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Introduction

Introduction

Cluster-robust standard errors are widely used, but t-statistics and
confidence intervals based on them can be unreliable.

For detailed discussions of all but the latest methods, see MacKinnon,
Nielsen, and Webb (JoE 2023a, “The Guide”).

Most asymptotic theories only tell us that inference is reliable
when G, the number of clusters, is very large.
We cannot know when G is large enough, because several other
features of the model/sample can matter greatly.
The most commonly used standard errors are the worst choice.
Better ones are readily available. We can also use bootstrap
methods or coefficient-specific critical values.
The best methods can yield surprisingly reliable inferences even
when G is quite small.

How can we decide whether various forms of cluster-robust inference
can be relied upon in any given case?
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Linear Regression with Clustering

Linear Regression with Clustering

There are G clusters, indexed by g. The g th cluster has Ng observations,
so the sample size is N = ∑G

g=1 Ng. The model can be written as

yg = Xgβ + ug, g = 1, . . . , G, (1)

where Xg is an Ng × k matrix of regressors, β is a k-vector of
coefficients, and yg and ug are Ng-vectors.

Stacking the Xg yields the N × k matrix X, and stacking the yg and ug
yields the N-vectors y and u.

The OLS estimator of β is

β̂ = (X⊤X)−1X⊤y = β0 + (X⊤X)−1X⊤u. (2)

This assumes that the data are actually generated by (1) with β = β0.
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Linear Regression with Clustering

If sg = X⊤
g ug is the score vector for the g th cluster, and (1) is correct,

β̂ − β0 = (X⊤X)−1
G

∑
g=1

X⊤
g ug =

( G

∑
g=1

X⊤
g Xg

)−1 G

∑
g=1

sg. (3)

The random variation in β̂ around β0 evidently arises from the
randomness in the sg.

Key assumptions:

E(sgs⊤g ) = Σg and E(sgs⊤g′ ) = 0, g, g′ = 1, . . . , G, g′ ̸= g, (4)

where Σg is the symmetric, positive semidefinite variance matrix of the
scores for the g th cluster. There are two assumptions here:

1 Within each cluster, there may be very general patterns of
heteroskedasticity and/or intra-cluster correlation.

2 The scores for every cluster are uncorrelated with the scores for
every other cluster. This assumption is crucial!

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 4 / 52



Linear Regression with Clustering

If sg = X⊤
g ug is the score vector for the g th cluster, and (1) is correct,

β̂ − β0 = (X⊤X)−1
G

∑
g=1

X⊤
g ug =

( G

∑
g=1

X⊤
g Xg

)−1 G

∑
g=1

sg. (3)

The random variation in β̂ around β0 evidently arises from the
randomness in the sg.

Key assumptions:

E(sgs⊤g ) = Σg and E(sgs⊤g′ ) = 0, g, g′ = 1, . . . , G, g′ ̸= g, (4)

where Σg is the symmetric, positive semidefinite variance matrix of the
scores for the g th cluster. There are two assumptions here:

1 Within each cluster, there may be very general patterns of
heteroskedasticity and/or intra-cluster correlation.

2 The scores for every cluster are uncorrelated with the scores for
every other cluster. This assumption is crucial!

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 4 / 52



Linear Regression with Clustering

If sg = X⊤
g ug is the score vector for the g th cluster, and (1) is correct,

β̂ − β0 = (X⊤X)−1
G

∑
g=1

X⊤
g ug =

( G

∑
g=1

X⊤
g Xg

)−1 G

∑
g=1

sg. (3)

The random variation in β̂ around β0 evidently arises from the
randomness in the sg.

Key assumptions:

E(sgs⊤g ) = Σg and E(sgs⊤g′ ) = 0, g, g′ = 1, . . . , G, g′ ̸= g, (4)

where Σg is the symmetric, positive semidefinite variance matrix of the
scores for the g th cluster. There are two assumptions here:

1 Within each cluster, there may be very general patterns of
heteroskedasticity and/or intra-cluster correlation.

2 The scores for every cluster are uncorrelated with the scores for
every other cluster. This assumption is crucial!

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 4 / 52



Linear Regression with Clustering

If sg = X⊤
g ug is the score vector for the g th cluster, and (1) is correct,

β̂ − β0 = (X⊤X)−1
G

∑
g=1

X⊤
g ug =

( G

∑
g=1

X⊤
g Xg

)−1 G

∑
g=1

sg. (3)

The random variation in β̂ around β0 evidently arises from the
randomness in the sg.

Key assumptions:

E(sgs⊤g ) = Σg and E(sgs⊤g′ ) = 0, g, g′ = 1, . . . , G, g′ ̸= g, (4)

where Σg is the symmetric, positive semidefinite variance matrix of the
scores for the g th cluster. There are two assumptions here:

1 Within each cluster, there may be very general patterns of
heteroskedasticity and/or intra-cluster correlation.

2 The scores for every cluster are uncorrelated with the scores for
every other cluster. This assumption is crucial!

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 4 / 52



Linear Regression with Clustering

If sg = X⊤
g ug is the score vector for the g th cluster, and (1) is correct,

β̂ − β0 = (X⊤X)−1
G

∑
g=1

X⊤
g ug =

( G

∑
g=1

X⊤
g Xg

)−1 G

∑
g=1

sg. (3)

The random variation in β̂ around β0 evidently arises from the
randomness in the sg.

Key assumptions:

E(sgs⊤g ) = Σg and E(sgs⊤g′ ) = 0, g, g′ = 1, . . . , G, g′ ̸= g, (4)

where Σg is the symmetric, positive semidefinite variance matrix of the
scores for the g th cluster. There are two assumptions here:

1 Within each cluster, there may be very general patterns of
heteroskedasticity and/or intra-cluster correlation.

2 The scores for every cluster are uncorrelated with the scores for
every other cluster.

This assumption is crucial!

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 4 / 52



Linear Regression with Clustering

If sg = X⊤
g ug is the score vector for the g th cluster, and (1) is correct,

β̂ − β0 = (X⊤X)−1
G

∑
g=1

X⊤
g ug =

( G

∑
g=1

X⊤
g Xg

)−1 G

∑
g=1

sg. (3)

The random variation in β̂ around β0 evidently arises from the
randomness in the sg.

Key assumptions:

E(sgs⊤g ) = Σg and E(sgs⊤g′ ) = 0, g, g′ = 1, . . . , G, g′ ̸= g, (4)

where Σg is the symmetric, positive semidefinite variance matrix of the
scores for the g th cluster. There are two assumptions here:

1 Within each cluster, there may be very general patterns of
heteroskedasticity and/or intra-cluster correlation.

2 The scores for every cluster are uncorrelated with the scores for
every other cluster. This assumption is crucial!

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 4 / 52



Linear Regression with Clustering

The true variance matrix of β̂ is the sandwich matrix

Var(β̂) = (X⊤X)−1
( G

∑
g=1

Σg

)
(X⊤X)−1. (5)

If we knew Var(β̂), and assuming that a central limit theory can be
applied, inference could be based on the fact that

β̂
a∼ N

(
β0, Var(β̂)

)
; (6)

see Djogbenou, MacKinnon, and Nielsen (2019). This should work
well, except perhaps when G and/or N are very small, or the score
vectors are very heterogeneous. But Var(β̂) is unknown!

To estimate Var(β̂), we have to estimate the Σg consistently, and there
is more than one way to do so.

Unfortunately, replacing the Σg in (6) by consistent estimates Σ̂g may
lead to seriously unreliable inferences.
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Three Cluster-Robust Variance Estimators

Three Cluster-Robust Variance Estimators

There are several ways to estimate the middle factor in (5). Each yields
a different cluster-robust variance estimator, or CRVE.

The simplest way is to replace Σg by ŝgŝ⊤g , where ŝg = X⊤
g ûg is the

empirical score vector for the g th cluster. Multiplying by a d-o-f
correction, we obtain

CV1: V̂1(β̂) =
G(N − 1)

(G − 1)(N − k)
(X⊤X)−1

( G

∑
g=1

ŝgŝ⊤g
)
(X⊤X)−1. (7)

The leading scalar is chosen so that, when G = N, V̂1(β̂) reduces to the
familiar HC1 estimator of Mackinnon and White (1985).

The ŝg do not always provide good estimates of the sg, because the ûg
do not always provide good estimates of the ug.

In general, û = MXu, where MX = I − X(X⊤X)−1X⊤ projects u off X.
This projection means that û and u can have very different properties.
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The ŝg do not always provide good estimates of the sg, because the ûg
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correction, we obtain

CV1: V̂1(β̂) =
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)
(X⊤X)−1. (7)

The leading scalar is chosen so that, when G = N, V̂1(β̂) reduces to the
familiar HC1 estimator of Mackinnon and White (1985).

The ŝg do not always provide good estimates of the sg, because the ûg
do not always provide good estimates of the ug.

In general, û = MXu, where MX = I − X(X⊤X)−1X⊤ projects u off X.
This projection means that û and u can have very different properties.
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Three Cluster-Robust Variance Estimators

Depending on the X matrix and the u vector, the ŝg can sometimes
differ greatly from the sg, causing the middle factor in (7) to provide a
poor estimate of ∑G

g=1 Σg. Thus CV1 can perform very badly.

There are CRVE analogs of the two other popular variance estimators
for heteroskedasticity discussed in M & W (1985).

For HC2, the ûi are replaced by ûi/M1/2
ii , where Mii is the i th

diagonal element of MX . CV2 is analogous; it involves the inverse
symmetric square roots of the Mgg (diagonal blocks).
For HC3, the ûi are replaced by ûi/Mii. CV3 is analogous; it
involves the inverses of the Mgg.
CV2 and CV3 were first proposed in Bell and McCaffrey (2002),
using computational procedures like those for HC2 and HC3.
Better computational procedures (unless all the Ng are very small)
are discussed in MacKinnon, Nielsen, and Webb (JAE 2023b).
CV3 is really a cluster-jackknife estimator.
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differ greatly from the sg, causing the middle factor in (7) to provide a
poor estimate of ∑G

g=1 Σg. Thus CV1 can perform very badly.

There are CRVE analogs of the two other popular variance estimators
for heteroskedasticity discussed in M & W (1985).
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involves the inverses of the Mgg.
CV2 and CV3 were first proposed in Bell and McCaffrey (2002),
using computational procedures like those for HC2 and HC3.

Better computational procedures (unless all the Ng are very small)
are discussed in MacKinnon, Nielsen, and Webb (JAE 2023b).
CV3 is really a cluster-jackknife estimator.

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 7 / 52



Three Cluster-Robust Variance Estimators

Depending on the X matrix and the u vector, the ŝg can sometimes
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For HC2, the ûi are replaced by ûi/M1/2
ii , where Mii is the i th

diagonal element of MX . CV2 is analogous; it involves the inverse
symmetric square roots of the Mgg (diagonal blocks).
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ii , where Mii is the i th

diagonal element of MX . CV2 is analogous; it involves the inverse
symmetric square roots of the Mgg (diagonal blocks).
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Three Cluster-Robust Variance Estimators

The OLS estimates of β when cluster g is omitted are

β̂(g) = (X⊤X − X⊤
g Xg)

−1(X⊤y − X⊤
g yg), g = 1, . . . , G. (8)

To obtain the β̂(g) efficiently, start by calculating

X⊤
g Xg and X⊤

g yg, g = 1, . . . , G. (9)

Unless G is very large, this involves very little net cost, because the
quantities in (9) can be used to construct X⊤X and X⊤y.

The main cost, after β̂ and its ingredients have been computed, is
calculating the (generalized) inverse of a k × k matrix for each β̂(g).

The simplest version of the cluster-jackknife variance matrix is

CV3: V̂3(β̂) =
G − 1

G

G

∑
g=1

(β̂(g) − β̂)(β̂(g) − β̂)⊤. (10)

This matrix is numerically identical to the original CV3 matrix.
However, it is usually very much cheaper to compute.
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Three Cluster-Robust Variance Estimators

Theoretical results in Hansen (2025a) and simulation evidence in
MacKinnon, Nielsen, and Webb (JAE 2023b, SJ 2023c) suggest that CV3
standard errors are always larger than CV1 ones and that t-statistics
based on the former almost always yield more reliable inferences.

What about CV2 standard errors?
With neither heteroskedasticity nor intra-cluster correlation, and
some conditions on X, the diagonal elements of CV2 are unbiased,
like the diagonal elements of HC2.
In contrast, the diagonal elements of CV3 and HC3 are generally
biased upwards in the special case of i.i.d. disturbances.
However, because the numerators of cluster-robust t-statistics are
not independent of the denominators, using the square root of an
unbiased variance estimator in the denominator does not
guarantee that inference will be reliable.
Simulations suggest that CV3 usually outperforms CV2, so I won’t
say any more about the latter.
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Inference Using CRVEs

Inference Using CRVEs

Suppose we wish to test the hypothesis that βj = β0j or construct a
confidence interval for βj. We start with the t-statistic

tm
j =

β̂j − β0j

sem(β̂j)
, m = 1, 2, 3, (11)

where sem(β̂j) is the square root of the j th diagonal element of CVm.

By combining (11) with an assumed distribution, we can perform
hypothesis tests or construct confidence intervals.

It might seem natural to employ the standard normal distribution, but
this a really bad idea.

The asymptotic theory of Bester, Conley, and Hansen (2011) holds G
fixed, with the Ng increasing and intra-cluster correlation diminishing.
For CV1, (11) is then asymptotically distributed as t(G − 1).
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Inference Using CRVEs

Even when the BCH assumptions do not hold, t(G − 1) seems to work
better than N(0, 1), but not perfectly.

Nevertheless, inferences based on any CRVE plus t(G − 1) have two
unsatisfactory features:

They use the t(G − 1) distribution, which does not depend on X.
They do not attempt to correct any of the CRVEs for bias.

Several authors suggest using a calculated degrees-of-freedom
parameter, say di, in place of G − 1. See Bell and McCaffrey (2002),
Imbens and Kolesár (2016), Young (2016), and Hansen (2025a, b).

Others suggest rescaling the standard errors based on the bias of the
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Bootstrap Inference

Bootstrap Inference

Generate a large number, say B, of bootstrap samples, indexed by b.
Compute β̂∗b and (usually) the t∗b

j for each of them.

Conceptually the simplest bootstrap DGP is the pairs cluster bootstrap
(PCB), or resampling bootstrap, which resamples from the pairs[

X⊤
g Xg, X⊤

g yg
]
, g = 1, . . . , G. (12)

The bootstrap standard error se∗(β̂j) is the square root of V̂ar(β̂∗b
j ). We

can compare it with the sem(βj), for m = 1, 2, 3, or use it for inference.

For any choice of se(β̂∗b
j ), we can compute the bootstrap t-statistic

t∗b
j =

β̂∗b
j − β̂j

se(β̂∗b
j )

, b = 1, . . . , B. (13)

This is testing the hypothesis that βj = β̂j, not that βj = β0j.
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Bootstrap Inference

We can then compute the symmetric bootstrap P value

P̂∗ =
1
B

B

∑
b=1

I
(
|t∗b

j | > |tj|
)
. (14)

When P̂∗ < α, we can reject the null hypothesis at level α.

To compute studentized bootstrap confidence intervals, sort the t∗b
j

from smallest to largest and find c∗1−α/2 and c∗α/2.

The studentized bootstrap confidence interval at level 1 − α is then[
β̂j − se(β̂j)c∗1−α/2, β̂j − se(β̂j)c∗α/2

]
, (15)

where the cluster-robust standard error se(β̂j) is the same function of
the actual data as se(β̂∗b

j ) is a function of the bootstrap data.

vce(bootstrap) with cluster(cvar) calculates PCB standard errors,
but not P values like (14) or intervals like (15). It is very expensive, and
it can be unreliable if many bootstrap samples are omitted.
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The Wild Cluster Bootstrap

The Wild Cluster Bootstrap

The wild cluster bootstrap (WCB) often works much better than the
PCB. It was proposed in Cameron, Gelbach, and Miller (2008), proved
to be valid in Djogbenou, MacKinnon, and Nielsen (2019), and
improved in MacKinnon, Nielsen, and Webb (JAE 2023b).

Consider the unrestricted empirical score vectors

ŝg = X⊤
g ûg = X⊤

g yg − X⊤
g Xg β̂, g = 1, . . . , G. (16)

To generate the b th bootstrap sample, we multiply each of these vectors
by a scalar auxiliary random variable v∗b

g with mean 0 and variance 1.

This should usually be the Rademacher distribution. When G is very
small (say G ≤ 12), it is better to use Webb’s six-point distribution.

We then obtain bootstrap estimates of the vector δ ≡ β − β̂:

δ̂∗b = (X⊤X)−1
G

∑
g=1

s∗b
g , s∗b

g = v∗b
g ŝg. (17)
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ŝg = X⊤
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g ŝg. (17)

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 14 / 52



The Wild Cluster Bootstrap

The Wild Cluster Bootstrap

The wild cluster bootstrap (WCB) often works much better than the
PCB. It was proposed in Cameron, Gelbach, and Miller (2008), proved
to be valid in Djogbenou, MacKinnon, and Nielsen (2019), and
improved in MacKinnon, Nielsen, and Webb (JAE 2023b).

Consider the unrestricted empirical score vectors
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The Wild Cluster Bootstrap

Next, we compute the bootstrap t-statistic

t∗b
j =

δ̂∗b
j

se(δ̂∗b
j )

, (18)

where se(δ̂∗b
j ) is the square root of the j th diagonal element of the CV1

matrix (7), with the vectors ŝg replaced by the vectors

ŝ∗b
g = s∗b

g − X⊤
g Xgδ̂∗b. (19)

The t∗b
j can then be used to compute bootstrap P values, using (14),

and studentized bootstrap confidence intervals, using (15).

This variant of the WCB is the WCU-C bootstrap. The “U” indicates
that the bootstrap scores are based on the unrestricted empirical score
vectors (16), and “-C” means “classic.”

Imposing restrictions on the bootstrap samples makes bootstrapping
more complicated, but it often improves performance.
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The Wild Cluster Bootstrap

Suppose we obtain OLS estimates β̃ and residual vectors ũg subject to
the restriction that βj = βj0. Then the analog of (16) is

s̃g = X⊤
g ũg = X⊤

g yg − X⊤
g Xg β̃, g = 1, . . . , G. (20)

Now when we “regress” the s̃g on Xg, δ̂∗b is an estimate of β − β̂.

This variant of the WCB is called the WCR-C variant, where “R”
stands for “restricted.” It is probably the most widely-used bootstrap
procedure for linear models with clustering.

We can still compute bootstrap P values using (14). However, we
cannot construct studentized bootstrap confidence intervals using (15).

Instead, we have to “invert” the bootstrap test statistic, finding two
values of βj, one on each side of β̂j, such that the equal-tail P values for
tests that βj equals each of these values are approximately α.

Happily, boottest does this incredibly quickly. See Roodman,
MacKinnon, Nielsen, and Webb (2019) and MacKinnon (2023).
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The Wild Cluster Bootstrap

MNW (JAE 2023b) proposes six new variants of the WCB. Two of these
are known as WCU-S and WCR-S, where “S” stands for “score.”

The idea of these new wild cluster bootstraps is to replace the
empirical score vectors ŝg or s̃g in the bootstrap DGP by modified score
vectors that (partly) correct for the distortions caused by least squares.

Recall that û = MXu. We can partly undo the ill effects of this by using

śg = X⊤
g M−1

gg ûg, (21)

where M−1
gg is the inverse of the g th diagonal block of MX. But this can

be insanely expensive!

It is shown in MNW (JAE 2023b) that

śg = X⊤X
(

β̂ − β̂(g)), g = 1, . . . , G. (22)

Thus computing the śg is almost costless once the jackknife estimates,
which are needed for CV3, have been computed.
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gg ûg, (21)

where M−1
gg is the inverse of the g th diagonal block of MX.

But this can
be insanely expensive!

It is shown in MNW (JAE 2023b) that
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Thus computing the śg is almost costless once the jackknife estimates,
which are needed for CV3, have been computed.

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 17 / 52



The Wild Cluster Bootstrap

MNW (JAE 2023b) proposes six new variants of the WCB. Two of these
are known as WCU-S and WCR-S, where “S” stands for “score.”

The idea of these new wild cluster bootstraps is to replace the
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The Wild Cluster Bootstrap

The modified score vectors śg are used in the bootstrap DGP for the
WCU-S bootstrap. In all other respects, the WCU-S and WCU-C
bootstraps are computed in exactly the same way.

A similar procedure can be used to compute restricted score vectors ṡ
that “correct” for the distortions caused by estimating the restricted
model. The ṡ are used in the bootstrap DGP for the WCR-S bootstrap,
which otherwise is computed just like the WCR-C bootstrap.

It may seem odd to use the CV1 standard error in tj and the t∗b
j ,

when the transformation (21) is based on the cluster jackknife.

Another variant uses the CV3 standard error, but it is a lot more
expensive to compute, and it does not consistently perform better.

WCR[U/R]-[C/S] are implemented in current versions of boottest. It
computes both bootstrap confidence intervals and bootstrap P values,
including for tests of several linear restrictions. In most cases, this is
inexpensive, even when B is chosen to be a large number like 99,999.

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 18 / 52



The Wild Cluster Bootstrap
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Why Cluster-Robust Inference May Be Unreliable

Why Cluster-Robust Inference May Be Unreliable

Consider a hypothesis test at nominal level α or a confidence interval
with nominal coverage 1 − α. When is such a procedure “reliable”?

A “reliable” test should yield a rejection frequency in [αl, αu], or
coverage in [1 − αu, 1 − αl], for values of αl < α < αu that an
investigator is comfortable with.

What are reasonable values of αl and αu? Perhaps 0.9α and 1.1α (or
0.045 and 0.055 when α = 0.05).

If an investigator chooses αl = 0.999α and αu = 1.001α, then there
probably exists no method for cluster-robust inference that is reliable!

The number of clusters G is important, because the expressions for
CV1, CV2, and CV3 involve summations over G terms.

We need 1
G ∑G

g=1 ŝgŝ⊤g in (7), and its analog for the other CRVEs, to
converge to the same matrix as 1

G ∑G
g=1 sgs⊤g .
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g=1 ŝgŝ⊤g in (7), and its analog for the other CRVEs, to
converge to the same matrix as 1

G ∑G
g=1 sgs⊤g .

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 19 / 52



Why Cluster-Robust Inference May Be Unreliable

Why Cluster-Robust Inference May Be Unreliable

Consider a hypothesis test at nominal level α or a confidence interval
with nominal coverage 1 − α. When is such a procedure “reliable”?

A “reliable” test should yield a rejection frequency in [αl, αu], or
coverage in [1 − αu, 1 − αl], for values of αl < α < αu that an
investigator is comfortable with.

What are reasonable values of αl and αu? Perhaps 0.9α and 1.1α (or
0.045 and 0.055 when α = 0.05).

If an investigator chooses αl = 0.999α and αu = 1.001α, then there
probably exists no method for cluster-robust inference that is reliable!

The number of clusters G is important, because the expressions for
CV1, CV2, and CV3 involve summations over G terms.

We need 1
G ∑G
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g=1 sgs⊤g .
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Why Cluster-Robust Inference May Be Unreliable

The sample size N also matters, but not much once N/G is moderately
large. We cannot simply hold G fixed and let N → ∞.

Any sort of heterogeneity in the X⊤
g Xg and the X⊤

g yg matters.

Key sources of heterogeneity are
variation in the Ng across clusters;
variation in the distributions of the Xg across clusters;
heteroskedasticity within and across clusters;
variation in the patterns of within-cluster correlation.

When there are treatment dummies, including DiD models, numbers
of treated clusters (G1) and control clusters (G0) matter greatly.

G1 should not be too small, nor G0 in pure treatment case.
G1/G should not be too close to 0 or 1.

Otherwise, cluster-robust standard errors are too small, pairs cluster
and WCU bootstraps over-reject, and WCR bootstraps under-reject.
See MacKinnon and Webb (JAE 2017, EJ 2018).
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Why Cluster-Robust Inference May Be Unreliable

Figure 1. Rejection frequencies as functions of G1 for G = 24
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How Should We Cluster?

How Should We Cluster?

Before we begin to compute standard errors, we need to decide just
how the scores are clustered.

At what level should we cluster?
Should we cluster in one, two, or more than two dimensions?
If either the disturbances or the (partialed-out) regressor of
interest is not clustered, then the scores are not clustered.

Testing the Level of Clustering
Suppose there is more than one level at which we could cluster.

Perhaps there is a fine level (say, schools) and a coarser level (say
school districts).
When there are many fine clusters, inference is likely to be reliable
if fine clustering is appropriate.
But it will be invalid if coarse clustering is appropriate.
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How Should We Cluster?

Several tests for the level of clustering have been proposed.

MacKinnon, Nielsen, and Webb (JoE, 2023d) proposes both asymptotic
and wild bootstrap tests based on elements of the score vectors after
regressors that are not of primary interest have been partialed out.
These are called score-variance tests.

Score-variance tests depend on which coefficient(s) are of interest.
It is easiest to deal with a single coefficient.
Asymptotic score-variance tests may not perform well. Bootstrap
tests (based on the WCU-C bootstrap) seem to perform better.
There is a package called mnwsvt, but it is not on SSC and
probably needs some work.
Even without testing, we should cluster at the coarse level if sec,
the coarse standard error, is noticeably larger than sef, the fine one.
However, we should probably not cluster at the coarse level if sec
is smaller, even “significantly” smaller, than sef.
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How Should We Cluster?

Two-Way Clustering

There are circumstances in which there may be two, or even more than
two, clustering dimensions. Obvious ones are space and time.

In the two-way case, every observation is assumed to belong to one
cluster in each of the two dimensions.

If an observation belongs to cluster g in the spatial dimension and
cluster t in the time dimension, then it may be correlated with other
observations that belong either to cluster g or to cluster t.

The idea of two-way clustering was independently discovered by
Miglioretti and Heagerty (2006), Cameron, Gelbach, and Miller (2011),
and Thompson (2011).

Recent work includes MacKinnon, Nielsen, and Webb (2021, 2024),
Chiang, Hansen, and Sasaki (2024), and Davezies, d’Haultefoeuille,
and Gyonvarch (2025).

Anything that causes inference to be unreliable for one-way clustering
also causes it to be unreliable for two-way clustering.
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How Should We Cluster?

For two-way clustering, the filling in the sandwich for the true
variance matrix is

Σ =
G

∑
g=1

Σg +
H

∑
h=1

Σh −
G

∑
g=1

H

∑
h=1

Σgh. (23)

Here the Σg and Σh are the variance matrices of the score vectors for
each of the two clustering dimensions, and the Σgh are the variance
matrices for the intersections of the two dimensions.

The third term in (23) has to be subtracted to avoid double counting.

Although (23) is positive definite, its empirical analogs are not. In
consequence, standard errors may be undefined or extremely small.

If two-way clustering yields smaller standard errors than one-way
clustering in either dimension, then the former should not be believed.

MacKinnon, Nielsen, and Webb (2024) and Davezies et al. (2025)
suggested computing both one-way standard errors, along with
two-way ones (if defined) and using whichever is largest.
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Measures of Cluster Heterogeneity

Measures of Cluster Heterogeneity

The smaller the number of clusters G, the less reliable can we expect all
types of cluster-robust inference to be.

There is no simple rule about how large G needs to be. It depends
in complicated ways on many features of the model and data.
In general, for a given G, the more the data vary across clusters,
the less reliable inference tends to be.

One important source of variation is cluster sizes. When the Ng vary
greatly, we cannot expect any method to work really well.

Problems occur when there are a few excessively large clusters, not a
few excessively small ones. Imagine the following two samples:

Sample 1: 19 clusters each with Ng = 500, 1 cluster with N20 = 10. This
is almost like a sample with 19 equal-sized clusters; use t(18).

Sample 2: 19 clusters each with Ng = 500, 1 cluster with N20 = 10, 000.
Thus N20 > ∑19

g=1 Ng. Inference is likely to be dreadful!
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Measures of Cluster Heterogeneity

Chiang, Sasaki, and Wang (2025) suggests using weighted least
squares, with weights N−1/2

g , instead of OLS.

This might well be a good idea for Sample 2, but it would be a
terrible idea for Sample 1, where OLS should usually work well.
More sophisticated forms of WLS might be worth investigating.

Inference becomes less reliable as the leverage and partial leverage of
the clusters vary more; see MacKinnon, Nielsen, and Webb (SJ, 2023c).

Suppose that we are interested in xj. Partialing it out, we obtain x́j. The
measure of partial leverage for regressor j for the g th cluster is then

Lgj =
x́⊤gj x́gj

x́⊤j x́j
, (24)

where x́gj is the subvector of x́j corresponding to the g th cluster.

Since the Lgj sum to unity, their average is 1/G. Thus, if cluster h has
Lhj >> 1/G, it has high partial leverage for the j th coefficient.
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Measures of Cluster Heterogeneity

When G is small, look at all the Lgj for every coefficient of interest.

When G is not small, graph them or report summary measures of how
much they vary across clusters. One such measure is the scaled
variance

Vj
s =

G2

(G − 1)

G

∑
g=1

(Lgj − 1/G)2. (25)

The square root of Vj
s is the coefficient of variation of the Lgj.

It will be 0 whenever every cluster has the same partial leverage and
large whenever Var(Lgj) is large relative to 1/G2.

Carter, Schnepel, and Steigerwald (2017) proposes a family of
measures G∗

j (ρ) called the “effective number of clusters.”

These measures depend on a parameter ρ, the intra-cluster
correlation of the disturbances in a random-effects model.
When there are cluster fixed effects, only ρ = 0 makes sense.
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Measures of Cluster Heterogeneity

MacKinnon, Nielsen, and Webb (SJ, 2023c) shows that G∗
j (0) is simply

a monotonically decreasing function of the scaled variance (25).

Thus, when Vj
s is large, G∗

j (0) is necessarily much smaller than G.

Vj
s and G∗

j (0) convey exactly the same information, but the latter is
easier to interpret, because it is bounded above by G.

If G = 50 and G∗(0) = 48.7, we would expect many methods to
yield fairly reliable inferences.
But if G∗

j (0) = 11.7, we would expect cluster-robust inference to
be challenging.

The package summclust calculates both leverage and partial leverage
at the cluster level, as well as measures of how much they vary, the
effective number of clusters, and several other useful diagnostics.

It also calculates both CV1 and CV3 variance matrices, along with the
associated P values and confidence intervals.
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Heteroskedasticity

Heteroskedasticity

Both the extent of heteroskedasticity across clusters, if any, and the
patterns of intra-cluster correlation can be important.

The average variance of the residuals for each cluster is

σ̂2
g =

1
Ng − 1

Ng

∑
i=1

(ûgi − ūg)
2, g = 1, . . . , G, (26)

where ūg is the average residual for cluster g.

If there are cluster fixed effects, we can compute the σ̂2
g by regressing

the squared residuals on a full set of cluster dummies. When they vary
substantially across clusters, inference may be unreliable.

Simulations in Hansen (2025) and Chiang, Sasaki, and Wang (2025)
make Var(ugi) much larger for treated than control observations.

This typically harms performance of every method, expecially all
variants of the wild cluster bootstrap.
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where ūg is the average residual for cluster g.

If there are cluster fixed effects, we can compute the σ̂2
g by regressing

the squared residuals on a full set of cluster dummies. When they vary
substantially across clusters, inference may be unreliable.

Simulations in Hansen (2025) and Chiang, Sasaki, and Wang (2025)
make Var(ugi) much larger for treated than control observations.

This typically harms performance of every method, expecially all
variants of the wild cluster bootstrap.

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 30 / 52



Heteroskedasticity

Heteroskedasticity

Both the extent of heteroskedasticity across clusters, if any, and the
patterns of intra-cluster correlation can be important.

The average variance of the residuals for each cluster is

σ̂2
g =

1
Ng − 1

Ng

∑
i=1
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Heteroskedasticity

To check whether the data display this sort of heteroskedasticity, run
the regression

û2
gi = η1 + η2 Tgi + egi, g = 1, . . . , G, i = 1, . . . , Ng. (27)

where Tgi is the treatment dummy for observation gi.

In (27), η1 is the average variance for control observations, and η1 + η2
is the average variance for treated observations.

A cluster-robust test for η2 = 0 tests whether the disturbances for
control and treated clusters have the same average variance.

If η̂1 + η̂2 is much larger than η̂1, then results from inferential methods
that might otherwise perform well should be interpreted with caution.

A diagnostic that depends on both y and X is the variability in the
omit-one-cluster estimates β̂(g); summclust optionally reports these.

When there are one or two clusters where β̂(g) differs greatly from β̂,
an investigator should be cautious.
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Targeted Monte Carlo Experiments

Targeted Monte Carlo Experiments

A targeted Monte Carlo experiment can provide estimates of how
accurate P values and confidence intervals are likely to be.

Use the actual matrix X and the actual clusters, along with β = β̂
or β = 0. Inexpensive since X⊤X and X⊤

g Xg are fixed.
The difficulty is deciding precisely how to generate the ug.
The easiest approach is to use the random-effects model

ugi = vg + ϵgi, vg ∼ N(0, σ2
v ), ϵgi ∼ N(0, σ2

ϵ ), (28)

which implies that the disturbances within each cluster are
homoskedastic and equi-correlated with ρ = σ2

v /(σ2
v + σ2

ϵ ).
But if the regressors include cluster fixed effects, they completely
explain the vg, so there is no within-cluster correlation.
There are many ways to generate the ugi for models with cluster
fixed effects, and it is not clear how much it matters.
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Placebo Regressions

Placebo Regressions

These are like Monte Carlo experiments, but instead of varying y, we
vary one column of X across replications.

For each replication, we add a random extra regressor which looks
like, but does not replace, the regressor of interest.

y = Xβ + zγ + u (29)

Find the fraction of replications for which a test of γ = 0 rejects the
null, or a confidence interval includes 0.

If we replaced the regressor of interest, we would be assuming the
model is correctly specified without it.

How we generate the z matters. For DiD models, they should look like
placebo laws, as in Bertrand, Duflo, and Mullainathan (2004).

Can we model heteroskedasticity related to treatment?

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 33 / 52



Placebo Regressions

Placebo Regressions

These are like Monte Carlo experiments, but instead of varying y, we
vary one column of X across replications.

For each replication, we add a random extra regressor which looks
like, but does not replace, the regressor of interest.

y = Xβ + zγ + u (29)

Find the fraction of replications for which a test of γ = 0 rejects the
null, or a confidence interval includes 0.

If we replaced the regressor of interest, we would be assuming the
model is correctly specified without it.

How we generate the z matters. For DiD models, they should look like
placebo laws, as in Bertrand, Duflo, and Mullainathan (2004).

Can we model heteroskedasticity related to treatment?

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 33 / 52



Placebo Regressions

Placebo Regressions

These are like Monte Carlo experiments, but instead of varying y, we
vary one column of X across replications.

For each replication, we add a random extra regressor which looks
like, but does not replace, the regressor of interest.

y = Xβ + zγ + u (29)

Find the fraction of replications for which a test of γ = 0 rejects the
null, or a confidence interval includes 0.

If we replaced the regressor of interest, we would be assuming the
model is correctly specified without it.

How we generate the z matters. For DiD models, they should look like
placebo laws, as in Bertrand, Duflo, and Mullainathan (2004).

Can we model heteroskedasticity related to treatment?

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 33 / 52



Placebo Regressions

Placebo Regressions

These are like Monte Carlo experiments, but instead of varying y, we
vary one column of X across replications.

For each replication, we add a random extra regressor which looks
like, but does not replace, the regressor of interest.

y = Xβ + zγ + u (29)

Find the fraction of replications for which a test of γ = 0 rejects the
null, or a confidence interval includes 0.

If we replaced the regressor of interest, we would be assuming the
model is correctly specified without it.

How we generate the z matters. For DiD models, they should look like
placebo laws, as in Bertrand, Duflo, and Mullainathan (2004).

Can we model heteroskedasticity related to treatment?

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 33 / 52



Placebo Regressions

Placebo Regressions

These are like Monte Carlo experiments, but instead of varying y, we
vary one column of X across replications.

For each replication, we add a random extra regressor which looks
like, but does not replace, the regressor of interest.

y = Xβ + zγ + u (29)

Find the fraction of replications for which a test of γ = 0 rejects the
null, or a confidence interval includes 0.

If we replaced the regressor of interest, we would be assuming the
model is correctly specified without it.

How we generate the z matters. For DiD models, they should look like
placebo laws, as in Bertrand, Duflo, and Mullainathan (2004).

Can we model heteroskedasticity related to treatment?

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 33 / 52



Placebo Regressions

Placebo Regressions

These are like Monte Carlo experiments, but instead of varying y, we
vary one column of X across replications.

For each replication, we add a random extra regressor which looks
like, but does not replace, the regressor of interest.

y = Xβ + zγ + u (29)

Find the fraction of replications for which a test of γ = 0 rejects the
null, or a confidence interval includes 0.

If we replaced the regressor of interest, we would be assuming the
model is correctly specified without it.

How we generate the z matters. For DiD models, they should look like
placebo laws, as in Bertrand, Duflo, and Mullainathan (2004).

Can we model heteroskedasticity related to treatment?

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 33 / 52



Placebo Regressions

Placebo Regressions

These are like Monte Carlo experiments, but instead of varying y, we
vary one column of X across replications.

For each replication, we add a random extra regressor which looks
like, but does not replace, the regressor of interest.

y = Xβ + zγ + u (29)

Find the fraction of replications for which a test of γ = 0 rejects the
null, or a confidence interval includes 0.

If we replaced the regressor of interest, we would be assuming the
model is correctly specified without it.

How we generate the z matters. For DiD models, they should look like
placebo laws, as in Bertrand, Duflo, and Mullainathan (2004).

Can we model heteroskedasticity related to treatment?

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 33 / 52



Logistic Regression Models

Logistic Regression Models

If the binary variable ygi is the response for observation i in cluster g,

Pr(ygi = 1 |Xgi) = Λ(Xgiβ), g = 1, . . . , G, i = 1, . . . , Ng. (30)

Here Xgi contains k explanatory variables, with β to be estimated.

In (30), Λ(·) is the logistic function,

Λ(x) =
1

1 + e−x =
ex

1 + ex . (31)

The pseudo-loglikelihood function for (30) is

ℓ(y, β) =
G

∑
g=1

Ng

∑
i=1

(
ygi log Λ(Xgiβ) + (1 − ygi) log Λ(−Xgiβ)

)
. (32)

There are other ways to write this.
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Logistic Regression Models

Using the fact that the first derivative of Λ(x) is Λ(x)Λ(−x), the score
vector for the g th cluster is simply

sg(β) =
Ng

∑
i=1

sgi(β) =
Ng

∑
i=1

(
ygi − Λ(Xgiβ)

)
Xgi. (33)

Thus, the first-order condition for β̂ can be written as

ŝ =
G

∑
g=1

ŝg =
G

∑
g=1

sg(β̂) = 0. (34)

When the observations are independent, we obtain the variance matrix
estimator

V̂(β̂) = (X⊤Υ(β̂)X)−1, (35)

where Υ(β) is an N × N diagonal matrix with typical diagonal element

Υi(β) = Λ(Xiβ)Λ(−Xiβ). (36)
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ŝg =
G

∑
g=1

sg(β̂) = 0. (34)

When the observations are independent, we obtain the variance matrix
estimator

V̂(β̂) = (X⊤Υ(β̂)X)−1, (35)

where Υ(β) is an N × N diagonal matrix with typical diagonal element

Υi(β) = Λ(Xiβ)Λ(−Xiβ). (36)

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 35 / 52



Logistic Regression Models

Using the fact that the first derivative of Λ(x) is Λ(x)Λ(−x), the score
vector for the g th cluster is simply

sg(β) =
Ng

∑
i=1

sgi(β) =
Ng

∑
i=1

(
ygi − Λ(Xgiβ)

)
Xgi. (33)

Thus, the first-order condition for β̂ can be written as
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Logistic Regression Models

For the logit model, X⊤Υ(β)X = −H(β).

The usual CRVE is

CV1I : V̂1I =
G

G − 1
N − 1
N − k

(X⊤Υ̂X)−1

(
G

∑
g=1

ŝgŝ⊤g

)
(X⊤Υ̂X)−1. (37)

The empirical score vectors here are

sg(β̂) =
Ng

∑
i=1

(
ygi − Λ(Xgiβ̂)

)
Xgi, g = 1, . . . , G. (38)

If β̂(g) is the vector of delete-one estimates when cluster g is deleted,
we obtain the cluster-jackknife CRVE

CV3: V̂3(β̂) =
G − 1

G

G

∑
g=1

(β̂(g) − β̂)(β̂(g) − β̂)⊤. (39)

Computing CV3 requires G + 1 nonlinear estimations.
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ŝgŝ⊤g
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Methods Based on Linearization

Methods Based on Linearization

For the logit model, the contributions to the information matrix are

Jg(β) =
Ng

∑
i=1

Λgi (β)Λgi (−β)Xgi(β)⊤Xgi(β), g = 1, . . . , G. (40)

The estimates from linearizing the model around β are then

b(β) =

( G

∑
g=1

Jg(β)

)−1 G

∑
g=1

sg(β) = J(β)−1s(β). (41)

When the sg(β) and Jg(β) are evaluated at β0, the vector b(β0) is a
linear approximation to β̂ − β0 (Davidson and MacKinnon, 1984).

After we estimate the logit model, we form the cluster-level vectors
ŝg = sg(β̂) and matrices Ĵg = Jg(β̂) for g = 1, . . . , G.
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ŝg = sg(β̂) and matrices Ĵg = Jg(β̂) for g = 1, . . . , G.

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 37 / 52



Methods Based on Linearization

Methods Based on Linearization

For the logit model, the contributions to the information matrix are

Jg(β) =
Ng

∑
i=1

Λgi (β)Λgi (−β)Xgi(β)⊤Xgi(β), g = 1, . . . , G. (40)

The estimates from linearizing the model around β are then

b(β) =

( G

∑
g=1

Jg(β)

)−1 G

∑
g=1

sg(β) = J(β)−1s(β). (41)

When the sg(β) and Jg(β) are evaluated at β0, the vector b(β0) is a
linear approximation to β̂ − β0 (Davidson and MacKinnon, 1984).

After we estimate the logit model, we form the cluster-level vectors
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The linear approximations to β̂(g) − β̂ when each cluster is omitted in
turn are then

b̂
(g)

= (Ĵ − Ĵg)
−1(ŝ − ŝg), g = 1, . . . , G. (42)

We can use these approximations to compute cluster-jackknife
variance matrices. The one comparable to (10) is

CV3L: V̂3L(β̂) =
G − 1

G

G

∑
g=1

b̂
(g)

b̂
(g)⊤

. (43)

The linear approximation (41) can also be used to compute wild
cluster linearized, or WCL, bootstraps.

Once the logit model has been estimated (possibly subject to the
restrictions to be tested) and linearized, computations are identical to
those for the WCR/WCU bootstraps for linear regression models.
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Methods Based on Linearization

Let ẍ denote x̂ or x̃, and v∗b
g be random variates with mean 0 and

variance 1 (probably Rademacher). Bootstrap scores are generated by

s̈∗b
g = v∗b

g s̈g, g = 1, . . . , G. (44)

Then the bootstrap model is estimated by OLS, yielding

b̈∗b
=

( G

∑
g=1

J̈g

)−1 G

∑
g=1

s̈∗b
g . (45)

The empirical bootstrap score vectors are

ẅ∗b
g = s̈∗b

g − J̈g b̈∗b, g = 1, . . . , G. (46)

The CV1 bootstrap variance matrix is

V̈∗
b =

G(N − 1)
(G − 1)(N − k)

J̈−1
( G

∑
g=1

ẅ∗b
g (ẅ∗b

g )⊤
)

J̈−1. (47)
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Methods Based on Linearization

When s̈g = s̃g and J̈g = J̃g, we have the WCLR-C bootstrap.

When s̈g = ŝg and J̈g = Ĵg, we have the WCLU-C bootstrap.
These are analogous to the classic WCR-C and WCU-C bootstraps.

We can also transform the empirical scores, as proposed in
MacKinnon, Nielsen, and Webb (JAE 2023b), to undo some of the
deleterious effects of ML estimation.

The transformed scores are

ṡg = s̃g − J̃1g b̃(g)
1 and śg = ŝg − Ĵg b̂

(g)
, g = 1, . . . , G. (48)

When s̈g = ṡg and J̈g = J̃g, we have the WCLR-S bootstrap.

When s̈g = śg and J̈g = Ĵg, we have the WCLU-S bootstrap.
These are analogous to the WCR-S and WCU-S bootstraps.

The logitjack package computes CV3, CV3L, all four bootstrap
P values, and confidence intervals based on WCLU-C and WCLU-S.
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ṡg = s̃g − J̃1g b̃(g)
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An Empirical Application

An Empirical Application

Porter and Serra (AEJ Applied, 2020) studies female students in
Principles of Economics classes in 2015 and 2016.

Some classes in 2016 were exposed to “successful and charismatic
women who majored in economics at the same university.”

Dependent variable is 1 if a student took another economics class.
Only 21.7% did.

N = 627;
G = 12;
k = 11;
Four of the classes were “treated” in 2016, so G1 = 4;
Proportion of observations treated is 0.2073.
Ng varies from 12 to 104;
partial leverage varies from 0.016 to 0.155;
G∗(0) = 8.490 and G∗(1) = 5.978.
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An Empirical Application

Table 1: Effects of Treatment on Taking Another Economics Course

Method Coef. Std. error t-stat. P value Lower Upper

LPM HC1 0.1389 0.0673 2.0632 0.0395 0.0067 0.2710
LPM HC3 0.1389 0.0680 2.0431 0.0415 0.0054 0.2723
LPM CV1 0.1389 0.0518 2.6791 0.0214 0.0248 0.2529
LPM CV3 0.1389 0.0646 2.1505 0.0546 −0.0033 0.2810
jregress 0.1389 0.0674 2.0589 0.0504 −0.0004 0.2781

Logit (default) 0.8739 0.4071 2.1467 0.0318 0.0760 1.6717
Logit CV1 Nml. 0.8739 0.3087 2.8306 0.0046 0.2688 1.4790
Logit CV1 t(11) 0.8739 0.3112 2.8079 0.0170 0.1889 1.5589
Logit CV3 0.8739 0.3905 2.2380 0.0469 0.0144 1.7333
Logit CV3L 0.8739 0.3875 2.2554 0.0455 0.0211 1.7266
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An Empirical Application

Table 2: Effects of Treatment Using Bootstrap Methods

Method Coef. t-stat. P value Lower Upper

LPM Pairs (stud-boot) 0.1389 2.6791 0.1019 −0.0087 0.3796
LPM Pairs (boot s.e.) 0.1389 2.3108 0.0412 0.0066 0.2711
LPM WCU-C 0.1389 2.6791 0.0332 0.0103 0.2674
LPM WCU-S 0.1389 2.6791 0.0443 0.0034 0.2743
LPM WCR-C 0.1389 2.6791 0.0345 0.0133 0.2617
LPM WCR-S 0.1389 2.6791 0.0404 0.0079 0.2573

Logit WCLU-C (boot s.e.) 0.8739 2.9575 0.0114 0.2235 1.5242
Logit WCLU-S (boot s.e.) 0.8739 2.1602 0.0212 −0.0165 1.7642
Logit WCLR-C 0.8739 2.8079 0.0294
Logit WCLR-S 0.8739 2.8079 0.0346

B = 999,999; Webb (6-point) weights.
LPM results from boottest; Logit results from logitjack.
Some reported t-statistics use bootstrap standard errors, but P values are for

actual ones.
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An Empirical Application

Targeted Monte Carlo Experiments

We don’t know how the disturbances are generated, so I assume they
come from a random-effects model (28) with intra-cluster correlation ρ.

In the experiments, the value of ρ is varied from 0.00 to 0.50 by 0.05. It
matters greatly!

Results for ρ = 0 seem consistent with what we observe.

In fact, the direct estimate of ρ is −0.0042.

Placebo Regressions
The placebo regressor treats the same number of observations in each
of the four treated clusters as in the data, but the identities of the
treated observations are chosen randomly.

The four treated clusters have 78, 104, 68, and 44 observations.

Of these, 33, 38, 38, and 21 are treated.
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An Empirical Application

Figure 2. Monte Carlo rejection frequencies as functions of ρ

0.00 0.10 0.20 0.30 0.40 0.50
0.00

0.05

0.10

0.15

....................................................................................................................................................................................................................................................................................................................................................................................................................................................

Rej. Freq.

ρ

......................................................................
................................................................

..................................................................
...............................................................

.............................................
.................................................

.................................................
.............................................

...........................................
...................................................

...................................................
.......................................

........................................
......................................

.....................................
................................................

............................................
HC1 + t(616)



CV1 + t(11)

................................................................................................
CVBH

3 + t(BH)

t(11)

................................................................................................


..................
..................

..................
..................................................

James G. MacKinnon When Can We Trust Cluster-Robust Inference? Canadian Stata Conference, Oct. 3, 2025 45 / 52



An Empirical Application

Table 3: P Values and Rejection Frequencies

Method P value M.C. (ρ = 0) M.C. (ρ = 0.25) Placebo Reg.

HC1 + t(616) 0.0395 0.0500 0.0754 0.0528
CV1 + t(11) 0.0214 0.1206 0.1012 0.1866
CV3 + t(11) 0.0546 0.0437 0.0243 0.0933
CVBH

3 + t(BH) 0.0504 0.0469 0.0266 0.0457
WCU-S 0.0443 0.0567 0.0509 0.0773
WCR-S 0.0404 0.0627 0.0517 0.0613
Pairs Cluster 0.1019 0.0241 0.0158 0.0245

Logit (default) 0.0318 0.0507 0.0769 0.0465
Logit CV1 t(11) 0.0170 0.0853 0.0745 0.1492
Logit CV3L t(11) 0.0455 0.0421 0.0252 0.0895
Logit WCLR-S 0.0346 0.0610 0.0538 0.0558

Rejection frequencies are based on 100,000 replications.
Actual bootstrap tests use B = 999,999; simulations use B = 999.
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Summary

Summary

Unless G is large and the clusters are well balanced, default
cluster-robust standard errors (CV1) can be much too small.
For treatment models, small values of G1 or G − G1 are red flags.
Luckily, there are several alternatives, including:

CV3 standard errors by summclust or vce(jackknife,mse);
Hansen’s modified CV3 standard errors and critical values
computed by jregress;
Wild cluster bootstrap P values and confidence intervals, especially
WCR-S and WCU-S variants, computed by boottest.

Partial leverages matter even more than cluster sizes. Use
summclust to compute summary statistics, including G∗.
For logit models, logitjack provides CV3L and WCL bootstraps.
Targeted Monte Carlo experiments and placebo regressions can
tell us which P values or confidence intervals to believe.
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