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Motivation: Explaining Firm Growth/Firm Size Dynamics

Firm Growth and a simultaneous size and age dependence:

• Gibrat’s Law (1931).

• Jovanovic (1982): learning and selection explain age effects.

• The literature finds negative relationships between size, age, and growth (Evans, 1987;

Dunne et al., 1989).

• Hopenhayn (1992): persistent idiosyncratic productivity determines size.

• Haltiwanger et al. (2013): age, more than size, explains average growth.

Key limitation: These models do include possible financial considerations in firm growth
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Motivation: Financial, Size, and Age Effects

Cooley and Quadrini (2001), and Cabral and Mata (2003) introduce financial variables:

• Simultaneous size and age dependence explained with productivity and financial

heterogeneity

Huynh and Petrunia (2010) examine the empirical relationship between firm growth with firm

size, firm age, and firm leverage:

• Firm size and age relationships remain

• Positive firm growth-leverage relationship

What about other financial variables? Network ownership structure?
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Ownership Networks and Firm Growth

Return to the question: ”What about other financial variables?”

• Ownership Equity Networks

• Broader equity network ⇒ broader access to financial resources

• Allen et al. (2022) ownership networks in China (SOEs a big part of the Chinese economy)

Caveat: Network benefits beyond financing

Network structures create implicit links among participants:

• Production—supply chain

• Technology sharing and Knowledge spillovers

• Social
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Main Contributions

1. We extend the firm dynamics literature by including ownership networks as a structural

determinant of growth:

• Unlike Huynh et al. (2010) and Petrunia (2007), we consider financing sources beyond

leverage.

• We connect our proposal to recent studies such as Allen et al. (2022) for China.

• Consider both within industry ownership networks and overall ownership network

2. We provide evidence for a context with minimal state presence:

• Unlike China, Ecuador’s manufacturing sector is predominantly private.

3. We use quantile regression with dynamic fixed effects:

• Captures heterogeneity across the entire conditional growth distribution.

• Addresses the bias from lagged variables in dynamic panels.

4. We combine accounting and capital data to reconstruct real networks:

• We use public information on capital movements from Ecuador’s Superintendence of

Companies.
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Data



Data Source: Ecuadorian Manufacturing Firms

• Source: Ecuadorian Company Superintendence

• Time frame: 2009-2019

An ownership structure in which multiple firms share an owner or a group of owners

→ Common-ownership network: Network of firms that share common owner(s)
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Trends in Average Growth Rates: GDP vs. Manufacturing Industry
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Contribution of Manufacturing, Mining and Quarrying, and Other Industries
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Older Firms Are Larger, Use Less Debt, and Grow More Slowly
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On Average, Highly Leveraged Firms Grow Faster
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Firm Ownership Network
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Example of Degree and Cluster Coefficient

A

B

C

D

E

F

Degree of node C: 4

Clustering coefficient of C:

• Neighbors: A, B, D, E

• There are 6 possible links among its neighbors: AD, AE, BD, BE, DE, and AB (which

already exists)

• The clustering coefficient for C is the ratio of existing to potential connections: 1
6 .
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Descriptive statistics, N = 29, 004

Mean SD q25 Median q75

Revenue (USD ’000) 16154.93 57584.60 557.32 2208.72 9229.57

Sales Growth (%) 1.79 59.67 -10.79 3.51 17.59

Firm Age (years) 17.26 15.26 5.8 13.5 26.2

Leverage Ratio (%) 62.2 23.59 41.90 62.3 80.1

Public Indicator 0.06 0.25 0.00 0.00 0.00

Initial Assets (USD ’000) 6425.36 26869.71 127.87 687.04 2833.38

In-degree 1.80 5.43 0.00 1.00 1.00

Total-degree 6.19 22.40 1.00 2.00 4.00

Clustering Coefficient 0.20 0.32 0.00 0.00 0.33
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Empirical Strategy



Baseline Specification

• We follow the model of Huynh and Petrunia (2010) with some modifications:

∆ log(Sizeit) =ηi + α log(Sizei,t−1) + δ1 log(Ageit) + δ2leveragei,t−1+

ϕ1 [log(Ageit)− ca]
2 + ϕ2 [log(Ageit)− ca]×

[
leveragei,t−1 − cl

]
+

λ1 log(Assetsi0) + λ2 log(in-degreeit) + λ3 log(total-degreeit)+

λ4Clusterit + εit

• ∆ log(Size): log change in sales.

• ηi : unobserved firm fixed effect.

• ca, cl : centering constants for selected variables.

• Degree and Cluster: network characteristics.

• Fixed effects are controlled at the subgraph level (695 in our sample).
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Why Model Quantiles in Dynamic Panels?

In economics, many variables—such as growth or investment—exhibit:

• unobserved heterogeneity

• temporal dependenceand

• Asymmetric responses

Solutions: Dynamic Panel Data Quantile Regression

• The Dynamic panel model controls for unobserved firm-level heterogeneity, persistence,

divergent paths, and cumulative effects.

• Quantile regression captures heterogeneous effects across the firm growth distribution,

avoid restrictive assumptions of normality and homoskedasticity, and analyzes divergent

trajectories across firms or individuals.

Problem: classical methods suffer from bias in the presence of fixed effects, especially when

T is small.
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Estimation Strategy

Our empirical strategy is based on estimating the following fixed-effects quantile specification:

Q∆ log(sizeit ) (τ | .) =ηi + α(τ) log(sizei,t−1) + δ1(τ) log(ageit) + δ2(τ) [log(ageit)− ca]
2 +

δ3(τ)leveragei,t−1 + δ4(τ) log(assetsi0)+

δ5(τ) [log(ageit)− ca]×
[
leveragei,t−1 − cl

]
+

λ1(τ) log(in-degree) + λ2(τ) log(total-degree) + λ3(τ)cluster+ εit

• We combine the structural robustness of Galvão (2011) to address endogeneity with the

computational efficiency of Machado–Santos Silva (2019) for robust quantile estimation.

• MMQREG command

• This integration enables identification of heterogeneous causal effects in dynamic panel

settings with time dependence, unobserved heterogeneity, and endogeneity.

Estimation Details
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Results



Results: Age Effects
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Results: Leverage Effects
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Main Findings: Ownership Networks and Firm Growth

• Heterogeneous Age Effects:

• No significant relationship between age and growth for young firms (bottom quartile of age

distribution).

• For older firms (upper quartile of age distribution), increasing age widens the firm growth

distribution, with a notably negative impact on growth at the lower end.

• Firm Growth and Leverage:

• Positive relationship between firm growth and leverage persists with ownership network

variables included.

• The relationship becomes slightly more positive in the upper part of the firm growth

distribution.

• Network Effects:

• Significant positive relationship between the number of ownership connections and firm

growth.

• No significant relationship between network clustering and firm growth.
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Implications and Contributions

• Extension of Firm Dynamics Literature:

• Incorporates ownership networks into the study of firm finance-growth relationship.

• Contrasts with existing studies that focus on leverage only.

• Quantile Regression Methodology:

• Provides a broader empirical perspective by examining heterogeneous impacts across the

entire firm growth distribution.

• Controls for firm fixed effects and addresses lagged dependent variable issues.

• Developing Economies Context:

• Highlights the relevance of ownership networks in Ecuadorian manufacturing firms,

contrasting with findings from economies with substantial state-owned enterprises.
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Thank you!
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Estimation Procedure Steps

• For a given quantile τ , define the objective function:

Rτ (ηi , α, ξ, γ) =
N∑
i=1

T∑
t=1

vρτ

(
∆ log(sizeit)− α(τ) log(sizei,t−1)− ηi

− X ′
itβ(τ)− γ(τ) log(sizei,t−2)

)
Where X ′

itβ(τ) includes the other regressors, log(sizei,t−2) is the instrumental variable,

ρ(τ) = u(τ − I (u < 0)) is the check loss function (Koenker and Bassett, 1987), and v

denotes weights that control the influence of quantile τ on ηi estimates.

• Define a grid of values {αj , j = 1, 2, ..., J; |α| < 1}.

Back
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Estimation Procedure Steps (cont.)

• For the chosen τ , run the quantile panel regression of

(∆ log(sizeit)− α(τ) log(sizei,t−1)) on (Xit , log(sizei,t−2)) for each value αj (Machado

and Santos Silva, 2019):(
η̂i (αj , τ) , β̂ (αj , τ) , γ̂ (αj , τ)

)
= min

ηi ,β,γ
Rτ (ηi , αj , β, γ)

• Choose α̂ as the value that minimizes ∥γ̂(αj , τ)∥, i.e., the coefficient on the instrument

tends to zero (Chernozhukov and Hansen; 2006, 2008).

• The selection of β̂ for a given quantile τ yields the corresponding estimates of β̂(αj , τ).

This five-step procedure is repeated for each value of τ .
Back
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How to Detect if the Instrument is Weak? OPTIONAL

Context: Quantile regression for dynamic panel data (Galvão, 2011)

• Instrument: second lag of the log of size:

log(sizei,t−2) (following Chernozhukov and Hansen, 2006, 2008)

• Evaluation procedure:

• Define a grid of possible α values: {αj}
• Estimate the quantile model for each αj , obtaining γ̂(αj)

• Select α̂ such that ∥γ̂(αj)∥ is minimized

• Practical criterion:

• If γ̂(αj) is close to zero only for one αj , the instrument is strong.

• If it is close to zero for many, the instrument may be weak.

• Note: no F-statistic is used, as in traditional IV.
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Weak instruments? Robust Check
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