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Filters and methods

Filters, broadly interpreted

Consider a time series that can be decomposed into two additively
separable parts

yt = τt + ct

where τt is the trend component that we want to remove and ct is
the stationary component that we wish to analyze

I am going to discuss some new methods in Stata 12 that can be used
to filter the trend component out of the series yt and leave behind the
stationary component ct

One we have ct , we can calculate τt = yt − ct
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Filters and methods

New methods

This talk will discuss the linear filters

Baxter-King band-pass filter
Butterworth high-pass filter
Christiano-Fitzgerald band-pass filter
Hodrick-Prescott high-pass filter

Stata 12 has also new commands for estimation and postestimation of

the unobserved-components model, and
the autoregressive fractionally integrated moving average model

which can also be used as filters
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An introduction to linear filters

Filtering industrial production

Here a plot of quarterly observations on the natural log of industrial
production in the United States

1
2

3
4

5
lo

g 
of

 in
du

st
ria

l p
ro

du
ct

io
n

1920q1 1930q1 1940q1 1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1
quarterly time variable

This series is trending over time

We want to remove the trend and isolate the business-cycle
component that is composed of stochastic cycles at periods between
6 and 32 periods
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An introduction to linear filters

From time domain to frequency domain

We present some results for stationary processes and deal with
trending process as we proceed

The autocovariances γj , j ∈ {0, 1, . . . ,∞} of a covariance-stationary
process yt specify its variance and dependence structure

In the frequency-domain approach to time-series analysis, yt and the
autocovariances are specified in terms of independent stochastic
cycles that occur at frequencies ω ∈ [−π, π].

The spectral-density function fy (ω) specifies the contribution of
stochastic cycles at each frequency ω relative to the variance of yt ,
which is denoted by σ2

y
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An introduction to linear filters

From time domain to frequency domain II

The variance and the autocovariances can be expressed as an integral
of the spectral-density function

γj =

∫

π

−π

e iωj fy (ω)dω (1)

where i is the imaginary number i =
√
−1,

Equation (1) can be manipulated to show what fraction of the
variance of yt is attributable to stochastic cycles in a specified range
of frequencies

Equation (1) implies that if fy(ω) = 0 for ω ∈ [ω1, ω2], stochastic
cycles at these frequencies contribute zero to the variance and
autocovariances of yt
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An introduction to linear filters

From time domain to frequency domain III

Time-series filters attempt to transform the original series into a new
series y∗t for which the spectral-density function of the filtered series
fy∗(ω) is 0 for unwanted frequencies and equal to fy (ω) for desired
frequencies
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An introduction to linear filters

From time domain to frequency domain IV

A linear filter of yt can be written as
y∗t =

∑

∞

j=−∞
αjyt−j =

∑

∞

j=−∞
α(L)yt

By expressing the spectral density of the filtered series fy∗(ω) in terms
of the spectral density of the original series fy (ω) and the filter
weights αj

fy∗(ω) = |α(e iω)|2fy (ω) (2)

we see the impact of the filter on the components of yt at each
frequency ω,

|α
(

e iω
)

| is known as the gain of the filter

Equation (2) makes explicit that it is the squared gain function
|a
(

e iω
)

|2 that converts fy (w) into fy ∗ (w)

Equation (2) says that, for each frequency ω, the spectral density of
the filtered series is the product of the square of the gain of the filter
and the spectral density of the original series.

9 / 30



An introduction to linear filters

From time domain to frequency domain V

Recall that

fy∗(ω) = |α(e iω)|2fy (ω) (2)

We want a filter for which fy∗(ω) = 0 for unwanted frequencies and
for which fy∗(ω) = fy(ω) for desired frequencies

So we seek a filter for which the gain is 0 for unwanted frequencies
and for which the gain is 1 for desired frequencies
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An introduction to linear filters

From time domain to frequency domain VI

In practice, we cannot find such an ideal filter exactly

The constraints an ideal filter places on filter coefficients cannot be
satisfied for time-series with only a finite number of observations

The large literature on filters is a result of the trade offs involved in
designing implementable filters that approximate the ideal filter
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An introduction to linear filters

From time domain to frequency domain VII

Ideally, filters pass or block the components caused by stochastic
cycles of specified frequencies by having a gain of 1 or 0

Band-pass filters, such as the Baxter-King (BK) and the
Christiano–Fitzgerald (CF) filters, allow the components in the
specified range of frequencies to pass through and they block all the
other components

High-pass filters such as the Hodrick–Prescott (HP) and Butterworth
filters, only allow the components of stochastic cycles at or above a
specified frequency to pass through and they block the components
corresponding to the lower-frequency stochastic cycles
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An introduction to linear filters

tsfilter

New command tsfilter implements the Baxter-King, Butterworth,
Chistiano-Fitzgerald, and Hodrick-Prescott filters

We thank Kit Baum for his previous work in writing commands !!
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Filters and examples

Baxter-King filter

Symmetric moving-average (SMA) filters with coefficients that sum
to 0 remove trends from a series

linear or quadratic deterministic trends
first-order or second-order integration stochastic trends
(first-order integration requires differencing once for stationarity)
(second-order integration requires differencing twice for stationarity)

There is an ideal SMA band-pass filter with coefficients that sum to 0

The Baxter-King (BK) filter uses 2q + 1 coefficients to approximate
the infinite-order ideal filter, see
[Baxter and King(1995), Baxter and King(1999)]

There is a trade off in choosing q

Larger values of q cause the gain of the BK filter to be closer to the
gain of the ideal filter, but they also increase the number of missing
observations in the filtered series

14 / 30



Filters and examples

Periods and frequencies

The mathematics of the frequency-domain approach to time-series
analysis is in terms of components at frequencies ω ∈ [−π, π]

Applied work is generally in terms of periods p, where p = 2π/ω

The options for tsfilter are in terms of periods
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Filters and examples

BK filter on industrial production data

Below we use tsfilter bk, which implements the BK filter, to
estimate the business-cycle component composed of shocks between
6 and 32 periods and then we graph the estimated component.

. tsfilter bk ip_bk = ip_ln, minperiod(6) maxperiod(32)

. tsline ip_bk
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Filters and examples

Periodogram specification view

The graph of the filtered series tells us what the estimated
business-cycle component looks like, but it presents no evidence as to
how well we have estimated the component

A periodogram is an estimator of a transform of the spectral density
function

Below we use pergram to plot the periodogram for the BK estimate
of the business-cycle component.

pergram displays the results in natural frequencies, which are the
standard frequencies divided by 2π.

The lower natural-frequency cutoff (1/32 = 0.03125) and the upper
natural-frequency cutoff (1/6 ≈ 0.16667).
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Filters and examples

Periodogram of BK filtered series

. pergram ip_bk, xline(0.03125 0.16667)
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If the filter completely removed the stochastic cycles at the unwanted
frequencies, the periodogram would be a flat line at the minimum
value of −6 outside the range identified by the vertical lines
That the periodogram takes on values greater than −6 outside the
specified range indicates the inability of the BK filter to pass through
only components of frequencies inside the specified band
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Filters and examples

Gains of BK and ideal filters

We can also evaluate the BK filter by plotting its gain function
against the gain function of an ideal filter.

The coefficients and the gain of the BK filter are completely
determined by the specified minimum period, maximum period, and
the order of the SMA filter
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Filters and examples

Gains of BK and ideal filters II

. drop ip_bk

. tsfilter bk ip_bk = ip_ln, minperiod(6) maxperiod(32) gain(bkgain abk)

. label variable bkgain "BK filter"
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Ideal filter BK filter

The gain of the BK filter deviates markedly from the square-wave
gain of the ideal filter
Using option smaorder() to increase the order will cause the gain
the of BK filter to more closely approximate the gain of the ideal filter
at the cost of lost observations in the filtered series
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Filters and examples

Recall that the Baxter-King filter minimizes the error between the
filter coefficients and the ideal band-pass filter coefficients

The Christiano-Fitzgerald (CF) filter minimizes the mean squared
error between the estimated component and the true component,
assuming that the raw series is a random-walk process, see
[Christiano and Fitzgerald(2003)]

The CF filter obtains its optimality properties at the cost of an
additional parameter that must be estimated and a loss of robustness

The CF filter is optimal for a random-walk process
If the true process is a random walk with drift, the drift term must be
estimated and removed
The CF filter also works well for processes that are close to being
random walks or random walks plus drift
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Filters and examples

CF filtered series

. tsfilter cf ip_cf = ip_ln, minperiod(6) maxperiod(32) drift

. pergram ip_cf, xline(0.03125 0.16667)
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The periodogram indicates that the CF filter did a better job than the
BK filter of passing through only the business-cycle components

Given that ip ln is well approximated by a random-walk-plus-drift
process, the relative performance of the CF filter is not surprising
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Filters and examples

Gains of CF and ideal filters

. drop ip_cf

. tsfilter cf ip_cf = ip_ln, minperiod(6) maxperiod(32) drift gain(cfgain acf)

. label variable cfgain "CF filter"
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Ideal filter CF filter

Comparing this graph with the graph of the BK gain function, reveals
that the CF filter is closer to the gain of the ideal filter than the BK
filter
The graph also reveals that the gain of the CF filter oscillates above
and below 1 for desired frequencies

Some of the desired stochastic cycles are given too much weight and
some too little
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Filters and examples

Hodrick-Prescott filter

[Hodrick and Prescott(1981)] and [Hodrick and Prescott(1997)]
motivated the Hodrick-Prescott (HP) filter as a trend-removal
technique that could be applied to data that came from a wide class
of data generating processes.

In their view, the technique specified a trend in the data and the data
were filtered by removing the trend

The smoothness of the trend depends on a parameter λ
The trend becomes smoother as λ → ∞ and
[Hodrick and Prescott(1997)] recommended setting λ to 1600 for
quarterly data.

[King and Rebelo(1993)] showed that removing a trend estimated by
the HP filter is equivalent to a high-pass filter

They derived the gain function of this high-pass filter and showed that
the filter would make integrated processes of order 4 or less stationary
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Filters and examples

HP filtered series

. tsfilter hp ip_hp = ip_ln, gain(hpg1600 ahp1600)

. label variable hpg1600 "HP(1600) filter"

. pergram ip_hp, xline(0.03125)
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Because the HP filter is a high-pass filter, the high-frequency
stochastic components remain in the estimated component

The presence of the low-frequency shocks that the filter should
remove is concerning
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Filters and examples

Gains of HP and ideal filters

. twoway line ideal f || line hpg1600 ahp1600
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Ideal filter HP(1600) filter

The HP gain function deviates markedly from the ideal gain function

In [TS] tsfilter, we use results from [Ravn and Uhlig(2002)] to pick a
better choice for λ, but the HP filter still performs poorly

One explanation is that this high-pass filter only has one parameter
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Filters and examples

Butterworth filter

Engineers have used Butterworth filters for a long time because they
are “maximally flat”

The gain functions of these filters are as close as possible to being a
flat line at 0 for the unwanted periods and a flat line at 1 for the
desired periods, see [Butterworth(1930)] and
[Bianchi and Sorrentino(2007)] (pp 17–20)

[Pollock(2000)] showed that Butterworth filters can be derived from
some axioms that specify properties we would like a filter to have.
While the Butterworth and BK filters share the properties of
symmetry and phase neutrality, the coefficients of Butterworth filters
do not need to sum to 0

Phase-neutral filters do not shift the signal forward or backward in
time, see [Pollock(1999)].

While the BK filter relies on the detrending properties of SMA filters
with coefficients that sum to 0, [Pollock(2000)] shows that
Butterworth filters have detrending properties which depend on the
filters’ parameters
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Filters and examples

Butterworth filter

tsfilter bw implements the high-pass Butterworth filter using the
computational method that [Pollock(2000)] derived

This filter has two parameters, the cut-off period and the order of the
filter denoted by m

The cut-off period sets the location where the gain function starts to
filter out the high-period (low-frequency) components and m sets the
slope of the gain function for a given cut-off period
For a given cut-off period, the slope of the gain function at the cut-off
period increases with m

For a given m, the slope of the gain function at the cut-off period
increases with the cut-off period
We cannot obtain a vertical slope at the cut-off frequency, which is the
ideal, because the computation becomes unstable, see [Pollock(2000)]
The m for which the computation becomes unstable depends on the
cut-off period
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Filters and examples

Gains of Butterworth and ideal filters

. tsfilter bw ip_bw1 = ip_ln, gain(bwgain1 abw1) maxperiod(32) order(2)

. label variable bwgain1 "BW 2"

. tsfilter bw ip_bw6 = ip_ln, gain(bwgain6 abw6) maxperiod(32) order(6)

. label variable bwgain6 "BW 6"

. twoway line ideal f || line bwgain1 abw1 || line bwgain6 abw6
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Ideal filter BW 2
BW 6

We use tsfilter bw to estimate the components driven by shocks
greater than 32 periods using Butterworth filters of order 1 and order
6, and plot the computed the gain functions for each filter
Butterworth filters can approximate the ideal gain function quite well
[TS] tsfilter shows how make a high-pass filter work like a band-pass
filter by running it twice29 / 30



Filters and examples

Conclusion

This talk has provided a quick introduction to some popular linear
filters and how to use them in Stata 12
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Filters and examples
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