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Introduction

Given a running variable X, a threshold c, a treatment indicator T,
and an outcome Y, Regression Discontinuity (RD) models identify
a local average treatment effect (LATE) by associating a jump in
mean outcome with a jump in the probability of treatment T when
X crosses the threshold c.

Example: Jacob and Lefgren (2004): You are likely to be sent to summer school if
you fail a final exam. T indicates summer school, —X is test grade, —c is grade
needed to pass, Y is later academic performance.



@ Dong and Lewbel (2015) construct the Treatment Effect Derivative
(TED) of estimated RD. TED is nonparametrically identified and easily
estimated.

@ They argue TED is useful because, under a local policy invariance
assumption, TED = MTTE (Marginal Threshold Treatment Effect).
MTTE is the change in the RD treatment effect resulting from a
marginal change in c.

@ We argue here that even without policy invariance, TED provides a
useful measure of stability of RD estimates, in both sharp and fuzzy
RD designs.

@ We also define a closely related concept, the CPD (Complier Probability
Derivative). We show that this is another useful measure of stability
in fuzzy designs.



The RD treatment effect (RD LATE) only applies to a small subpopu-
lation: people having X = c.

In fuzzy RD it's an even smaller group: only people who are both
compliers and have X = c.

RD Stability: Would people with X # ¢ but X near ¢ experience similar
treatment effects, in sign and magnitude to those having X = ¢?

If a small ceteris paribus change in X greatly changes either the ATE
or the set of compliers, that should raise doubts about the generality
and hence external validity of the estimates.

This is what TED and CPD estimate. We therefore recommend calcu-
lating TED (and CPD for fuzzy designs) in virtually all RD empirical
applications.



Angrist and Rokkanen (2015) recognize the issue. They estimate LATE away
from the cutoff, but require a strong running variable conditional exogeneity
assumption.

In contrast, the only thing we impose to identify TED, beyond standard RD
assumptions is additional smoothness: some differentiability (instead of just
continuity) of potential outcome expectations.

Similar additional smoothness is already always imposed in practice - differ-
entiability is included in the regularity assumptions needed for local regres-
sions.

TED and CPD are trivial to estimate. In sharp designs TED equals a
coefficient people were already estimating and throwing away, not knowing
it was meaningful.



Literature Review

General RD identification and estimation: Thistlethwaite and Campbell
(1960), Hahn, Todd, and van der Klaauw (2001), Porter (2003), Imbens
and Lemieux (2008), Angrist and Pischke (2008), Imbens and Wooldridge
(2009), Battistin, Brugiavini, Rettore, and Weber (2009), Lee and Lemieux
(2010), many others.

RD derivatives: Card, Lee, Pei, and Weber (2012) regression kink design
models (continuous kinked treatment). Dong (2014) shows standard RD
models can be identified from a kink in probability of treatment. Slope
changes also used by Calonico, Cattaneo and Titiunik (2014).

Dinardo and Lee (2011) informal Taylor expansion at the threshold for ATT.

Policy invariance (outcome doesn't depend on some features of the treat-
ment assignment mechanism, a form of external validity) Abbring and Heck-
man (2007), Heckman (2010), Carneiro, Heckman, and Vytlacil (2010).
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Literature Review - continued

Sufficient assumptions and tests for RD validity: Hahn, Todd and Van der
Klaauw (2001), Lee (2008), Dong (2016).

Almost all tests or analyses of internal or external validity of RD require
covariates with certain properties: McCrary (2008), Angrist and Fernandez-
Val (2013), Wing and Cook (2013), Bertanha and Imbens (2014), and
Angrist and Rokkanen (2015).

TED and CPD do not require any covariates other than those used to
estimate RD.

Identification and estimation of TED and CPD requires no additional data
or information beyond what is needed for standard RD models.

All that is needed for TED and CPD are slightly stronger smoothness conditions than for
standard RD. Similar required differentiability assumptions are already imposed in practice

when one uses local linear or quadratic estimators.
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Regression Discontinuity: Model Definitions

T is a treatment indicator: T =1 if treated, T = 0 if untreated.
example: Jacob and Lefgren (2004), T indicates going to summer
school.

Y is an outcome, e.g. academic performance in higher grades.

X is a running or forcing variable that affects T and may also affect
Y, e.g, —X is a final exam grade.

c is a threshold constant, e.g., —c is the grade needed to pass the

exam.
The RD instrument is Z = /(X > c¢), e.g. Z =1 if fail the exam,
zero if pass it.




A "complier” is an individual /i who has T; =1 ifand only if Z; =1 (e.g. a
complier is one who goes to Summer school if and only if he fails the exam).

Sharp RD design: Everybody is a complier. The probability of treatment at
X = ¢ jumps from zero to one.

Fuzzy RD design: Some people are not compliers, e.g., teachers sometimes
overrule the exam results.



RD Model Treatment Effects

Average Treatment Effect, ATE: The average difference in outcomes
across people randomly assigned treatment (e.g. average increase in
academic performance Y if randomly chosen students switched from
not attending to attending Summer school T).

RD LATE denoted 7 (c): The ATE at X = ¢ among compliers. (e.g.
the ATE just among complier students at the borderline of passing
or failing the exam).

The RD LATE is identified under very weak conditions by associating
the jump in E(Y | X = ¢) with the jump in E(T | X = ¢).

RD Intuition: 7 can be identified at ¢, because for X near ¢ as-
signment to treatment is almost random. Assumes no manipulation:
individuals can't set X precisely.
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The Definition of TED - sharp case

For any function h and small € > 0, define the left and right limits
of the function h as

hi(x)=lim h(x+¢) and h_(x) = lim h(x —¢).
e—0 e—0
Let g(x) = E(Y | X = x).
Sharp RD LATE is defined by 7 (c) = g4 (c) — g—(c).

Define the left and right derivatives of the function h as

i) = i EES = e =y B E)

e—0 £ e—0 €

Sharp RD TED is 7’ (c) = g/.(c) — g’ (c).
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The intuition behind TED - sharp case

Let Y=go(X)+7(X)T +e.

e is an error term that embodies all heterogeneity across individuals.
Endogeneity: X, T, and e may all be correlated.

7 (x) is a LATE. Its the ATE among compliers having X = x.
The treatment effect estimated by RD designs is 7 (¢).

Let 7/ (x) = Om(x)/0x. TED is just 7’ (¢).
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How can we identify and estimate TED, which is 7’ (¢)?

Consider sharp design first, so Y = go(X) + 7 (X)Z + e where
Z=1(X>o).

Looking at individuals in a small neighborhood of ¢, approximate
go (X) and 7 (X) with linear functions making

Y/ +Zbh+(X—c)B3+(X—c)ZBs+e
This is local linear estimation yielding 31, B, B3 and Ba.
(Local quadratic just adds (X — c)? 85+ (X — ¢)? Z 3 to the right).
Under the standard RD and local linear estimation assumptions we

get Bp —P m(c) and Bs —P 7' (c). So B, is the usual RD LATE
estimate, and (3, is the estimated TED.
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Fuzzy Design TED and CPD

For fuzzy design have two local linear (or local polynomial) regres-
sions:

T
Y

a1+ Zag+ (X —c)ag+ (X —c)Zag+u
Pr+ZBo+ (X —c)Bz3+ (X —c)ZBs+e

Q

Q

First is the instrument equation, second is the reduced form outcome
equation.

First is local linear approximation of 7 (x) = E (T | X = x), second
is local approximation of g (x) = E (Y | X = x), recalling that Z =
I (X > c).

Recall a complier is one having T and Z be the same random variable.
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T =~ o+ Zasx+(X—c)azg+ (X —¢c)Zasa+u
Y = fi+ZB+(X—c)Bs+(X—c)ZBs+e

Let p(x) denote the conditional probability that someone is a com-
plier, conditioning on that person having X = x. Let p'(x) =
op (x) /Ox.

By the same logic as in sharp design (replacing Y with T), we have:
p(c) = £r(c) — £-(c) and p' (¢) = FL(c) — £ (c),
ap =P p(c) and as —P p’ (c).

p' (c) is what we call the CPD (Complier Probability Derivative),
consistently estimated by ay.

15
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T =~ acn+Zas+(X—c)ag+ (X —¢c)Zasa+u
Y = JitZBb+(X—c)f+(X—c)Zbs+e
Let g(x) = E(Y(1)[X=x) — E(Y(0) | X=x), so q(c) =
g+(c) — g-(c).

The fuzzy RD Late is 7¢(c) = q(c) /p(c), 7r(c) = Ba/ao.
Applying the formula for the derivative of a ratio,

om(x) _ 08 _ () a(x)p (x) _ q(x) = m(x)p ()

=TT T o) T p(e? p ()

so the fuzzy design TED 7 (c) is consistently estimated by

Ba — () _ Ba — (Ba/@2)ds

~/
C) = — —
me(c) En Ea
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Stability

TED 7’ (c) measures stability of the RD LATE, since (¢ +¢) =~
7 (¢) +en’ (c) for small e.

Zero TED means 7 (¢ + ¢) = 7 (c), so individuals with x near ¢ have
almost the same LATE as those with x = c.

Large TED means a small change in x away from c yields large
changes in LATE, i.e., instability.
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Same stability argument holds for fuzzy designs, with ¢ (¢ + €) = 7¢ (¢)+e7} (¢).

'(c) = q'(c) _ q(e)p’(c) _ q'(c) _ p(c)me(c)
p(c) p(c)? p(c) p(c)

Fuzzy has two potential sources of instability. Fuzzy can be unstable because ¢’ (¢)
is far from zero or because p’ (c) is far from zero.

q' (¢) term large means the treatment effect for the average compiler changes a
lot as x moves away from c.

p’ (¢) term large means that population of compliers changes a lot as x moves
away from c.

TED combines both effects.

CPD is just p’ (c).
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MTTE (Marginal Threshold Treatment Effect)

Define:
S(x,¢)=E[Y (1) — Y(0)| X = x, being a complier, threshold is c]
The level of cutoff ¢ is the policy.

S (x, c) is the average treatment effect for individuals having running
variable equal to X when the threshold is c.

S(c,c) is the RD LATE

When x # ¢, the function S (x, ¢) is a counterfactual. It defines what the
expected treatment effect would be for a complier who is not actually at
the cutoff c.
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The TED and the MTTE - continued

S(x,c)=E[Y(1)— Y(0)| X = x, being a complier, threshold is c]
Let 7(c) = S(c,c). The TED vs. the MTTE are defined by

dS (x, c)‘

TED =
ox
_01(c) _9S(c,c)  0S(x,¢) S (x,¢)
MTTE = doc  dc  Ox e + dc e

Define local policy invariance as %R:c = 0: The expected effect of
treatment on any particular individual having x near ¢ would not change if

the policy cutoff ¢ were marginally changed.
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If local policy invariance, then TED = MTTE. Given MTTE, we
can evaluate how the treatment effect would change if ¢ marginally
changed.

If local policy invariance holds, then we estimate that the LATE would
change if the cutoff were changed.

Why might local policy invariance may fail to hold? General equilib-
rium effects.

Example: in Jacob and Lefgren (2004) treatment is Summer school,
the cutoff is an exam grade. Changing the cutoff grade would change
the size and composition of the Summer school student body possibly
affecting outcomes.
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Many policy debates center on whether to change thresholds. Examples:
@ Minimum wage levels.
@ Legal age for drinking, smoking, voting, medicare or pension eligibility.
@ Grade levels for promotions, graduation or scholarships.

@ Permitted levels of food additives or environmental pollutants.

A popular type of experiment is to compare outcomes before and after a
threshold change. In contrast, we do not observe a change in the threshold,
but MTTE still identifies what the effect would be of a (marginal) change
in the threshold.

Even if local policy invariance fails, TED provides useful information for these
debates, by comprising a large component of the MTTE.



Stata implementation using
ted

Cerulli, G., Dong, Y., Lewbel, A., and Paulsen, A. (forthcoming 2016), " Testing Stability
of Regression Discontinuity Models”, Advances in Econometrics, Volume 38. Special
issue on " Regression Discontinuity Designs: Theory and Applications”, Eds: Matias D.

Cattaneo (University of Michigan) and Juan-Carlos Escanciano (Indiana University).
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Calonico, Cattaneo and Titiunik (2014): Robust Data-Driven Inference in

the Regression-Discontinuity Design, Stata Journal 14(4): 909-946.

Overview of RD packages
https://sites.google.con/site/rdpackages

o rdrobust package: estimation, inference and graphical presentation using local
polynomials, partitioning, and spacings estimators.

> rdrobust: RD inference (point estimation and CI; classic, bias-corrected, robust).
» rdbwselect: bandwidth or windew selection (IK, CV, CCT).

> rdplot: plots data (with “optimal” block length).

o rddensity package: discontinuity in density test at cutoff (a.k.a. manipulation testing)
using novel local polynomial density estimator.
» rddensity: manipulation testing using local polynomial density estimation.

> rdbwdensity: bandwidth or window selection.

o rdlocrand package: covariate balance. binomial tests, randomization inference
methods (window selection & inference).
» rdrandinf: inference using randomization inference methods.
» rdwinselect: falsification testing and window selection.
» rdsensitivity: treatment effect models over grid of windows, CI inversion

» rdrbounds: Rosenbaum bounds.




Stata implementation using ted

Title

ted - Testing Stability of Regression Discontinuity Models

Description

ted estimates the "local average treatment effect" (LATE), the "compliers'
probabilty discontinuity"™ (CPD), and "treatment effect derivative" (TED) for
either sharp or fuzzy Regression Discontinuity (RD) models. Estimation and

inference for TED are especially useful for testing the stability of LATE
estimates in RD models when infinitesimal changes of the threshold value are
allowed.

According to Dong and Lewbel (2015) and Cerulli, et al. (2016), a TED which is
significantly different from zero signals that LATE estimate is instable any time
very small changes of the threshold value are considered, thus questioning the
validity of RD results. In the fuzzy case, standard errors for LATE, CPD, and TED
are estimated using the delta method. ted provides also a graphical
representation of LATE and TED, by Jjointly plotting the potential outcome
functions and their tangents at threshold.
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Syntax of ted

Syntax
ted outcome run var treat var [if] in] [weight],

£] I
model (modeltype) m(number) h(number) k(kerneltype) [l (number)
graph vce (robust) ]

fweights, iweights, and pweights are allowed; see weight.
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Options

options

model (modeltype) specifies the RD model to be estimated, where modeltype must be one of the
following two models: "sharp", "fuzzy". it is always required to specify one model.

m(number) sets the polynomial degree of the left and right "conditional expectation of the
outcome given the running variable" equal to the number specified in parenthesis.

h(number) sets a specific value of the bandwidth for the local RD estimation. For identifying
optimal bandwidth, please refer to the user-written command rdbwselect provided by Calonico,
Cattaneo, and Vazquez-Bare (2014).

c(number) sets the threshold (or cut-off).

1(number) sets the interval of the running variable to consider in the graphical
representation.

k(kerneltype) sets the type of kernmel function to consider in the local polynomial estimation
of the potential outcomes at threshold.

graph allows for a graphical representation of both sharp and fuzzy RD.

vce (robust) allows for robust regression standard errors. It is optional for all models.

N
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Options - co ued

modeltype options Description

Model
sharp Sharp RD design
fuzzy Fuzzy RD design
kerneltype options Description

k
epan Epanechnikov weighting scheme
normal Normal weighting scheme
biweight Biweight (or Quartic) scheme
uniform Uniform weighting scheme
triangular Triangular weighting scheme
tricube Tricube weighting scheme




Example 1: RDD-sharp

Ludwig and Miller (2007) assess the impact of the Head Start pro-
gram.

Head Start was established in the United States in the year 1965. Its
objective is to provide preschool, health, and other social services for
poor children ages three to five, as well as their families.

The 300 counties with the highest poverty rates received aid writing
grants, thus creating a large, persistent discontinuity in Head Start
funding.

Their main result focuses on Head Start funding’s effect on mortality
due to causes Head Start should have an effect on, using poverty
rates as their running variable.
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Example 1: code for RDD-sharp

B

* KEY VARIABLES
B T b T T R

ge5_9_sum2
ovrate60 // running variable

s_star=59.1984

s > $s_star)

L=6

global M=2

global kernel triangular

O T T T T e B e T T
* GENERATE TE OPTIMAL BANDWIDTH USING "rdbwselect"

Kok kA kR ARk A kR AR A A KA AR AR KR AR A AR AR AR R AR AR AR A AR A AR R AR R AR R AR R AR R AR R AR R AR R A AR A AR A AR A AR AR kA

rdbwselect y s, c($s_star) p($M) q(3) kernel(Skernel) all

global bw_CCT=e (h_CCT) // bandwidth proposed by Calonico, Cattaneo, and Titiunik (2014).

global bw_IK=e (h_IK) // bandwidth proposed by Imbens and Kalyanaraman (2012).

global bw_CV=e (h_CV) // bandwidth using cross-validation proposed by Ludwig and Miller (2007).

B T e e R T L T L E R e T

* CHOOSE ONE OF THE THREE OPTIMAL BANDWIDTHS

F Ak A AR AR AR AR R AR AR A AR AR AR AR AR AR AR AR AR AR AR R AR A AR AR AR AR AR R AR AR R AR AR AR F AR A K
global band=$bw_CC

B T T e e R T e T
* ESTIMATE TED USING "ted"

B T T L L L T T S T LTI T eI T
ted y s w , model(sharp) h($band) c($s_star) m($M) 1(SL) k(Skernel) graph vce (robust)

B R f L T e R T 1 Rt e = T T

30
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Example 1: ted output for RDD-sharp - 1

FAAF AR FFAFTAF XA F AR F AR FF A F A F XA F AR I AR FTFAFAF XA AR R IR A FF XXX F X R A X 235275525 F %52+ %5255%%%
KA K F R KRR A F XXX AR TR X FR*F DISCONTINUITY IN THE QUTCOME ****x sk kxkkxxsrxdxxrrhss
R Rk ke T e s e e e e T T

(sum of wgt is 9.9503e-01)
Linear regression Number of obs = 482
F( 5, 476) = 3.62
Prob > F = 0.0032
R-squared = 0.0192
Root MSE = 5.6933

| Robust

v o Coef. Std. Err. t P>t [95% Conf. Interval]
_____________ o
ox 1] .3175989 . 604472 0.53 0.600 -.8701644 1.505362
x 2| .0266717 .0766494 0.35 0.728 -.1239413 .1772847
_T | -3.302928 1.2901e8 -2.56 0.011 -5.838057 -.7677993
T x 1| .8990958 7675621 1.17 0.242 -.6091331 2.407325
_T x 2 | -.1822127 .1038724 -1.75 0.080 -.3863179 .0218924
cons | 3.745666 1.187967 3.15 0.002 1.411358 6.079974
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Example 1: ted put for RDD-sharp - 2

KEFREEKFRRKKF AKX F A AR XA E Test of significance for LATE #***Ardhrtrdhrtxrhssss

LATE: Db[ T]

v | Coef. Std. Err. z P>|z| [95% Conf. Interval]

ErE kA EAEAARAAEAEAARALSEE Test of significance
TED: _b[ T x 1]

v | Coef. Std. Err. 4 P>|z]| [95% Conf. Intervall]
,,,,,,,,,,,,, o

TED | .8990958 .7675621 1.17 0.241 -.6052981 2.40343
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Example 1: ted output for RDD-sharp - 3

Fuzzy RD, KLPR, Outcome discontinuity

Qutcome

4

e’

-6

Running variable

° Right local means
Tangent

Left local means
Prediction

Bandwidth type =
Bandwidth value =

KLPR = Kernel Local Polynomial Regression
Polynomial degree = 2

Kernel = triangular

33 /41



Example 2: RDD-fuzzy

We considers the fuzzy RD model in Clark and Martorell (2010,
2014), which evaluates the signaling value of a high school diploma.

In about half of US states, high school students are required to pass
an exit exam to obtain a diploma. The random chance that leads to
students falling on either side of threshold passing score generates a
credible RD design.

Clark and Martorell takes advantage of the exit exam rule to eval-
uate the impact on earnings of having a high school diploma.

The outcome Y is the present discounted value (PDV) of earnings
through year 7 after one takes the last round of exit exams. The
treatment T is whether a student receives a high school diploma or
not. The running variable X is the exit exam score (centered at the
threshold passing score).
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Example 2: code for RDD-fuzzy

B T o T T o T T R U
* KEY VARIABLES

B T T e e TR e
gen y=pdvrwage_y

gen s=test_lcs _min // running variable is the hs exit exam score-
gen w=awards hsd4

global s_star=0

global L=25

global M=
global kernel triangular

B T T e

* GENERATE THE OPTIMAL BANDWIDTH USING "rdbwselect"
e
rdbwselect y s, c($s_star) p(SM) g(3) kernel($kernel) all

global bw_CCT=e (h_CCT)

global bw_IK=e (h_IK)

global bw_CV=e (h_CV)

D T T R R e
* CHOOSE ONE OF THE THREE OPTIMAL BANDWIDTHS

R R R R R A A A A A A A A A A A A A A A A A A A A A A A A A R R R R F A A R R A A A R R R R A AR AR A A AR R A AR R AR R R AR R R R R EF KK
global band=$bw_CCT

B T T T T
* ESTIMATE TED USING "ted"
R
ted v s w , model (fuzzy) h(Sband) c($s_star) m($M) 1($SL) k(Skernel) graph vce(robust)

B B e

om the last try

35/41



mple 2: ted put for RDD-fuzzy - 1

FF A A FFAFT A A I A F IR AT AR FTAF A A AT AT A AT F AT AR I A AT F AT A A A A A IR AT A A XA A A A AT A A KA T FA AT A A IR AT KA K
KA KKFRX KA A X F XX AR XXX *%* DISCONTINUITY IN THE OQUTCOME ******x ks kxkxxx sk drxrs
D Rk T R R R Rk e S e s s R T T T TS

(sum of wgt is 1.0000e+00)
Linear regression Number of cbs = 3321
F( 5, 3315) = 0.56
Prob > F = 0.7320
R-squared = 0.0006
Root MSE = 27878

| Robust

v | Coef. Std. Err. t P>|t] [95% Conf. Interval]
,,,,,,,,,,,,, o
_x 1] 426.5014 813.6623 0.52 0.600 -1168.83 2021.833
x 2| 28.42907 58.76563 0.48 0.629 -86.7915 143.6497
T | -599.5591 2976.5 -0.20 0.840 -6435.522 5236.404
T x 1 | -1065.823 1103.396 -0.97 0.334 —3229.229 1097.583
T x 2 | 38.93901 83.25466 0.47 0.640 -124.2967 202.1748
cons | 27977.25 2413.719 11.59 0.000 23244.72 32709.78
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Example 2: ted

KA G A A G A AR A AR A AR AR KA AR AR A AR A AR A AR A AR A AR A AL A AL F AR A AR A AR A AR A AR A AR A SR AF R A SR AF A AR KA
L R DISCONTINUITY IN THE PROBARILITY AAhAFAh A I A AT A A IR AT F AT AA
R E R & d e S L e e T e E T

(sum of wgt is 1.0000e+00)
Linear regression Number of obs = 3321
F( 5, 3315) = 324.72
Prob > F = 0.0000
R-squared = 0.3241
Root MSE = .39923

| Robust

w | Coef. std. Err. t P>t [95% Conf. Intervall
,,,,,,,,,,,,, P
x 1] .0187589 .013%9671 1.34 0.179 —.0086261 .0461438
x 2 | .0011624 .0009774 1.19 0.234 -.000754 .0030788
_T | .5130246 .0452378 11.34 0.000 .4243277 .6017215
T x 1 | -.0270201 .0155274 -1.74 0.082 -.0574¢643 .0034241
T x 2 | -.0004856 .0011129 -0.44 0.663 -.0026676 .0016963
_cons | .4046514 .0418516 9.67 0.000 .3225938 .4867091
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put for RDD

Example 2: ted

Ahkhkkhkhkkkhrhkkhkkkrkr*k Test of significance for CPD **HrHkxhkkkhrtrhkrkdrhrk

CPD: _b[ T x 1]

w | Coef. Std. Err. z P>|z| [95% Conf. Interval]

FAKK KK IR A KKK KF KA RAKRF* A% Tegt of significance for LATE *HArx#*hxkskrrkxkkrxr ks xhx*

LATE: [y]_b[_T1/[w]_b[_TI

| Coef. Std. Err. z P>|z| [95% Conf. Intervall]

AEKFEXFXF KK FRF KK XA A X T *** Test of significance for TED ***x**xkxxxxfxkxrxxxsx*

TED: ([y]_bI[_T x 11-([wl_b[_T _x 11*[yl_b[_T1/[wl_b[_T1))/[wl_b[_TI

| Coef. Std. Err. Z P>|z]| [95% Conf. Intervall]
,,,,,,,,,,,,, o
TED | -213%.079 1984.695 -1.08 0.281 -6029.01 1750.851
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Fuzzy RD, KLPR, Probability discontinuity
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Figure: Fuzzy RD discontinuity in the probability and tangents lines at threshold.
Dataset: Clark and Martorell (2010).
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Fuzzy RD, KLPR, Outcome discontinuity
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Figure: Fuzzy RD discontinuity in the outcome and tangents lines at threshold
Dataset: Clark and Martorell (2010).
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Conclusions

@ Dong and Lewbel (2015) define CPD along with TED, and
show they are almost always useful as tests of RD LATE
stability.

@ TED and CPD are numerically simple to estimate, and require
no more data than needed for RD estimation itself.

© ted is a Stata module to estimate LATE, TED and CPD. It
easily provides correct inference for these parameters.

© We recommend calculating TED (and CPD for fuzzy designs)
in virtually all RD empirical applications.
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