Stata Graph Library for Network Analysis

(Preliminary and Incomplete)”

Hirotaka Miura
Federal Reserve Bank of San Francisco

June 19, 2011

Abstract

Network analysis is a multidisciplinary research method that is fast becoming a popular and exciting
field of study. Though a number of statistical programs possess sophisticated packages for analyzing
networks, similar capabilities have yet to be made available in Stata. In an effort to motivate the use of
Stata for network analysis, I design the Stata Graph Library (SGL) in Mata, which consists of algorithms
that construct matrix representations of networks, compute centrality measures, and calculate clustering
coefficients. Performance tests conducted between C++ and SGL implementations indicate gross ineffi-
ciencies in current SGL routines, making SGL practically infeasible to be used for large networks. The
obstacles are, however, welcome challenges in the effort to spread the use of Stata as an instrument for
analyzing networks, and future developments will focus on addressing computational time complexities
as well as integrating additional capabilities into SGL.

Keywords: network, centrality, clustering

*Under review at the Stata Journal. Correspondence: Federal Reserve Bank of San Francisco, 101 Market Street, San
Francisco, CA 94105. hirotaka.miura@sf.frb.org, hirotaka.miura@gmail.com. I would like to give special thanks to Phil Schumm
for providing me with guidance on the structure of the program and Rense Corten for his valuable feedbacks on the program
and the initial draft paper. I wish to thank one anonymous reviewer and Joseph Newton for helping me improve the program
and the documentation. I am grateful for Siek et al. (2001, Boost Graph Library), Gleich (2008, MatlabBGL), Butts (2010,
sna), and Csardi and Nepusz (2006, igraph) for making available their programs and source codes. I would like to express
my profound gratitude to Galina Hale for introducing me to network analysis and supporting me throughout my work on this
project.

1 Introduction

1.1 What is network analysis?

Network analysis is an application of network theory, which is a subfield of graph theory, and is concerned
with analyzing relational data. Some questions network analysis attempts to address is how important, or
how central, individual actors are in a given network, and how concentrated is the network. Example usages
of network analysis include:

e Determining the importance of a web page using Google’s PageRank.

e Examining communication networks in intelligence and computer security.

Solving transportation problems that involve flow of traffic or commodities.

Addressing the too-connected-to-fail problem in financial networks.

Analyzing social relationships between individuals in social network analysis.

1.2 Modeling relational data

A graph model representing a network G = (V, E) consists of a set of vertices V and a set of edges F. The
size of set V', or the number of vertices in network G, is denoted |V| and similarly the size of set E, or the
number of edges in network G, is denoted |F|. An edge is defined as a link between two vertices ¢ and j,
not necessarily distinct, that has vertex i on one end and vertex j on the other. An edge may be directed or
undirected and may also be weighted with differing edge values or have all equal edge values of one in which
case the network is said to be unweighted.

There are special types of vertices and edges that standard graph algorithms cannot handle or there
simply does not exist routines to accommodate such types. Thus the following types of vertices and edges
are currently excluded from analysis:

e Isolated vertex - a vertex that is not attached to any edges.

e Parallel edges - two or more edges that connect the same pair of vertices.

e Self-loop - an edge connecting vertex i to itself.

e Zero or negative weighted edge.

A variety of methods exists for capturing relational data, with the adjacency matrix and adjacency list
forms being some the more widely used storage types. In Stata however, as it will be demonstrated later on,
capturing relational data in a coordinate list, or an edge list, is more advantageous as it allows the user to

employ Stata’s built-in capabilities such as the ability to restrict the scope of the analysis by specifying if
expression and in range options.

1.3 Edge list

An edge list for an undirected unweighted network is a |E| x 2 matrix where each row represents an edge
between vertices i and j. A directed unweighted network is defined similarly with a |E| X 2 matrix capturing
information on directed edges from source vertex i to target vertex j. A weighted network can be represented
by adding a third column containing edge weights.

vl v2
2
1 1 2
2 2 3
3 4 2
3

Example of an edge list and its corresponding graph (undirected and unweighted). Drawn using NETPLOT (Corten, 2011).

It is important to note that substantial modifications may be needed to arrive at an edge list from an
initial dataset. The task of modifying initial data applies to datasets in both long and wide formats, as well
as data in some kind of a matrix form.

2 Matrix representation

2.1 Adjacency matrix

Adjacency matrix A for unweighted networks is defined as a |V| x |V| matrix with A;; entries being equal
to one if an edge connects vertices i and j and zero otherwise. A;; entries are set to zero and matrix A is
symmetric if the network is undirected. For directed networks, rows of matrix A represent outgoing edges
and columns represent incoming edges.! For weighted networks, A;; entries are equal to the weight of the
edge connecting vertices ¢ and j.

2.2 Distance matrix

Distance matrix D is defined as a |V| x |V| matrix with D;; entries being equal to the length of the shortest
path between vertices i and j, where path is defined as a way of reaching vertex j starting from vertex
using a combination of edges that do not go through a particular vertex more than once. If no such path
exists between vertices ¢ and j, D;; is set to missing, signifying what is sometimes referred to as an infinite
path. D;; is set to zero. For undirected networks, matrix D is symmetric.

2.3 Path matrix

Path matrix P is defined as a |V| x |V| matrix with P;; entries being equal to the number of shortest paths
between vertices ¢ and j. If no paths exist between vertices 7 and j, P;; is set to zero. Pj; is set to one. P
matrix is symmetric for undirected networks.

3 Centrality measures

3.1 Degree centrality

Degree centrality measures the importance of a vertex by the number of connection the vertex has if the
network is unweighted, and by the aggregate of the weights of edges connected to the vertex if the network
is weighted. For an undirected network, degree centrality for vertex i is defined as

1
_ A, 1
T 2 A (1)
J(#1)

1The convention of denoting X;; entries as an edge from ¢ to j is adopted for all matrices.

where the leading divisor is adjusted for the exclusion of the j = ¢ term. Directed networks may entail
vertices having different number of incoming and outgoing edges, and thus we have out-degree and in-degree
centrality. Out-degree centrality for vertex i is defined similarly to equation (1). For in-degree, we simply

transpose the adjacency matrix:
1 !/
V=1 > A (2)
J(#1)

3.2 Closeness centrality

Closeness centrality provides higher centrality scores to vertices that are situated closer to members of their
component, or the set of reachable vertices, by taking the inverse of the average shortest paths as a measure
of proximity. That is, closeness centrality for vertex ¢ is defined as

(vVi-1)
i) Dig

which reflects how vertices with smaller average shortest path lengths receive higher centrality scores than
those that are situated farther away from members of their component.

(3)

An immediate concern in computing equation (3) is how to deal with infinite distances to unreachable
vertices. A common workaround is to average over only those vertices that are reachable. However, caution
must be exercised as distances between vertices tend to be shorter in smaller components, possibly resulting
in vertices in such components receiving higher closeness centrality scores than vertices in larger components,
going against the notion that vertices in small components are less central in terms of the entire network.

3.3 Betweenness centrality

Betweenness centrality bestows larger centrality scores on vertices that lie on a higher proportion of shortest
paths linking vertices other than itself. Let P;; denote the number of shortest paths from vertex i to j, as
defined above. Let P;;(k) denote the number of shortest paths from vertex ¢ to j that vertex k lies on. Then
following Anthonisse (1971) and Freeman (1977), betweenness centrality measure for vertex k is defined as

Pi;(k)
2 p @
1j:i#£] k&g

To normalize (4), divide by (JV| — 1)(|V] — 2), the maximum number of paths a given vertex could lie on
between pairs of other vertices.?

3.4 Eigenvector centrality

Eigenvector centrality can provide an indication on how important a vertex is by having the property of
being large if a vertex has many neighbors, important neighbors, or both. The measure first proposed by
Bonacich (1972) defines the centrality of vertex ¢, x;, as the sum of the centrality of its neighbors scaled by
a constant. That is, for an undirected network with adjacency matrix A,

Ty = /\71 ZA’ijxj (5)
J

which can be rewritten as
Ax = Ax. (6)

2Actual implementation is carried out for undirected networks such that both P;;(k) and Pj;(k) are calculated and thus the
numerator need not be multiplied by two.

Vector x in equation (6) is then an eigenvector of adjacency matrix A and A is its corresponding eigenvalue.
The convention is to use the eigenvector corresponding to the dominant eigenvalue of A. When the network is
directed, the general concern is in obtaining a centrality measure based on how often a vertex is being pointed
to and the importance of neighbors associated with the incoming edges. Thus with a slight modification to
equation (6), eigenvector centrality is redefined as a vector x that satisfies

Ax = A'x (7)

where A’ is the transposed adjacency matrix. As discussed in detail in (Newman, 2010, chap. 7 sec. 2),
there are several shortcomings to the eigenvector centrality, such as the fact that a vertex with no incoming
edges will always have centrality of zero. Furthermore, vertices with neighbors that all have zero incoming
edges will also have zero centrality since the sum in equation (5) will not have any terms.

The Katz-Bonacich centrality, a variation of the eigenvector centrality, seeks to address these issues.

3.5 Katz-Bonacich centrality

The additional inclusion of a free parameter (also referred to as a decay factor) and a vector of exogenous
factors into equation (7) avoids the exclusion of vertices with zero incoming edges while allowing connection
values to decay over distance and is attributed to the culmination of works by Katz (1953), Bonacich (1987),
and Bonacich and Lloyd (2001). The centrality measure is defined as a solution to the equation

x=aA'x+p3 (8)

where « is the free parameter and 3 is the vector of exogenous factors which can vary or be constant across
vertices. For the centrality measure to converge properly, the absolute value of o must be less than the
absolute value of the inverse of the dominant eigenvalue of A. A positive @ allows vertices with important
neighbors to have higher status while a negative o value reduces the status.

4 Clustering coefficient

Clustering coefficient is one way of gauging how tightly connected a network is. The general idea is to
consider transitive relations, that is, if vertex j is connected to vertex i, and ¢ is connected to k, then j is
also connected to k.

Global clustering coefficients provide indication on the degree of concentration of the entire network and
consists of overall and average clustering coefficients. Overall clustering coefficient is equal to all observed
transitive relations divided all possible transitive relations in the network. Average clustering coefficient
involves applying the definition of overall clustering coefficient at the vertex level, then averaging across all
the vertices.

For an undirected unweighted adjacency matrix A, overall clustering coefficient is defined as

> AjiAnAi
CO(A) _ 135 £ kFE g kA (9)

Z AjiAik

I ESH TN

where the numerator represents the sum over i of all closed triplets in which transitivity holds, and the
denominator represents the sum over ¢ of all possible triplets. With a slight modification in notation, local
clustering coefficient for vertex i is defined as

Z AjiAikAjg
Ci(A.) _ JAGk# kA (10)

Z Aji A

JAGk#E ki

which leads to the average clustering coefficient:
1
c(A) = m E ci(A). (11)

By convention, ¢;(A) = 0 if vertex i has zero or only one link. Since average clustering coefficient computes
clustering coefficients for each vertex and then averages across all vertices, the coefficient gives more weight
to low-degree vertices than does overall clustering coefficient, which takes the average over all triplets.

. S
R |
% t
K q
(left) A closed triplet. ¢; = 1. (right) Closed and open triplets. ¢, = 1/3. Drawn using NETPLOT (Corten, 2011).

Generalized methods exist for computing clustering coefficients. Building upon the works of Barrat et al.
(2004), Opsahl and Panzarasa (2009) propose a set of measures consisting of four types of coefficients based
on arithmetic mean, geometric mean, maximum, and minimum of triplet values. Clustering coefficients for
vertex i based on weighted adjacency matrix W and corresponding unweighted adjacency matrix A are

calculated as
> wAi
ci(W) = JFGkE kAL (12)

Yo w
JFukFAT kAL
where w equals (W;; + W;y)/2 for arithmetic mean, /Wj; x Wy, for geometric mean, max(Wj;, W) for
maximum, and min(W;;, W) for minimum.? For unweighted networks, W = A and the four types of
clustering coefficients are all equal. For unweighted undirected networks, the overall, local, and average
clustering coefficients are equal to equations (9), (10), and (11), respectively.

5 Mata implementation

5.1 Syntax

struct structname scalar bfs_sp(E, nodots)

struct structname scalar dijkstra_sp(E, nodots)

real vector bfs_betweenness(E, nodots)

real vector dijkstra_betweenness(E, nodots)
struct structname scalar clustering coefficients(E, nodots)
struct structname scalar power (E, nodots, left)

real vector power _katzbonacich(E, alpha, beta, nodots, left)
real matrix sparse2full(E, nitial)
where

3Calculations for {Wy;, W;;} pair are also conducted.

structname: matrix_struct structure with real matrix variables X1 through X6)

(
E: real matriz E (|E] x 3 edge list)
alpha: real scalar alpha (alpha parameter for Katz-Bonacich centrality)
beta: real vector beta (V| x 1 beta vector for Katz-Bonacich centrality)
nodots: string scalar nodots (optional indicator to suppress display of status dots)
left: string scalar left (optional indicator to transpose adjacency matrix)
initial: real scalar initial (optional initial real value of full matrix)

5.2 Description

This section assumes familiarity with Mata and matrix programming. Otherwise please see [M-0] intro.

Structure matrix_struct is already compiled as part of the Stata Graph Library (SGL). Thus, users
will want to define a variable of type struct matrix_struct scalar in their functions in order to retrieve
results from compiled functions that return objects as members of the structure. For example, here is a
function that returns a distance matrix for an unweighted network that takes in an edge list matrix with
optional parameters for suppressing status dots and replacing missing values:

(Lines enclosed with “/* */” denote comments)

real matrix distance matrix(real matrix E, Istring scalar nodots,
real scalar infinity){
/* Declare variables. */
struct matrix_struct scalar mystruct
real matrix D
/* Implement breadth-first search algorithm. */
mystruct=bfs_sp(E,nodots)
/* Replace missing values. */
D=editmissing(mystruct.X1l,infinity)
/* Return distance matrix. */
return(D)

3

In the following descriptions, we assume that the user has declared a variable mystruct of type struct
matrix_struct scalar. See [M-2| struct.

bfs_sp(E,...) returns the distance matrix, path matrix, leaf vertex matrix, and adjacency list for an
unweighted network in mystruct.X1, mystruct.X2, mystruct.X3, and mystruct.X4, respectively. Dimen-
sions of distance, path, and leaf vertex matrices are |V| x |[V| and dimensions of the adjacency list are |[V|xm
where m denotes the largest number of outgoing edges among all vertices in the network.

dijkstra_sp(E,...) returns the distance and path matrices for a weighted network in mystruct.X1
and mystruct.X2, respectively. Dimensions of distance and path matrices are |V| x |V|.

bfs_betweenness(E,...) returns the betweenness centrality vector for an unweighted network. Dimen-
sions of the returned vector are [V| x 1.

dijkstra_betweenness(E,...) returns the betweenness centrality vector for a weighted network. Di-
mensions of the returned vector are |[V| x 1.

clustering coefficients(E,...) returns the overall and average clustering coefficients in mystruct.X1
and the local clustering coeflicients in mystruct.X2. mystruct.X1 contains a 2 x 4 matrix and mystruct.X2
contains a |V| x 4 matrix.

power(E,...) returns the dominant eigenvector in mystruct.X1 and the dominant eigenvalue in
mystruct.X2 if convergence is achieved. If convergence is not achieved, Mata error code 3360 is returned in
mystruct.X1. The returned eigenvector has dimensions |V| x 1.

power _katzbonacich(E, alpha, beta,...) returns the Katz-Bonacich centrality vector if convergence is
achieved and Mata error code 3360 if convergence is not achieved. Scalar alpha is the free parameter and

beta is the |V| x 1 vector of exogenous factors. The returned Katz-Bonacich centrality vector has dimensions
V] x 1.

sparse2full(E,...) returns the full matrix corresponding to the inputted edge list matrix E. The
returned full matrix has dimensions |V| x |V].

nodots option specifies whether or not to display status dots. If nodots is set to a non-empty string, status
dots are suppressed. Otherwise if nodots is set to “” or is not set, status dots are displayed.

left option specifies that the power method be implemented to calculate the left dominant eigenvector.
If left is set to “” or is not set, the right dominant eigenvector is calculated.

initial option specifies initial values to fill the full matrix. If the option is not set, the default is to fill
the full matrix with all missing values.

5.3 Remarks

The Stata Graph Library is compiled using Stata version 11.1.

Unless otherwise noted, all algorithms are based on those that are described in Newman (2010). Modifi-
cations are made when necessary or when additional efficiency/speed gains can be realized within the Mata
environment.

Without loss in generality, all routines assume a directed network. An undirected edge can be thought
of as two directed edges, one going from vertex i to j and another from j to ¢. Therefore, when working
with an undirected network, the edge list matrix E should have reciprocal relations defined. If reciprocal
relations are not defined, such that only the edge from vertex i to j is stored but not the edge from j to 1,
the edge list matrix must be redefined as

E = uniqrows((((E[,, 1\E[. 2]), (E[.,2]\E[,, 1])), (E[., 3[\E[., 3]))) , (13)

where uniqrows () returns sorted, unique values. See [M-5] unigrows().

Caution must be exercised when working with undirected weighted networks, or in the process of con-
structing such networks. If the initial edge list matrix contains (7, j,w1) and (j,,ws) where wy # ws, then
equation (13) would produce (i, j,w1), (j, 4, w2), (j,4,w1), and (i, j, ws), resulting in parallel edges and vio-
lating one of the assumptions laid out in section 1.2. In such cases, appropriate aggregation of edge weights
may need to be conducted beforehand to avoid generating parallel edges.

The third column consisting of edge weights is required. If calling dijkstra_sp() on an undirected
network with edge weights stored as double fails to produce symmetric matrices, try converting edge weights
to float data type. See [M-5] floatround().

bfs_sp() implements breadth-first search single-source shortest-path algorithm.

bfs_betweenness() makes a call to bfs_sp() and uses the resulting matrices to compute betweenness
centrality.

dijkstra_sp() implements Dijkstra’s single-source shortest-path algorithm. The routine first runs
breadth-first search algorithm to determine the component for each source vertex, that is, the set of vertices
that are reachable from the source vertex by at least one path.

dijkstra_betweenness() does not make a call to dijkstra_sp(), but instead uses Dijkstra’s algorithm
internally to generate information required in computing betweenness centrality for weighted networks.

clustering coefficients() returns a 2 X 4 matrix in mystruct.X1 with the first row corresponding
to overall coefficients and the second row average coefficients. Columns one through four correspond to
coefficients calculated based on arithmetic mean, geometric mean, maximum, and minimum, respectively.
The |V| x4 matrix returned in mystruct .X2 maintains the same column ordering, but contains local clustering
coefficients instead. When the network is unweighted, the four calculation methods produce the same number.

power () and power _katzbonacich() routines implement the power method using the sparse matrix, or

the coordinate list data structure of edge list matrix E. Convergence criteria consists of two rules: The
maximum number of iterations, which is set at 16,000, and the maximum relative difference, which signals
convergence if mreldif () drops below le-10. See [M-5] reldif(). Depending on the size and density of the
network, the power method may provide faster and equally accurate results compared with using Mata’s
built-in linear algebra functions.

6 Stata implementation (1): SGL wrapper

6.1 Syntax

network warname_source varname_target [if] [in] , measure(network-measure) [name(mata-mname [,
..]) weight(weightvar) label(var_prefiz[, ...]) directed nodots infinity(real) power notranspose
alpha(real) beta(beta_varlist)]

where network_measure can be one of

adjacency adjacency matrix

| distance distance matrix

| path path matrix

| betweenness betweenness centrality

| clustering local and overall/average clustering coefficients
| eigenvector eigenvector centrality

| maxalpha maximum free parameter alpha

| katzbonacich Katz-Bonacich centrality.

varname_source and varname-target must either be both numeric or both string type variables. When
working with an undirected network, the notion of source and target does not matter. Furthermore, reciprocal
relations for undirected networks do not need to be defined when using the network command in Stata.
Caution must still be exercised when working with weights, however, as outlined in section 5.3. weightvar and
beta_varlist must be type numeric with variables of beta_varlist corresponding to the order of varname_source
and varname_target.

network will return an error code of 198 and exit if parallel edges, self-loops, and/or non-positive weights
are encountered. Otherwise isolated vertices, edges with missing weights (if weightvar specified), and vertices
with missing beta exogenous factor (if beta_varlist specified) will automatically be excluded from the analysis
sample.

measure (network_measure) specifies the network measure to be computed. This option is required.

name (mata_mname [, replace|) specifies the Mata matrix name to store results. replace requests existing
Mata matrix be overwritten.

weight (weightvar) specifies a numeric edge weight variable. By default, edge weights are set to one for all
vertices internally and thus an unweighted network is assumed.

label (var_prefic [, replace]) requests vertex labels be returned to Stata with variable names prefixed with
var_prefiz and suffixed with _source and _target for varname_source and varname_target, respectively.
replace requests existing same-named label variables be overwritten.

directed specifies directed edges. By default, edges are assumed to be undirected.
nodots requests that status dots be suppressed.

infinity(real) specifies a real number to replace missing or “infinite” distances. Scalars returned in e()
refer to matrix before replacement. name (mata_mname) contains distance matrix after replacement. The
option only applies when generating distance matrix.

power requests the power method be implemented in computing eigenvector centrality, maximum alpha, and
Katz-Bonacich centrality. By default, Mata’s built-in linear algebra functions are used.

notranspose requests that the adjacency matrix not be transposed when computing eigenvector and Katz-
Bonacich centralities. By default, adjacency matrix is transposed.

alpha(real) specifies a real number for the free parameter in Katz-Bonacich centrality calculation. By
default, alpha is set to one.

beta (beta_varlist) specifies exogenous factors for the Katz-Bonacich centrality measure. By default, exoge-
nous factors are set to one for all vertices.

6.2 Remarks

network is a wrapper for class network measure, which in turn is a wrapper for functions compiled in
SGL. As SGL functions are each designed to carry out specific tasks, a class wrapper is useful in providing
additional organization. See [M-2] class.

network does not store results as Stata matrices. See [M-5] st_matrix() on how to transfer Mata matrices
from/to Stata.

The recommended approach to using Katz-Bonacich function is to first obtain maximum alpha using
maxalpha() and then based on the returned value, specify alpha() option while calling katzbonacich().
Note that singular or near-singular matrices pose computational problems and thus eigenvector (), maxalpha(),
and katzbonacich() functions may not converge in such cases.

., measure(clustering) name(mata_mname) stores mata_mname matrix in Mata with columns one
through four corresponding to local clustering coefficients based on arithmetic mean, geometric mean, max-
imum, and minimum, respectively.

6.3 Saved results

network, measure(network-measure), where network_-measure is equal to one of adjacency, distance,
path, betweenness, or katzbonacich, saves the following in e():

Scalars
e(vertices) number of vertices e(edges) number of edges
e(mean) mean (mean (X)) e(min) min(X)
e (max) max (X) e (sum) sum (X)
e(missing) missing(X) e(nonmissing) nonmissing(X)

network, measure(clustering) saves the following in e():

Scalars

e(vertices) number of vertices e(edges) number of edges
Matrices

e(cc) overall and average coeffi-

cients

network, measure(eigenvector) saves the following in e():

Scalars
e(vertices) number of vertices e(edges) number of edges
e(l) dominant eigenvalue e(mean) mean (mean(X) ’)
e(min) min(X) e(max) max (X)
e(sum) sum (X) e(missing) missing(X)

e(nonmissing) nonmissing(X)

network, measure(maxalpha) saves the following in e():

Scalars
e(vertices) number of vertices e(edges) number of edges
e(alphamax) maximum alpha

In addition, all network measures return the following in e():

10

Macros

e(cmd) network e(cmdline) command as typed
e(source) source vertex variable e(target) target vertex variable
e(measure) network measure e(edge) unweighted or weighted

e(network)

undirected or directed

7 Stata implementation (2): postcomputation command

7.1 Syntax

netsummarize mata_erp, generate(newvar_prefir) statistic(stat_name)

where stat_name can be one of

mean mean (mean (mata_exp))
min min(mata_exp)

max max (mata_exp)

sum sum (mata_exp)

missing missing(mata_exp)
nonmissing nonmissing(mata_exp)
rowmean mean (mata_exp’)’

rowmin rowmin (mata_exp)

rowmax rowmax (mata_exp)

rowsum rowsum(mata_ezxp)
rowmissing rowmissing(mata_exp)
rownonmissing rownonmissing(mata_exp)
colmean mean (mata_exp)’

colmin colmin(mata_exp)’
colmax colmax (mata_exp)’
colsum colsum(mata_exp)’
colmissing colmissing(mata_exp)’
colnonmissing colnonmissing (mata_exp)’

mata_exp must be a Mata matrix or a Mata expression and must evaluate to either a scalar, a |V| x 1 col-
umn vector, or a |V| X |V| matrix. New variables newvar_prefiz_source and newvar_prefiz_target are gener-
ated for varname_source and varname_target, respectively. See [M-5] sum(), [M-5] mean(), [M-5] missing(),
and [M-5] minmax().

7.2 Remarks

Constructing network measures can be time intensive. The postcomputation command allows the user to
generate multiple statistics once a network object has been created. For example, after generating a distance
matrix D, the user can generate variables for closeness centrality with the command

netsummarize (rows(D)-1):/rowsum(D), generate(closeness) statistic(rowsum).*

Specifying rowmin or rowmax would also have worked, since the expression evaluates to a column vector,
as well as having set closeness centrality to a Mata vector beforehand and inserting it as mata_exp.

4When working with networks involving disconnected
(rownonmissing(D)-J(rows(D),1,1)):/rowsum(D) as the mata_exp.

components, users may want to specify

11

8 Examples

8.1 Creating an edge list using joinby

Here, we illustrate a method of creating an edge list using the joinby command and example datasets used
in [D] Data-Management Reference Manual, child.dta and parent.dta, to generate a directed network
where directed edges can represent parent vertices providing care to child vertices. Such a network is called
bipartite, meaning there are two groups of vertices, parent and child, with edges lying between the two

groups.

use child, clear

(Data on Children)

list
family~d child_id x1 x2
1. 1025 3 11 320
2. 1025 1 12 300
3. 1025 4 10 275
4. 1026 2 13 280
5. 1027 5 15 210
use parent, clear
(Data on Parents)
list
family~d parent~d x1 x3
1. 1030 10 39 600
2. 1025 11 20 643
3. 1025 12 27 721
4. 1026 13 30 760
5. 1026 14 26 668
6. 1030 15 32 684

sort family_id

joinby family_id using child
list parent_id child_id

parent~d child_id
1. 12 4
2. 12 1
3. 12 3
4. 11 4
5. 11 3
6. 11 1
7. 14 2
8. 13 2

12

» 11 13 14
A network with directed edges from parent to child generated using joinby. Drawn using NETPLOT (Corten, 2011).

8.2 Workflow using PAJEK2STATA, network, and netsummarize

Next we present an example workflow using PAJEK2STATA (Corten, 2010), network, and netsummarize
to convert a Pajek (Batagelj and Mrvar, 2010) .net file to Stata format then computing network centrality
measures. The dataset consisting of fifteenth-century Florentine marriages is from Padgett and Ansell (1993).
The network is undirected and unweighted with isolated vertex Pucci removed.

// Transfer Pajek’s .net file into Stata using Rense Corten’s
// pajek2stata.ado.
pajek2stata using florentine_marriages.net, name(X) clear replace

Vertices: 15
Network matrix format: Edges
Network matrix shape (r x c): 20 X 2

// Display edge list saved as Mata matrix.

mata X

1 2

1 1 2

2 1 3

3 1 4

4 2 3

5 2 5

6 3 6

7 3 4

8 4 7

9 5 8

10 6 8
11 6 9
12 8 9
13 8 10
14 8 11
15 8 12
16 9 7
17 7 13
18 7 10
19 10 14
20 11 15

// Display vertex label.

list
varl var2
1 1 Peruzzi
2 2 Castellan
3 3 Strozzi
4 4 Bischeri
5 5 Barbadori

13

6. 6 Ridolfi
7. 7 Guadagni
8. 8 Medici
9. 9 Tornabuon
10. 10 Albizzi
11. 11 Salviati
12. 12 Acciaiuol
13. 13 Lambertes
14. 14 Ginori
15. 15 Pazzi

destring varl, replace
varl has all characters numeric; replaced as byte

// Generate new value-label. See [M-5] st_vlexists().
mata st_vlmodify("vertex_label",st_data(.,"vari"),st_sdata(.,"var2"))

label list vertex_label

vertex_label:

1 Peruzzi
Castellan
Strozzi
Bischeri
Barbadori
Ridolfi
Guadagni
Medici
9 Tornabuon
10 Albizzi
11 Salviati
12 Acciaiuol
13 Lambertes
14 Ginori
15 Pazzi

W ~NO® O WN

// Drop vertex label variables and add new variables.
drop varl var2

mata (void) st_addvar("double", ("source","target"))

// Add observations.

mata st_addobs(rows (X))

// Store edge list in Stata.

mata st_store(.,("source","target"),X)

// Assign value label to variables.
label values source target vertex_label

list

source target
1 Peruzzi Castellan
2 Peruzzi Strozzi
3. Peruzzi Bischeri
4 Castellan Strozzi
5 Castellan Barbadori
6 Strozzi Ridolfi
T. Strozzi Bischeri
8. Bischeri Guadagni
9 Barbadori Medici
10 Ridolfi Medici
11. Ridolfi Tornabuon
12. Medici Tornabuon
13. Medici Albizzi
14. Medici Salviati
15. Medici Acciaiuol
16. Tornabuon Guadagni
17. Guadagni Lambertes
18. Guadagni Albizzi

14

19. Albizzi Ginori
20. Salviati Pazzi

// Generate degree centrality.
network source target, measure(adjacency) name(A,replace)
matrix A saved in Mata

netsummarize A/(rows(A)-1), generate(degree) statistic(rowsum)

// Generate closeness centrality.

network source target, measure(distance) name(D,replace)
Breadth-first search algorithm (15 vertices)

+ 1 + 2 + 3 + 4 + 5

Breadth-first search algorithm completed
matrix D saved in Mata

netsummarize (rows(D)-1):/rowsum(D), generate(closeness) statistic(rowsum)
// Generate betweenness centrality.
network source target, measure(betweenness) name(b,replace)
Breadth-first search algorithm (15 vertices)
+ 1 + 2 + 3 + 4 + 5

Breadth-first search algorithm completed

Betweenness centrality calculation (15 vertices)

+ 1 + 2 + 3 + 4 + 5
Betweenness centrality calculation completed
matrix b saved in Mata

netsummarize b/ ((rows(b)-1)*(rows(b)-2)), generate(betweenness) statistic(r
> owsum)

// Generate eigenvector centrality.
network source target, measure(eigenvector) name(e,replace)
matrix e saved in Mata

netsummarize e, generate(eigenvector) statistic(rowsum)

// Describe and list results.
describe, full

Contains data

obs: 20

vars: 10

size: 1,120 (99.97, of memory free)

storage display value
variable name type format label variable label
source double %10.0g vertex_label
target double %10.0g vertex_label
degree_source float %9.0g rowsum of Mata matrix
A/ (rows(A)-1)

degree_target float %9.0g rowsum of Mata matrix

A/ (rows(A)-1)
closeness_source
float %9.0g rowsum of Mata matrix
(rows(D)-1) : /rowsum(D)
closeness_target
float %9.0g rowsum of Mata matrix
(rows(D)-1) : /rowsum(D)
betweenness_source
float %9.0g rowsum of Mata matrix
b/ ((rows (b)-1)*(rows(b)-2))
betweenness_target
float %9.0g rowsum of Mata matrix
b/ ((rows(b)-1)* (rows(b)-2))
eigenvector_source

float %9.0g rowsum of Mata matrix e
eigenvector_target
float %9.0g rowsum of Mata matrix e

15

Sorted by:
Note: dataset has changed since last saved

16.
17.
18.
19.
20.

16.
17.
18.
19.
20.

list source target degree* closeness*

source target degree-~e degree-~t closen-~e closen-~t
Peruzzi Castellan .2142857 .2142857 .368421 .3888889
Peruzzi Strozzi .2142857 .2857143 .368421 .4375
Peruzzi Bischeri .2142857 .2142857 .368421 .4
Castellan Strozzi .2142857 .2857143 .3888889 .4375
Castellan Barbadori .2142857 .1428571 .3888889 .4375
Strozzi Ridolfi .2857143 .2142857 .4375 .5
Strozzi Bischeri .2857143 .2142857 .4375 .4
Bischeri Guadagni .2142857 .2857143 .4 .4666667
Barbadori Medici .1428571 .4285714 .4375 .56
Ridolfi Medici .2142857 .4285714 .5 .56
Ridolfi Tornabuon .2142857 .2142857 .5 .4827586
Medici Tornabuon .4285714 .2142857 .56 .4827586
Medici Albizzi .4285714 .2142857 .56 .4827586
Medici Salviati .4285714 .1428571 .56 .3888889
Medici Acciaiuol .4285714 .0714286 .56 .368421
Tornabuon Guadagni .2142857 .2857143 .4827586 .4666667
Guadagni Lambertes .2857143 .0714286 .4666667 .3255814
Guadagni Albizzi .2857143 .2142857 .4666667 .4827586
Albizzi Ginori .2142857 .0714286 .4827586 .3333333
Salviati Pazzi .1428571 .0714286 .3888889 .2857143
list source target betweenness* eigenvectorx*

source target betwee~e betwee~t eigenv-~e eigenv-~t
Peruzzi Castellan .021978 .0549451 .2757304 .2590262
Peruzzi Strozzi .021978 .10256641 .2757304 .3559805
Peruzzi Bischeri .021978 .1043956 .2757304 .2828001
Castellan Strozzi .0549451 .1025641 .2590262 .3559805
Castellan Barbadori .0549451 .0934066 .2590262 .2117053
Strozzi Ridolfi .1025641 .1136531 .3559805 .3415526
Strozzi Bischeri .10256641 .1043956 .3559805 .2828001
Bischeri Guadagni .1043956 .2545788 .2828001 .2891156
Barbadori Medici .0934066 .521978 .2117053 .4303081
Ridolfi Medici .1136531 .521978 .3415526 .4303081
Ridolfi Tornabuon .1136531 .09156751 .3415526 .3258423
Medici Tornabuon .521978 .0915751 .4303081 .32568423
Medici Albizzi .521978 .2124542 .4303081 .2439561
Medici Salviati .521978 .1428571 .4303081 .1459172
Medici Acciaiuol .521978 0 .4303081 .1321543
Tornabuon Guadagni .0915751 .2545788 .3258423 .2891156
Guadagni Lambertes .2545788 0 .2891156 .0887919
Guadagni Albizzi .2545788 .2124542 .2891156 .2439561
Albizzi Ginori .2124542 0 .2439561 .0749227
Salviati Pazzi .1428571 0 .1459172 .0448134

16

Network of Florentine marriages based on data from Padgett and Ansell (1993). Drawn using NETPLOT (Corten, 2011).

8.3 Time series analysis

The use of if exp, allows network measures to be easily generated for subsamples of data. Here we consider a
country-level relational dataset and generate overall clustering coefficients for each of the reported years. Data
is from publicly available International Monetary Fund Coordinated Portfolio Investment Survey (CPIS)
Data, Table 8.1 - Geographic Breakdown of Portfolio Investment Assets: Equity Securities (2010). Surveys
conducted from 2001 through 2009 are available. Data is provided in a matrix format with ¢j entries
pertaining to the amount of country i’s equity securities held by country j. Only information on positive
investment is used and edge weights are taken to be the inverse of investment deflated using US consumer
price index from the World Bank (2011). Edge weights are meant to reflect proximity between countries
that have larger cross-border security holdings. The network is directed.

We focus on the overall measure of clustering coefficients, as non-respondents from the surveys are
included in the network as vertices with only incoming edges, and their local clustering coefficient value of
zero biases average clustering coefficients towards zero.

use imfcpis, clear
(IMF Coordinated Portfolio Investment Survey: Table 8.1 - Equity Securities)

describe

Contains data from imfcpis.dta

obs: 26,160 IMF Coordinated Portfolio Investm
> ent Survey: Table 8.1 - Equity Securities
vars: 6 5 May 2011 19:43
size: 4,002,480 (99.3), of memory free) (_dta has notes)
storage display value
variable name type format label variable label
source str34 %34s Holder of equity securities, IMF
CPIS
target str95 %95s Issuer of equity securities, IMF
CPIS
weight float %9.0g Edge weight - inverse of deflated
investment in USD, author
year float %9.0g Year
investment long %10.0g Year-end holdings of equity

securities in millions of
nominal USD, IMF CPIS

uscpi float %9.0g US Consumer price index (2005 =
100), World Bank WDI

Sorted by:

summarize

17

Variable Obs Mean Std. Dev. Min Max
source 0
target 0
weight 26160 1.72e-07 3.07e-07 1.49e-12 1.10e-06
year 26160 2005.393 2.531253 2001 2009
investment 26160 3479.511 20176.56 1 714928
uscpi 26160 101.4221 6.906585 90.6678 110.2466

// Compute clustering coefficients for each year.

// Suppress status dots.
forvalues i=2001/2009{

2. di ""
3. di "*xx Year: “i” *xx"
4.
> t(weight) nodots
5. matrix list e(cc)
6. 1}
**% Year: 2001 **

Clustering coefficients calculation
Clustering coefficients calculation
e(cc) [2,4]

Arithmetic~n Geometric_-~n

Overall .40161137 .35848011
Average .22501606 .20278508
** Year: 2002 **

Clustering coefficients calculation
Clustering coefficients calculation

e(cc) [2,4]
Arithmetic~n Geometric_-~n

Overall .38291245 .33860285
Average .20013265 .17977462
** Year: 2003 **

Clustering coefficients calculation
Clustering coefficients calculation

e(cc) [2,4]
Arithmetic~n Geometric_-~n

Overall .41680831 .36488986
Average .24345751 .21968327
** Year: 2004 **

Clustering coefficients calculation
Clustering coefficients calculation

e(cc) [2,4]
Arithmetic~n Geometric_-~n

Overall .44158836 .38020664
Average .23695718 .21101894
**x Year: 2005 *xx

Clustering coefficients calculation
Clustering coefficients calculation

e(cc) [2,4]
Arithmetic~n Geometric_~n

Overall .44308806 .37775965
Average .22910225 .20174429
*x Year: 2006 *xx*

Clustering coefficients calculation
Clustering coefficients calculation
e(cc) [2,4]

Arithmetic~n Geometric_~n

Overall .45589245 .39916957
Average .21242901 .18523941
** Year: 2007 **

Clustering coefficients calculation
Clustering coefficients calculation

e(cc) [2,4]

(171 vertices)
completed

Maximum
.40993656
.22901613

(175 vertices)
completed

Maximum
.39138165
.20361013

(167 vertices)
completed

Maximum
.42528682
.2470524

(177 vertices)
completed

Maximum
.45221407
.24139999

(184 vertices)
completed

Maximum
.45425739
.23370902

(199 vertices)
completed

Maximum
.46501259
.21673185

(201 vertices)
completed

18

network source target if year=="i", measure(clustering) directed weigh

Minimum
.3308401
.19232049

Minimum
.31457621
.17147964

Minimum
.34298863
.21090007

Minimum
.35680374
.20048852

Minimum
.35053421
.18799125

Minimum
.38012479
. 17464249

Arithmetic~n Geometric_~n Maximum Minimum
Overall .46365345 .40884779 .47235629 .38576594
Average .21283682 .18822754 .21611827 .17932581

** Year: 2008 **

Clustering coefficients calculation (199 vertices)
Clustering coefficients calculation completed

e(cc) [2,4]

Arithmetic~n Geometric_~n Maximum Minimum
Overall .44361548 .3962016 .45183141 .37371945
Average .21520551 .19244685 .21852989 .18400936

** Year: 2009 **

Clustering coefficients calculation (196 vertices)
Clustering coefficients calculation completed

e(cc) [2,4]

Arithmetic~n Geometric_-~n Maximum Minimum
Overall .4722288 .42316217 .48046887 .40051394
Average .21779996 .19203185 .22196427 .18120866

Overall Clustering Coefficients

Pd
-
—
— e "
45 -
‘E .
o - -
o - ~
E 4 P = st o
@ - .
o R aw *
o PRI Tl gemmmnnt "--.,__““
Rs o*
- °*
0
35A~ ~ P ’ __.--"--.-....“
. ~_ o .
- **

*u *
aye®

3 T T T T T T T 1
2001 2002 2003 2004 2005 2006 2007 2008 2009
Year

Arithmetic mean === Geometric mean
= Maximum =e=ms= Minimum

Figure based on annual networks of reporting economies from the IMF CPIS Data, Table 8.1 - Geographic Breakdown of
Portfolio Investment Assets: Equity Securities.

8.4 Relational to panel dataset

In this section we demonstrate an example of a workflow that starts with a relational dataset and arrives at
an unbalanced panel dataset that can be used to run regressions.

Relational data is based on the IMF CPIS dataset used in the previous example. Economic, geographic,
and governance indicators for the years 2002 to 2009 are obtained from the World Bank’s World Development
Indicators and Worldwide Governance Indicators databases (World Bank, 2010, 2011). To facilitate the
merging of the two datasets, country names in the World Bank dataset are changed to conform with that of
the IMF CPIS dataset. A topic of interest may be to see what factors were important in attracting foreign
investment during this time period.

For each of the years 2002 to 2009, using the IMF CPIS relational dataset we compute ineccentricity
and eigenvector centrality. Ineccentricity is defined as the maximum value of incoming shortest paths and
is equal to the column maximum of the distance matrix based on the weighted directed network. Since
edge weight is equal to the inverse of deflated investment, smaller ineccentricity will suggest proximity to
neighboring vertices. In computing eigenvector centrality, we employ a different type of edge weight instead
and use real investment, as eigenvector centrality bestows larger values on more important vertices.

// Load IMF CPIS dataset.
use imfcpis, clear

19

(IMF Coordinated Portfolio Investment Survey: Table 8.1 - Equity Securities)
// Drop year 2001 - World Bank data is available from 2002 to 2009.
drop if year==2001

(2260 observations deleted)

// Compute ineccentricity.
forvalues i=2002/2009{

2.

network source target if year=="i", measure(distance) name(D i~ ,replac

> e) weight(weight) directed nodots

3.
4.

netsummarize D i”, generate(ineccentricity i) statistic(colmax)

}

Component analysis (174 vertices)
Component analysis completed

Dijkstra’s search algorithm (174 vertices)
Dijkstra’s search algorithm completed
matrix D2002 saved in Mata

Component analysis (166 vertices)
Component analysis completed

Dijkstra’s search algorithm (166 vertices)
Dijkstra’s search algorithm completed
matrix D2003 saved in Mata

Component analysis (176 vertices)
Component analysis completed

Dijkstra’s search algorithm (176 vertices)
Dijkstra’s search algorithm completed
matrix D2004 saved in Mata

Component analysis (183 vertices)
Component analysis completed

Dijkstra“s search algorithm (183 vertices)
Dijkstra’s search algorithm completed
matrix D2005 saved in Mata

Component analysis (198 vertices)
Component analysis completed

Dijkstra’s search algorithm (198 vertices)
Dijkstra’s search algorithm completed
matrix D2006 saved in Mata

Component analysis (200 vertices)

Component analysis completed

Dijkstra’s search algorithm (200 vertices)

Dijkstra’s search algorithm completed

matrix D2007 saved in Mata

Component analysis (198 vertices)

Component analysis completed

Dijkstra“s search algorithm (198 vertices)

Dijkstra’s search algorithm completed

matrix D2008 saved in Mata

Component analysis (195 vertices)

Component analysis completed

Dijkstra’s search algorithm (195 vertices)

Dijkstra’s search algorithm completed

matrix D2009 saved in Mata
// Transfer results to one variable per source and target.
generate ineccentricity_source=.

(23900 missing values generated)
label variable ineccentricity_source "ineccentricity"

generate ineccentricity_target=.
(23900 missing values generated)

label variable ineccentricity_target "ineccentricity"
forvalues 1=2002/2009{

]
'
-
\

SO w N
. ||‘. .
.
\

}

drop *eccentricity200%

20

quietly replace ineccentricity_source=ineccentricity i’ _source if year

quietly replace ineccentricity_target=ineccentricity i’_target if year

// Compute eigenvector centrality.
// Generate and use real investment as edge weight.
generate realinvestment=investment/(uscpi/100)

forvalues i=2002/2009{

2. network source target if year=="i", measure(eigenvector) name(e’i”,rep
> lace) weight(realinvestment) directed nodots

3. netsummarize e i”, generate(eigenvector i) statistic(rowsum)

4. }

matrix e2002 saved in Mata
matrix e2003 saved in Mata
matrix e2004 saved in Mata
matrix e2005 saved in Mata
matrix e2006 saved in Mata
matrix e2007 saved in Mata
matrix e2008 saved in Mata
matrix e2009 saved in Mata

// Transfer results to one variable per source and target.
generate eigenvector_source=.
(23900 missing values generated)
g g

label variable eigenvector_source "eigenvector"

generate eigenvector_target=.
(23900 missing values generated)
g g

label variable eigenvector_target "eigenvector"
forvalues i=2002/2009{

2. quietly replace eigenvector_source=eigenvector i _source if year=="i~

3. quietly replace eigenvector_target=eigenvector i _target if year=="i~
>

4. }

drop *eigenvector200%
rename ineccentricity_target ineccentricity
rename eigenvector_target eigenvector

// Collapse by target country and year.
. #d;
delimiter now ;
collapse (sum) weight (sum) investment (sum) realinvestment

> (mean) uscpi (mean) ineccentricity (mean) eigenvector
> , by(target year)
> 5

#d cr

delimiter now cr
// Merge in World Bank data. Keep matched observations.
rename target country

label variable country "Country name"

merge 1:1 country year using worldbank, keep(matched) nogenerate

Result # of obs.
not matched 0
matched 1,287

// Declare data to be a panel.
encode country, generate(country2)

xtset country2 year
panel variable: country2 (unbalanced)
time variable: year, 2002 to 2009, but with gaps
delta: 1 unit

label data "Country-level panel data"
describe

Contains data

obs: 1,287 Country-level panel data
vars: 20
size: 294,723 (99.9% of memory free) (_dta has notes)
storage display value
variable name type format label variable label

21

country str95 %95s Country name

year float %9.0g Year

weight double %9.0g (sum) weight

investment double %10.0g (sum) investment

realinvestment double %9.0g (sum) realinvestment

uscpi float %9.0g (mean) uscpi

ineccentricity float %9.0g (mean) ineccentricity

eigenvector float %9.0g (mean) eigenvector

exrate float %9.0g DEC alternative conversion factor
(LCU per US$)

gdpgrowth float %9.0g GDP growth (annual %)

inflation float %9.0g Inflation, consumer prices
(annual %)

region str26 %26s Region

incomegroup str20 %20s Income Group

corruption float %9.0g Control of Corruption: Estimate

effectiveness float %9.0g Government Effectiveness:
Estimate

stability float %9.0g Political Stability and Absence
of Violence/Terrorism: Estimate

regulation float %9.0g Regulatory Quality: Estimate

ruleoflaw float %9.0g Rule of Law: Estimate

accountability float %9.0g Voice and Accountability:
Estimate

country?2 long %38.0g country2 Country name

Sorted by: country2 year
Note: dataset has changed since last saved

summarize

Variable Obs Mean Std. Dev. Min Max

country 0
year 1287 2005.625 2.278011 2002 2009
weight 1287 2.95e-06 2.52e-06 4.65e-09 .0000121
investment 1287 64439.03 218706.4 1 2383743
realinvest~t 1287 62613.31 210932.3 .9070571 2245200
uscpi 1287 101.9301 6.458229 92.10583 110.2466
ineccentri~y 1287 3.52e-07 2.52e-07 3.71e-08 1.47e-06
eigenvector 1287 .0249071 .0746418 0 .5546467
exrate 1222 506.7404 1860.914 .268788 17065.08
gdpgrowth 1214 4.225663 5.11624 -41.3 40.79159
inflation 1124 29.91726 728.86 -13.22581 24411.03

region 0

incomegroup 0
corruption 1260 .1205744 1.031661 -2.016047 2.466556
effectiven~s 1260 .1524394 1.006756 -2.249335 2.267191
stability 1270 .0321373 .9800003 -2.880965 1.596395
regulation 1260 .1565138 .9833775 -2.691515 1.992202
ruleoflaw 1272 .0948148 .9989472 -2.576503 1.964045
accountabi~y 1271 .0841978 .9926295 -2.290506 1.826686
country2 1287 97.04817 54.78466 1 191

9 Function and performance testing

9.1 Testing results using C++4 and R

The following table provides information on what packages are used to check network measures for each
type of network. Utilized packages include the Boost Graph Library (BGL) in C++ (Siek et al., 2001) and
sna/igraph in R (Butts, 2010; Csardi and Nepusz, 2006). Function tests are conducted on all four types
of networks (undirected/directed - unweighted /weighted) on a series of random networks with |V| starting
from approximately 100 and going up to 500 in increments of around 50 vertices. Maximum density, defined

22

as |E|/|V|? with undirected edges counted as two directed edges, is set to 0.1 in all networks.

In the last column, “L” denotes local, “A” denotes average, and “O” denotes overall clustering coefficients.
“NA”s are inserted for cases in which the packages used here do not compute network measures for the
particular network type or in cases where the network structure proves problematic computationally. For
instance, packages differ in their ability to handle near-singular matrices. Path matrices are not tested as
correct path counts are a prerequisite for accurate betweenness centrality measures.

Network Matrices Centralities Clustering
type Adj. Dist. Betw. Eigen. KB coeflicients
Eigiiegc,};teild BGL | BGL | BGL | igraph | igraph | igraph (1,A,O)
give"ftiggted BGL | BGL | BGL | NA | igraph sna (0)
gﬁiﬁﬁgﬁe q BGL | BGL | BGL | igraph | igraph NA
giii};tezd BGL | BGL | BGL | NA | igraph NA

For tests involving BGL, function tests are deemed successful if network measures generated using SGL and BGL are equal.
For tests involving R packages, the success condition is evaluated as the case when the maximum relative difference, mreldif (),
between SGL and measures produced in R is less than le-7. See [M-5] reldif().

9.2 Performance tests

Time complexity is an issue, especially for weighted networks. In function tests carried out above with
constant maximum density, current SGL algorithm implementation times for computing distance matrix and
betweenness centrality are exponential in terms of the number of vertices. Illustrations below demonstrate
algorithm completion times for both SGL and BGL routines on directed weighted networks. Similar outcomes
hold for undirected weighted cases.

The difference between SGL and BGL completion times are not as stark for unweighted networks. Al-
though SGL routines do take longer than BGL, the divergence is not to the point of what is reported from
tests involving weighted networks. For a random network of around 500 vertices, computing distance ma-
trix takes 10.451 seconds and betweenness centrality takes 27.384 seconds using SGL while corresponding
numbers are 5.283 and 5.398 seconds using BGL.

Distance (directed weighted) Betweenness (directed weighted)
2.51 15
2,
8 15 101
2
s 1] SGL
5,
.51 BGL
%00 Q00 200 300 400 500
Vertices Vertices

Distance matrix and betweenness centrality computations based on randomly generated directed weighted networks with
constant maximum density of 0.1. Tests are conducted for network sizes in increments of approximately 50 vertices from

V| ~ 100 to |V| ~ 500. SGL is run on 4-core Stata MP version 11.1 and employs Dijkstra’s single-source shortest path
algorithm for both computations. BGL uses Boost version 1.46.1 and implements Johnson’s all-pairs shortest path algorithm
(Johnson, 1977) to compute distance matrix and Brandes’ algorithm (Brandes, 2001) for betweenness centrality. An adjacency
list graph structure is used to represent the network in BGL. Both libraries are compiled and run on 64-bit Linux operating
system.

23

10 Conclusion and future developments

The Stata Graph Library demonstrates the ability to employ relational data and generate network measures
in Stata. As we have shown in the examples, relational data can be constructed using Stata’s existing
commands such as joinby or by using user-written commands such as Rense Corten’s PAJEK2STATA.
Network measures computed by network and returned to Stata by netsummarize can be merged to datasets
for running regressions.

Though SGL, network, and netsummarize work in unison to deliver usable network information to the
user, significant work remains to make the process more efficient and to provide additional enhancements.
Areas for future development include implementing more efficient algorithms, designing algorithms for addi-
tional network measures, and optimizing SGL in Mata. It is hoped that further improvements and expansions
will help facilitate the analysis of networks using Stata.

24

References

Anthonisse, J. M. 1971. The rush in a directed graph. Technical report, Stichting Mathematisch Centrum,
Amsterdam. Technical Report BN 9/71.

Barrat, A., M. Barthélemy, R. Pastor-Satorras, and A. Vespignani. 2004. The architecture of complex
weighted networks. Proceedings of the National Academy of Sciences 101(11): 3747-3752.

Batagelj, V., and A. Mrvar. 2010. Pajek. http://pajek.imfm.si/doku.php?id=download.

Bonacich, P. 1972. Factoring and weighting approaches to status scores and clique identification. Journal of
Mathematical Sociology 2 113-120.

———— 1987. Power and Centrality: A Family of Measures. The American Journal of Sociology 92(5):
1170-1182.

Bonacich, P., and P. Lloyd. 2001. Eigenvector-like measures of centrality for asymmetric relations. Social
Networks 23(3): 191-201.

Brandes, U. 2001. A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2):
163-177.

Butts, C. T. 2010. sna: Tools for Social Network Analysis. R package version 2.1-0.

Corten, R. 2010. PAJEK2STATA: Stata module to import network data in Pajek’s.net format. Statistical
Software Components, Boston College Department of Economics.

. 2011. Visualization of social networks in Stata using multidimensional scaling. Stata Journal 11(1):
52-63.

Csardi, G., and T. Nepusz. 2006. The igraph software package for complex network research. InterJournal
Complex Systems: 1695.

Freeman, L. C. 1977. A set of measures of centrality based on betweenness. Sociometry 40(1): 35-41.
Gleich, D. 2008. MatlabBGL. http://www.mathworks.com/matlabcentral/fileexchange/10922.

International Monetary Fund. 2010. Coordinated Portfolio Investment Survey (CPIS).
http://www.imf.org/external /np/sta/pi/datarsl.htm.

Johnson, D. B. 1977. Efficient Algorithms for Shortest Paths in Sparse Networks. Journal of the ACM 24(1):
1-13.

Katz, L. 1953. A New Status Index Derived from Sociometric Analysis. Psychometrika 18: 39-43.
Newman, M. 2010. Networks: An Introduction. Oxford University Press.
Opsahl, T., and P. Panzarasa. 2009. Clustering in weighted networks. Social Networks 31(2): 155-163.

Padgett, J. F., and C. K. Ansell. 1993. Robust action and the rise of the Medici, 1400-1434. The American
Journal of Sociology 98(6): 1259-1319.

Siek, J., L.-Q. Lee, and A. Lumsdaine. 2001. BGL. http://www.boost.org/doc/libs/.

World Bank. 2010. Worldwide Governance Indicators (WGI). http://data.worldbank.org/data-
catalog/worldwide-governance-indicators.

. 2011. World Development Indicators (WDI). http://data.worldbank.org/data-catalog/world-
development-indicators.

25

