}) = \exp(X_i\hat{\beta})X_i.$$

-- Use $\hat{\beta}$, $\hat{\beta}_u$, $\hat{\alpha}$, X, and W to construct the two gradient matrices needed to

calculate the correct standard errors for $\hat{\beta}$ -- based on (14) and (15):

The first yields B_{β}^{NLS} based on (15).

```
The next three yield B_{\alpha}^{NLS} based on (14).
```

-- Calculate the EACCM of $\hat{\beta}$ based on (11).

mata: B1=Bbeta'* Bbeta

mata: B2=Bbeta'*Balpha

mata: EACCM=invsym(B1)*B2*Valphahat*B2'*invsym(B1)+Vbetahat

-- Calculate the vector of asymptotically correct standard errors for betahat

mata: ACSE=sqrt(diagonal(Dhat))

-- Calculate the vector of asymptotically correct t-statistics to be used to test the conventional null hypothesis regarding the elements of β (viz., $H_0 : \beta_k = 0$, where β_k denotes the kth element of β)

mata: tstats=betahat:/ACSE

Alternative Specification: Bootstrapping

```
Begin Stata program for bootstrapping.
                             * *
program twosri, eclass
tempname b V
tempvar coeff
tempvar CIGPROB
tempvar CIGMEAN
tempvar al
tempvar a2
capture drop Xuhat
** Obtain the first stage first part probit
                               * *
** estimates.
                         * *
probit ANYCIGS PARITY WHITE MALE EDFATHER EDMOTHER ///
 FAMINCOM CIGTAX88
predict `CIGPROB'
matrix `a1'=e(b)
```

Alternative Specification: Bootstrapping

Alternative Specification: Bootstrapping

```
** Obtain the second stage NLS estimates.
                      * *
glm BIRTHWTLB CIGSPREG PARITY WHITE MALE Xuhat, ///
 family(gaussian) link(log) vce(robust)
matrix b' = e(b)
ereturn post `b'
** End Stata program for bootstrapping.
                        * *
end
* *
** Bootstrap.
bootstrap b, reps(3000) seed (10101) nodots nowarn: twosri
```

Alternative Specification: Results ACSE vs. BSE

	2SRI			
Variable	Estimate	Correct t-stat	Bootstrp t-stat (500reps)	Raw t-stat
CIGS	-0.01	-4.07	-3.86	-4.41
PARITY	0.02	3.36	3.45	3.66
WHITE	0.05	4.45	4.19	4.61
MALE	0.03	2.80	2.86	2.90
X _u	0.01	2.66	2.56	2.89
Constant	1.94	124.67	124.84	129.70

Alternative Specification: Bootstrapping Results

n = 1,388 CPU Time for ACSE = 0.561 (secs.)

Replications	% Avg.	% Max.	CPU Time
	Absolute Bias	Absolute Bias	(secs.)
100	4.20%	6.70%	11.372
250	3.77%	7.61%	27.384
500	3.31%	6.16%	54.973
1000	2.00%	3.63%	109.343
2000	1.90%	3.24%	218.333
3000	1.63%	2.59%	338.598