# Causal Mediation Analysis

Kristin MacDonald

Executive Director, Statistical Services StataCorp LLC

Canadian Stata Conference

### **Outline**

- Introduction
- Overview of mediate
- Traditional mediation
- Causal inference
- Causal mediation analysis
- Examples

#### Causal mediation analysis combines:

Causal inference

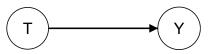
- Causal inference
- Mediation analysis

- Causal inference—What is the effect of a treatment on an outcome?
- Mediation analysis

- Causal inference—What is the effect of a treatment on an outcome?
- Mediation analysis—Can the total effect of a predictor on an outcome be decomposed into a direct effect and an indirect effect through a mediating variable?

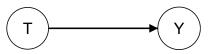
With causal inference, we want to answer questions about causality.

With causal inference, we want to answer questions about causality.



• What is the causal effect of T on Y?

With causal inference, we want to answer questions about causality.

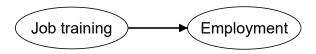


- What is the causal effect of T on Y?
- What is the expected difference in Y if the treatment T is applied versus if the treatment is not applied?

What is the effect of a medication on blood pressure?



What is the effect of a job-training program on probability of employment?

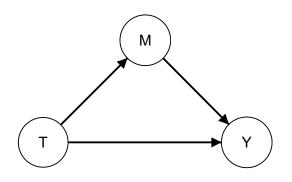


What is the effect of exercise on self-perceived well-being?



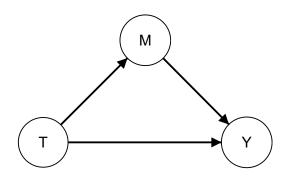
With mediation analysis, we want to better understand the effect.

With mediation analysis, we want to better understand the effect.



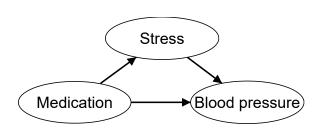
Why does T affect Y?

With mediation analysis, we want to better understand the effect.

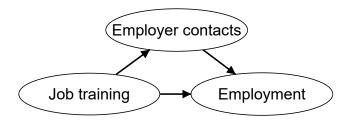


- Why does T affect Y?
- Can effect of **T** on **Y** be explained either completely or partially by a change in the mediator **M**?

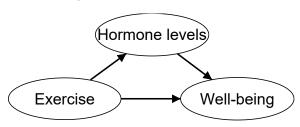
Does the medication result in lower stress levels, which in turn, results in lower blood pressure?



Does the job-training program put participants in contact with potential employers, which in turn, increases the probability of employment?



Does exercise change levels of some hormones, which in turn, change self-perceived well-being?



## Causal mediation analysis

- With causal mediation analysis, we aim to draw causal inferences about the effect of a treatment on an outcome and to understand why the effect arises.
- To understand the why, we decompose the total effect into indirect effects through a mediator and direct effects.

 In Stata, the mediate command is used to perform causal mediation analysis.

 In Stata, the mediate command is used to perform causal mediation analysis.

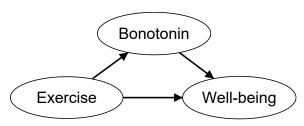
 In Stata, the mediate command is used to perform causal mediation analysis.

- ovar is a continuous, binary, or count outcome of interest.
- mvar is the mediator variable and may be continuous, binary, or count.
- tvar is the treatment variable and may be binary, multivalued, or continuous.

| Mediator Outcome | linear | logit | probit | Poisson | exp. mean |
|------------------|--------|-------|--------|---------|-----------|
| linear           | Х      | Х     | Х      | Х       | Х         |
| logit            |        | Х     | Х      | Х       |           |
| probit           | Х      | Х     | Х      | Х       | Х         |
| Poisson          | Х      | Х     | Х      | Х       | Х         |
| exp. mean        | Х      | Х     | Х      | Х       | Х         |

Note: X indicates a supported model combination

For a simple example using the **mediate** command, we continue with our hypothesis that exercise affects well-being and that this may, at least in part, be because of a change in hormone levels. We will consider a fictional hormone **bonotonin**.



```
. webuse wellbeing
(Fictional well-being data)
```

. list wellbeing bonotonin exercise in 1/5, abbreviate(10)

|    | wellbeing | bonotonin | exercise |
|----|-----------|-----------|----------|
| 1. | 71.73816  | 196.5467  | Control  |
| 2. | 68.66573  | 195.8572  | Exercise |
| 3. | 71.05155  | 228.6035  | Exercise |
| 4. | 69.44469  | 206.6651  | Exercise |
| 5. | 75.62035  | 261.6855  | Exercise |

- Both wellbeing and bonotonin are continuous, so we use the default linear model for the outcome and the mediator.
- **exercise** is a binary treatment variable with 0 representing the control group and 1 representing exercise group.

```
. mediate (wellbeing) (bonotonin) (exercise)
Iteration 0: EE criterion = 5.104e-27
Iteration 1: EE criterion = 2.031e-28
Causal mediation analysis
                                                           Number of obs = 2.000
Outcome model:
                   Linear
Mediator model:
                   Linear
Mediator variable: bonotonin
Treatment type:
                   Binary
                              Robust
   wellbeing
               Coefficient
                            std. err.
                                            7.
                                                 P>|z|
                                                            [95% conf. interval]
NIE
    exercise
  (Exercise
                 9.799821
                             .3943251
   Control)
                                         24.85
                                                 0.000
                                                            9.026958
                                                                        10.57268
NDE
    exercise
  (Exercise
                                                 0.000
   Control)
                 2 891453
                             .2304278
                                         12.55
                                                            2.439823
                                                                        3.343083
TE
    exercise
  (Exercise
                 12.69127
   Control)
                             .4005941
                                         31.68 0.000
                                                           11.90612
                                                                        13.47642
```

Note: Outcome equation includes treatment-mediator interaction.

• We estimate the total effect of exercise on well-being is 12.7, with an indirect effect of 9.8 and a direct effect of 2.9.

 What proportion of the total effect exercise on well-being is mediated through bonotonin levels?

. estat proportion

Proportion mediated Number of obs = 2,000

| wellbeing             | Proportion | Robust<br>std. err. | z     | P> z  | [95% conf. | interval] |
|-----------------------|------------|---------------------|-------|-------|------------|-----------|
| exercise<br>(Exercise |            |                     |       |       |            |           |
| vs<br>Control)        | .77217     | .0172979            | 44.64 | 0.000 | .7382668   | .8060732  |

## Traditional mediation analysis: The formulation

 In traditional mediation analysis, we write models for the outcome and the mediator.

$$Y = \beta_0 + \beta_1 M + \beta_2 T + \epsilon$$
$$M = \alpha_0 + \alpha_1 T + \nu$$

Then we define direct, indirect, and total effects as

$$egin{aligned} extit{Direct} &= eta_2 \ extit{Indirect} &= lpha_1 * eta_1 \ extit{Total} &= eta_2 + lpha_1 * eta_1 \end{aligned}$$

## Traditional mediation analysis: Estimation

- We can fit the linear regression models using regress and then manually compute direct, indirect, and total effects and the corresponding standard errors.
- Alternatively, we can fit models simultaneously using the sem command. Then we can use estat teffects to compute direct, indirect, and total effects and the corresponding standard errors.

. estat teffects

## Notes on traditional mediation analysis

- Traditional mediation analysis began with linear models for both the outcome and the mediator.
- The model for the outcome did not include a mediator by treatment interaction term.
- What can a causal inference approach add?

Common steps in a causal inference approach:

### Common steps in a causal inference approach:

1 Hypothetical modeling. Researchers make assumptions about relationships among variables based on their understanding and expertise. These assumptions may be illustrated by using a causal diagram.

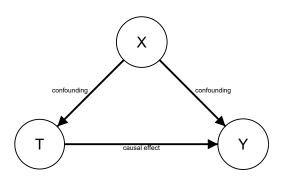
### Common steps in a causal inference approach:

- 1 **Hypothetical modeling.** Researchers make assumptions about relationships among variables based on their understanding and expertise. These assumptions may be illustrated by using a causal diagram.
- 2 Causal effect identification. Based on the assumptions made in the first phase, the researcher tries to determine whether the causal effect can be identified.

### Common steps in a causal inference approach:

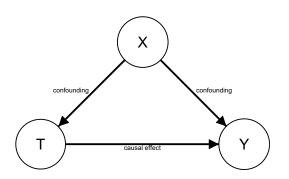
- 1 **Hypothetical modeling.** Researchers make assumptions about relationships among variables based on their understanding and expertise. These assumptions may be illustrated by using a causal diagram.
- 2 Causal effect identification. Based on the assumptions made in the first phase, the researcher tries to determine whether the causal effect can be identified.
- 3 **Parameter estimation.** If the answer to the second phase is positive, the researcher can then to estimate the causal effect.

# Causal diagram



 In this very simple causal diagram, we are interested in estimating the causal effect of treatment T on outcome Y, but we believe that X also affects both T and Y.

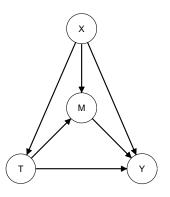
### Causal diagram



- In this very simple causal diagram, we are interested in estimating the causal effect of treatment T on outcome Y, but we believe that X also affects both T and Y.
- X is a counfounder, and we must somehow control for confounding to obtain an unbiased estimate of the causal effect.

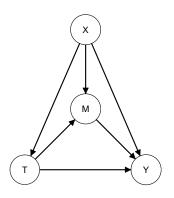
# Causal diagram for mediation analysis

• We now include a mediator in the causal diagram.



## Causal diagram for mediation analysis

We now include a mediator in the causal diagram.



 In this example, X not only confounds the relationship between T and Y but also the relationships between T and M and between M and Y.

 A common causal-inference approach is based on the potential-outcomes framework.

- A common causal-inference approach is based on the potential-outcomes framework.
- For a binary treatment *T*, we can define two potential outcomes.
  - Y(0) is the potential outcome that would have been observed if treatment T = 0 was assigned.
  - Y(1) is the potential outcome that would have been observed if treatment T = 1 was assigned.

- A common causal-inference approach is based on the potential-outcomes framework.
- ullet For a binary treatment T, we can define two potential outcomes.
  - Y(0) is the potential outcome that would have been observed if treatment T = 0 was assigned.
  - Y(1) is the potential outcome that would have been observed if treatment T = 1 was assigned.
- The individual treatment effect is the difference in the two potential outcomes, Y(1) Y(0).

- A common causal-inference approach is based on the potential-outcomes framework.
- ullet For a binary treatment T, we can define two potential outcomes.
  - Y(0) is the potential outcome that would have been observed if treatment T = 0 was assigned.
  - Y(1) is the potential outcome that would have been observed if treatment T = 1 was assigned.
- The individual treatment effect is the difference in the two potential outcomes, Y(1) Y(0).
- The average treatment effect (ATE) is E[Y(1) Y(0)].

### Fundamental problem of causal inference

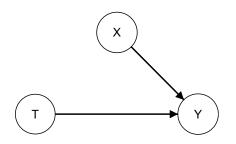
| Subject | T | Y   | Y(1) | Y(0) | Y(1) - Y(0) |
|---------|---|-----|------|------|-------------|
| 1       | 0 | 2.1 | ?    | 2.1  | ?           |
| 2       | 1 | 3.7 | 3.7  | ?    | ?           |
| 3       | 1 | 4.2 | 4.2  | ?    | ?           |
| 4       | 0 | 6.2 | ?    | 6.2  | ?           |
|         |   |     | •••  | •••  |             |

For each individual, we can observe only one of Y(1) or Y(0).

Can we estimate the ATE given that Y(1) - Y(0) is never observed?

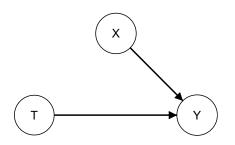
• What if we have a randomized control trial (RCT)?

- What if we have a randomized control trial (RCT)?
- In an RCT, we randomize the treatment; therefore, T is independent of Y(0), Y(1), and X



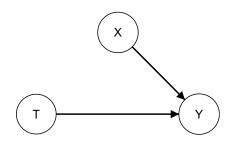
Can we estimate the ATE given that Y(1) - Y(0) is never observed?

- What if we have a randomized control trial (RCT)?
- In an RCT, we randomize the treatment; therefore, T is independent of Y(0), Y(1), and X



• In this case E[Y(0)] = E[Y|T=0] and E[Y(1)] = E[Y|T=1].

- What if we have a randomized control trial (RCT)?
- In an RCT, we randomize the treatment; therefore, T is independent of Y(0), Y(1), and X



- In this case E[Y(0)] = E[Y|T=0] and E[Y(1)] = E[Y|T=1].
- We can estimate the ATE as E[Y|T=1] E[Y|T=0].

Can we estimate the ATE given that Y(1) - Y(0) is never observed?

• What if we have observational data?

- What if we have observational data?
- The treatment T is not independent of Y(0), Y(1), and X

- What if we have observational data?
- The treatment T is not independent of Y(0), Y(1), and X
- To identify the ATE, we need to make some assumptions.

- What if we have observational data?
- The treatment T is not independent of Y(0), Y(1), and X
- To identify the ATE, we need to make some assumptions.
  - Unconfoundedness or conditional independence. If we condition on confounders X, the treatment assignment is as good as random.

- What if we have observational data?
- The treatment T is not independent of Y(0), Y(1), and X
- To identify the ATE, we need to make some assumptions.
  - ▶ Unconfoundedness or conditional independence. If we condition on confounders *X*, the treatment assignment is as good as random.
  - Stable unit treatment value assumption (SUTVA). The treatment of each individual is unrelated to the outcome of the treatment of all the other individuals in the population.

- What if we have observational data?
- The treatment T is not independent of Y(0), Y(1), and X
- To identify the ATE, we need to make some assumptions.
  - ▶ Unconfoundedness or conditional independence. If we condition on confounders *X*, the treatment assignment is as good as random.
  - Stable unit treatment value assumption (SUTVA). The treatment of each individual is unrelated to the outcome of the treatment of all the other individuals in the population.
  - Overlap. Each individual has a positive probability of receiving each treatment level.

- What if we have observational data?
- The treatment T is not independent of Y(0), Y(1), and X
- To identify the ATE, we need to make some assumptions.
  - ▶ Unconfoundedness or conditional independence. If we condition on confounders *X*, the treatment assignment is as good as random.
  - Stable unit treatment value assumption (SUTVA). The treatment of each individual is unrelated to the outcome of the treatment of all the other individuals in the population.
  - Overlap. Each individual has a positive probability of receiving each treatment level.
- Now, the causal effect is identified:

$$E[Y(1)] - E[Y(0)] = E_X[E[Y|T=1,X] - E[Y|T=0,X]]$$

Can we estimate the ATE given that Y(1) - Y(0) is never observed?

- What if we have observational data?
- The treatment T is not independent of Y(0), Y(1), and X
- To identify the ATE, we need to make some assumptions.
  - ▶ Unconfoundedness or conditional independence. If we condition on confounders *X*, the treatment assignment is as good as random.
  - Stable unit treatment value assumption (SUTVA). The treatment of each individual is unrelated to the outcome of the treatment of all the other individuals in the population.
  - Overlap. Each individual has a positive probability of receiving each treatment level.
- Now, the causal effect is identified:

$$E[Y(1)] - E[Y(0)] = E_X[E[Y|T=1,X] - E[Y|T=0,X]]$$

We can use commands such as teffects to estimate the ATE.

### Estimating the causal effect

```
. teffects ra (wellbeing age) (exercise)
Iteration 0: EE criterion = 1.261e-27
Iteration 1: EE criterion = 1.707e-29
Treatment-effects estimation
                                             Number of obs
                                                                    2,000
Estimator : regression adjustment
Outcome model : linear
Treatment model: none
                           Robust.
  wellbeing
             Coefficient
                         std. err.
                                                      [95% conf. interval]
                                    Z
                                             P>|z|
ATE
   exercise
  (Exercise
        VS
  Control)
                12.76801 .3961873
                                     32.23
                                             0.000
                                                       11.9915
                                                                  13.54452
POmean
   exercise
   Cont.rol
                57.06904
                          .2738341
                                    208.41 0.000
                                                      56.53234
                                                                  57.60575
```

# Mediation analysis via potential outcomes

### Mediation analysis via potential outcomes

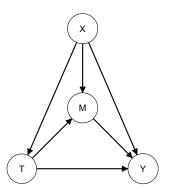
 We can extend the potential-outcomes framework to mediation analysis.

### Mediation analysis via potential outcomes

- We can extend the potential-outcomes framework to mediation analysis.
- We can define a total average treatment effect as well as direct and indirect effects in terms of potential outcomes.

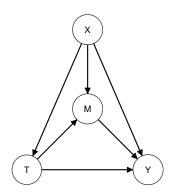
## Mediation analysis: Causal inference workflow

A causal diagram



### Mediation analysis: Causal inference workflow

A causal diagram



 As before, we will make assumptions that allow us to get unbiased estimates of the causal effects, even in the presence of confounders.

 We now have potential outcomes for the the mediator M and for the outcome Y.

- We now have potential outcomes for the the mediator M and for the outcome Y.
- For the mediator, we have
  - ▶ M(0) is the potential outcome of the mediator that would have been observed if treatment T = 0 was assigned.
  - ▶ M(1) is the potential outcome of the mediator that would have been observed if treatment T = 1 was assigned.

• Formally, let t be the treatment level with respect to the outcome, and let t' be the treatment level with respect to the mediator, the potential outcomes become Y[t, M(t')].

- Formally, let t be the treatment level with respect to the outcome, and let t' be the treatment level with respect to the mediator, the potential outcomes become Y[t, M(t')].
- This leads to four types of potential outcomes:

- Formally, let t be the treatment level with respect to the outcome, and let t' be the treatment level with respect to the mediator, the potential outcomes become Y[t, M(t')].
- This leads to four types of potential outcomes:
  - ▶ Y[0, M(0)] is the potential outcome that would be observed if treatment T = 0 was assigned.

- Formally, let t be the treatment level with respect to the outcome, and let t' be the treatment level with respect to the mediator, the potential outcomes become Y[t, M(t')].
- This leads to four types of potential outcomes:
  - Y[0, M(0)] is the potential outcome that would be observed if treatment T = 0 was assigned.
  - ▶ Y[1, M(1)] is the potential outcome that would be observed if treatment T = 1 was assigned.

- Formally, let t be the treatment level with respect to the outcome, and let t' be the treatment level with respect to the mediator, the potential outcomes become Y[t, M(t')].
- This leads to four types of potential outcomes:
  - Y[0, M(0)] is the potential outcome that would be observed if treatment T = 0 was assigned.
  - Y[1, M(1)] is the potential outcome that would be observed if treatment T = 1 was assigned.
  - ▶ Y[1, M(0)] is the potential outcome that would be observed if treatment T = 1 was assigned, but the mediator is held at its value that would be observed if if T = 0 was assigned.

#### Potential outcomes

- Formally, let t be the treatment level with respect to the outcome, and let t' be the treatment level with respect to the mediator, the potential outcomes become Y[t, M(t')].
- This leads to four types of potential outcomes:
  - ▶ Y[0, M(0)] is the potential outcome that would be observed if treatment T = 0 was assigned.
  - Y[1, M(1)] is the potential outcome that would be observed if treatment T = 1 was assigned.
  - ▶ Y[1, M(0)] is the potential outcome that would be observed if treatment T = 1 was assigned, but the mediator is held at its value that would be observed if if T = 0 was assigned.
  - ▶ Y[0, M(1)] is the potential outcome that would be observed if treatment T = 0 was assigned, but the mediator is held at its value that would be observed if if T = 1 was assigned.

#### Potential outcomes

```
. mediate (wellbeing) (bonotonin) (exercise), pomeans
```

Iteration 0: EE criterion = 5.104e-27
Iteration 1: EE criterion = 2.023e-28

Causal mediation analysis

Number of obs = 2,000

Outcome model: Linear
Mediator model: Linear
Mediator variable: bonotonin
Treatment type: Binary

| wellbeing | Coefficient | Robust<br>std. err. | Z      | P> z  | [95% conf. | interval] |
|-----------|-------------|---------------------|--------|-------|------------|-----------|
| POmeans   |             |                     |        |       |            |           |
| YOMO      | 57.11317    | .2753201            | 207.44 | 0.000 | 56.57355   | 57.65278  |
| Y1M0      | 60.00462    | .3157888            | 190.02 | 0.000 | 59.38569   | 60.62356  |
| Y0M1      | 66.68199    | .3258477            | 204.64 | 0.000 | 66.04334   | 67.32064  |
| Y1M1      | 69.80444    | .2898927            | 240.79 | 0.000 | 69.23626   | 70.37262  |

Note: Outcome equation includes treatment-mediator interaction.

 Average direct, indirect, and total treatment effects are contrasts between potential-outcome means.

- Average direct, indirect, and total treatment effects are contrasts between potential-outcome means.
- The total effect is:

$$\tau \equiv E[Y(1)] - E[Y(0)] = E[Y(1, M(1))] - E[Y(0, M(0))]$$

- Average direct, indirect, and total treatment effects are contrasts between potential-outcome means.
- The total effect is:

$$\tau \equiv E[Y(1)] - E[Y(0)] = E[Y(1, M(1))] - E[Y(0, M(0))]$$

 The effect of the treatment on the outcome through the mediator is the indirect effect:

$$\delta(t) \equiv E[Y(t, M(1))] - E[Y(t, M(0))], \quad t \in \{0, 1\}$$

- Average direct, indirect, and total treatment effects are contrasts between potential-outcome means.
- The total effect is:

$$\tau \equiv E[Y(1)] - E[Y(0)] = E[Y(1, M(1))] - E[Y(0, M(0))]$$

 The effect of the treatment on the outcome through the mediator is the indirect effect:

$$\delta(t) \equiv E[Y(t, M(1))] - E[Y(t, M(0))], \quad t \in \{0, 1\}$$

• The direct effect of the treatment is:

$$\zeta(t) \equiv E[Y(1, M(t))] - E[Y(0, M(t))], \quad t \in \{0, 1\}$$

- Average direct, indirect, and total treatment effects are contrasts between potential-outcome means.
- The total effect is:

$$\tau \equiv E[Y(1)] - E[Y(0)] = E[Y(1, M(1))] - E[Y(0, M(0))]$$

 The effect of the treatment on the outcome through the mediator is the indirect effect:

$$\delta(t) \equiv E[Y(t, M(1))] - E[Y(t, M(0))], \quad t \in \{0, 1\}$$

• The direct effect of the treatment is:

$$\zeta(t) \equiv E[Y(1, M(t))] - E[Y(0, M(t))], \quad t \in \{0, 1\}$$

• Notice that the total effect is the sum of direct and indirect effects

$$\tau = \delta(\mathbf{0}) + \zeta(\mathbf{1})$$

$$\tau = \delta(1) + \zeta(0)$$

#### **Estimands**

• Denoting E[Y(t, M(t'))] as  $Y_{tM_{t'}}$ , we define the following treatment effects of interest

| (Total) natural indirect effect (NIE)         | $Y_{1M_1} - Y_{1M_0}$ |
|-----------------------------------------------|-----------------------|
| (Pure) natural direct effect (NDE)            | $Y_{1M_0} - Y_{0M_0}$ |
| (Pure) natural indirect effect ( <b>PNIE)</b> | $Y_{0M_1} - Y_{0M_0}$ |
| (Total) natural direct effect (TNDE)          | $Y_{1M_1} - Y_{0M_1}$ |
| Total effect ( <b>TE)</b>                     | $Y_{1M_1} - Y_{0M_0}$ |

# Decomposition 1

. mediate (wellbeing) (bonotonin) (exercise)

Iteration 0: EE criterion = 5.104e-27
Iteration 1: EE criterion = 2.031e-28

Causal mediation analysis

Number of obs = 2,000

Outcome model: Linear
Mediator model: Linear
Mediator variable: bonotonin
Treatment type: Binary

| wellbeing       | Coefficient | Robust<br>std. err. | Z     | P> z  | [95% conf. | interval] |
|-----------------|-------------|---------------------|-------|-------|------------|-----------|
| NIE             |             |                     |       |       |            |           |
| exercise        |             |                     |       |       |            |           |
| (Exercise<br>vs |             |                     |       |       |            |           |
| Control)        | 9.799821    | .3943251            | 24.85 | 0.000 | 9.026958   | 10.57268  |
| NDE             |             |                     |       |       |            |           |
| exercise        |             |                     |       |       |            |           |
| (Exercise       |             |                     |       |       |            |           |
| VS              |             |                     |       |       |            |           |
| Control)        | 2.891453    | .2304278            | 12.55 | 0.000 | 2.439823   | 3.343083  |
| TE              |             |                     |       |       |            |           |
| exercise        |             |                     |       |       |            |           |
| (Exercise       |             |                     |       |       |            |           |
| VS              |             |                     |       |       |            |           |
| Control)        | 12.69127    | .4005941            | 31.68 | 0.000 | 11.90612   | 13.47642  |

#### **Decomposition 2**

. mediate (wellbeing) (bonotonin) (exercise), pnie tnde te

Iteration 0: EE criterion = 5.104e-27
Iteration 1: EE criterion = 3.672e-28

Causal mediation analysis Number of obs = 2,000

Outcome model: Linear
Mediator model: Linear
Mediator variable: bonotonin
Treatment type: Binary

| wellbeing                           | Coefficient | Robust<br>std. err. | Z     | P> z  | [95% conf. | interval] |
|-------------------------------------|-------------|---------------------|-------|-------|------------|-----------|
| PNIE exercise (Exercise vs Control) | 9.568827    | .3884522            | 24.63 | 0.000 | 8.807475   | 10.33018  |
| TNDE exercise (Exercise vs Control) | 3.122447    | .2418591            | 12.91 | 0.000 | 2.648412   | 3.596482  |
| TE exercise (Exercise vs Control)   | 12.69127    | .4005941            | 31.68 | 0.000 | 11.90612   | 13.47642  |

Which decomposition do we want?

Which decomposition do we want?

Nguyen, Schmid, and Stuart (2021) give suggestions for three scenarios:

1 Want know whether there is a mediation effect? Use NIE and NDE.

Which decomposition do we want?

Nguyen, Schmid, and Stuart (2021) give suggestions for three scenarios:

1 Want know whether there is a mediation effect? Use NIE and NDE.

We are assuming there is some direct effect and we want to know whether any mediating effect also exists.

Which decomposition do we want?

- 1 Want know whether there is a mediation effect? Use NIE and NDE.
  - We are assuming there is some direct effect and we want to know whether any mediating effect also exists.
- 2 Want to know whether any direct effect exists in addition to a mediation effect? Use PNIE and TNDE.

Which decomposition do we want?

- 1 Want know whether there is a mediation effect? Use NIE and NDE.
  - We are assuming there is some direct effect and we want to know whether any mediating effect also exists.
- Want to know whether any direct effect exists in addition to a mediation effect? Use PNIE and TNDE.
  - We are assuming that some mediating effect exists and want to know whether there is an affect through any other mechanisms.

Which decomposition do we want?

- 1 Want know whether there is a mediation effect? Use NIE and NDE.
  - We are assuming there is some direct effect and we want to know whether any mediating effect also exists.
- Want to know whether any direct effect exists in addition to a mediation effect? Use PNIE and TNDE.
  - We are assuming that some mediating effect exists and want to know whether there is an affect through any other mechanisms.
- 3 Have no prior assumption about whether direct or indirect effects exist? Use both decompositions.

Which decomposition do we want?

- 1 Want know whether there is a mediation effect? Use NIE and NDE.
  - We are assuming there is some direct effect and we want to know whether any mediating effect also exists.
- Want to know whether any direct effect exists in addition to a mediation effect? Use PNIE and TNDE.
  - We are assuming that some mediating effect exists and want to know whether there is an affect through any other mechanisms.
- 3 Have no prior assumption about whether direct or indirect effects exist? Use both decompositions.
  - We describe try to learn all we can from all decompositions.

#### Behind the scenes

- mediate estimates all effects parameters, auxiliary parameters, and their variance—covariance matrix via generalized method of moments.
- We can specify aequations option to see estimated auxiliary parameters—the parameters estimated for the outcome and treatment models.

#### Auxiliary parameter estimates

. mediate (wellbeing) (bonotonin) (exercise), aequations

Iteration 0: EE criterion = 5.104e-27
Iteration 1: EE criterion = 2.031e-28

Causal mediation analysis Number of obs = 2,000

Outcome model: Linear
Mediator model: Linear
Mediator variable: bonotonin
Treatment type: Binary

| wellbeing                          | Coefficient | Robust<br>std. err. | z     | P> z  | [95% conf. | interval] |
|------------------------------------|-------------|---------------------|-------|-------|------------|-----------|
| NIE<br>exercise<br>(Exercise       |             |                     |       |       |            |           |
| vs<br>Control)                     | 9.799821    | .3943251            | 24.85 | 0.000 | 9.026958   | 10.57268  |
| NDE exercise (Exercise vs Control) | 2.891453    | .2304278            | 12.55 | 0.000 | 2.439823   | 3.343083  |
| TE exercise (Exercise vs Control)  | 12.69127    | .4005941            | 31.68 | 0.000 | 11.90612   | 13.47642  |

## Auxiliary parameter estimates

| wellbeing exercise Exercise          | 2.065871 | .8723559 | 2.37   | 0.018 | .3560846 | 3.775657 |
|--------------------------------------|----------|----------|--------|-------|----------|----------|
| bonotonin                            | .2130222 | .0034547 | 61.66  | 0.000 | .2062512 | .2197932 |
| exercise#<br>c.bonotonin<br>Exercise | .0051424 | .0046954 | 1.10   | 0.273 | 0040604  | .0143452 |
|                                      |          |          |        |       |          |          |
| _cons                                | 22.91374 | .5633648 | 40.67  | 0.000 | 21.80956 | 24.01791 |
| bonotonin<br>exercise                |          |          |        |       |          |          |
| Exercise                             | 44.91939 | 1.641668 | 27.36  | 0.000 | 41.70178 | 48.137   |
| _cons                                | 160.544  | 1.142508 | 140.52 | 0.000 | 158.3047 | 162.7832 |

Note: Outcome equation includes treatment-mediator interaction.

 We defined our effects of interest in terms of potential-outcome means.

- We defined our effects of interest in terms of potential-outcome means.
- We need to consider what causal assumptions are required to identify those effects.

- We defined our effects of interest in terms of potential-outcome means.
- We need to consider what causal assumptions are required to identify those effects.
- The potential-outcome means are the result of an integral of the conditional expectation of the outcome with respect to the conditional distribution of the mediator:

$$f[Y(t, M(t'))|X = x] = \int f[Y|M = m, T = t, X = x] dF[m|T = t', X = x]$$

- We defined our effects of interest in terms of potential-outcome means.
- We need to consider what causal assumptions are required to identify those effects.
- The potential-outcome means are the result of an integral of the conditional expectation of the outcome with respect to the conditional distribution of the mediator:

$$f[Y(t, M(t'))|X = x] = \int f[Y|M = m, T = t, X = x] dF[m|T = t', X = x]$$

This is sometimes referred to as the "mediation formula".

- We defined our effects of interest in terms of potential-outcome means.
- We need to consider what causal assumptions are required to identify those effects.
- The potential-outcome means are the result of an integral of the conditional expectation of the outcome with respect to the conditional distribution of the mediator:

$$f[Y(t, M(t'))|X = x] = \int f[Y|M = m, T = t, X = x] dF[m|T = t', X = x]$$

- This is sometimes referred to as the "mediation formula".
- Notice that this is a nonparametric identification result.

 In addition to assumptions for standard SUTVA and overlap assumptions, we need to make an assumption of sequential ignorability.

- In addition to assumptions for standard SUTVA and overlap assumptions, we need to make an assumption of sequential ignorability.
- Sequential ignorability essentially means

- In addition to assumptions for standard SUTVA and overlap assumptions, we need to make an assumption of sequential ignorability.
- Sequential ignorability essentially means
  - No unobserved confounding in the treatment-outcome relationship.

- In addition to assumptions for standard SUTVA and overlap assumptions, we need to make an assumption of sequential ignorability.
- Sequential ignorability essentially means
  - ▶ No unobserved confounding in the treatment-outcome relationship.
  - No unobserved confounding in the mediator-outcome relationship.

- In addition to assumptions for standard SUTVA and overlap assumptions, we need to make an assumption of sequential ignorability.
- Sequential ignorability essentially means
  - No unobserved confounding in the treatment-outcome relationship.
  - No unobserved confounding in the mediator-outcome relationship.
  - No unmeasured confounding in the treatment-mediator relationship.

- In addition to assumptions for standard SUTVA and overlap assumptions, we need to make an assumption of sequential ignorability.
- Sequential ignorability essentially means
  - No unobserved confounding in the treatment-outcome relationship.
  - No unobserved confounding in the mediator-outcome relationship.
  - No unmeasured confounding in the treatment-mediator relationship.
  - ► There are no (observed) confounders in the mediator-outcome relationship that are caused by the treatment.

- To meet these assumptions, we may need to add covariates to the model for the outcome, the model for the mediator, or both.
- Here, we adjust for age in both models before estimating potential-outcome means and the effects.

### Including covariates

. mediate (wellbeing age) (bonotonin age) (exercise)

Iteration 0: EE criterion = 6.163e-27
Iteration 1: EE criterion = 4.924e-29

Causal mediation analysis Number of obs = 2,000

Outcome model: Linear
Mediator model: Linear
Mediator variable: bonotonin
Treatment type: Binary

| wellbeing | Coefficient | Robust<br>std. err. | Z     | P> z  | [95% conf. | interval] |
|-----------|-------------|---------------------|-------|-------|------------|-----------|
| NIE       |             |                     |       |       |            |           |
| exercise  |             |                     |       |       |            |           |
| (Exercise |             |                     |       |       |            |           |
| VS        | 0 051505    | 2005722             | 25.22 | 0 000 | 0.000015   | 10 61700  |
| Control)  | 9.851525    | .3905/33            | 25.22 | 0.000 | 9.086015   | 10.61703  |
| NDE       |             |                     |       |       |            |           |
| exercise  |             |                     |       |       |            |           |
| (Exercise |             |                     |       |       |            |           |
| Vs        |             |                     |       |       |            |           |
| Control)  | 2.915712    | .2327821            | 12.53 | 0.000 | 2.459468   | 3.371957  |
| TE        |             |                     |       |       |            |           |
| exercise  |             |                     |       |       |            |           |
| (Exercise |             |                     |       |       |            |           |
| vs        |             |                     |       |       |            |           |
| Control)  | 12.76724    | .3964534            | 32.20 | 0.000 | 11.9902    | 13.54427  |

#### Controlled direct effects

 What would be the causal effect if we could set the mediator to a specific value? To explore this, we estimate a controlled direct effect (CDE).

#### Controlled direct effects

- What would be the causal effect if we could set the mediator to a specific value? To explore this, we estimate a controlled direct effect (CDE).
- To estimate CDEs, we use only the results of the outcome equation.

- What would be the causal effect if we could set the mediator to a specific value? To explore this, we estimate a controlled direct effect (CDE).
- To estimate CDEs, we use only the results of the outcome equation.
- For a binary treatment, we now have potential outcomes of the form Y(0|M=m). and Y(1|M=m) where m is the specified value of the mediator.

- What would be the causal effect if we could set the mediator to a specific value? To explore this, we estimate a controlled direct effect (CDE).
- To estimate CDEs, we use only the results of the outcome equation.
- For a binary treatment, we now have potential outcomes of the form Y(0|M=m). and Y(1|M=m) where m is the specified value of the mediator.
- CDE(m) is then the average of the differences between potential outcomes.

- What would be the causal effect if we could set the mediator to a specific value? To explore this, we estimate a controlled direct effect (CDE).
- To estimate CDEs, we use only the results of the outcome equation.
- For a binary treatment, we now have potential outcomes of the form Y(0|M=m). and Y(1|M=m) where m is the specified value of the mediator.
- CDE(m) is then the average of the differences between potential outcomes.
- For binary treatment, CDE(m) is defined as Y(1|M=m) Y(0|M=m).

- What would be the causal effect if we could set the mediator to a specific value? To explore this, we estimate a controlled direct effect (CDE).
- To estimate CDEs, we use only the results of the outcome equation.
- For a binary treatment, we now have potential outcomes of the form Y(0|M=m). and Y(1|M=m) where m is the specified value of the mediator.
- CDE(m) is then the average of the differences between potential outcomes.
- For binary treatment, CDE(m) is defined as Y(1|M=m) Y(0|M=m).
- Perhaps we want to know the effect of exercise on well-being if we had a medication that stabilized bonotonin levels at 200 for everyone in the population.

. estat cde, mvalue(200)

Controlled direct effect
Mediator variable: bonotonin

Number of obs = 2,000

Mediator value = 200

|                                         | CDE      | Delta-method<br>std. err. | Z     | P> z  | [95% conf. | interval] |
|-----------------------------------------|----------|---------------------------|-------|-------|------------|-----------|
| exercise<br>(Exercise<br>vs<br>Control) | 3.121577 | .2315869                  | 13.48 | 0.000 | 2.667675   | 3.575479  |

What if we have a different type of outcome, mediator, or treatment?

 mediate allows a continuous, binary, or count outcome. You can specify a linear, logit, probit, Poisson, or exponential mean model for the outcome.

- mediate allows a continuous, binary, or count outcome. You can specify a linear, logit, probit, Poisson, or exponential mean model for the outcome.
- mediate allows a continuous, binary, or count mediator. You can specify a linear, logit, probit, Poisson, or exponential mean model for the mediator.

- mediate allows a continuous, binary, or count outcome. You can specify a linear, logit, probit, Poisson, or exponential mean model for the outcome.
- mediate allows a continuous, binary, or count mediator. You can specify a linear, logit, probit, Poisson, or exponential mean model for the mediator.
- **mediate** allows a binary, multivalued, a continuous treatment.

- mediate allows a continuous, binary, or count outcome. You can specify a linear, logit, probit, Poisson, or exponential mean model for the outcome.
- mediate allows a continuous, binary, or count mediator. You can specify a linear, logit, probit, Poisson, or exponential mean model for the mediator.
- **mediate** allows a binary, multivalued, a continuous treatment.

- To demonstrate, we model a binary mediator, bbonotonin, which is an indicator for at least 10% increase in bonotonin over the baseline level.
- We also have a binary outcome, bwellbeing, which is an indicator for at least 10% improvement in well-being over the baseline value.
- We will fit a logit model for both the outcome and mediator and estimate the effects of interest using the same definitions based on potential-outcome means.

. mediate (bwellbeing basewell age, logit)
> (bbonotonin basebono age, logit)
> (exercise), nointeraction

Iteration 0: EE criterion = 4.840e-18
Iteration 1: EE criterion = 1.836e-33

Causal mediation analysis

Outcome model: Logit
Mediator model: Logit
Mediator variable: bbonotonin
Treatment type: Binary

| bwellbeing                         | Coefficient | Robust<br>std. err. | z     | P> z  | [95% conf. | interval] |
|------------------------------------|-------------|---------------------|-------|-------|------------|-----------|
| NIE exercise (Exercise vs Control) | 1110896     | .0142334            | 7 80  | 0.000 | .0831926   | .1389866  |
|                                    | .1110030    | .0142554            | 7.00  |       | .0031920   | .1303000  |
| NDE<br>exercise<br>(Exercise<br>vs |             |                     |       |       |            |           |
| Control)                           | .146092     | .0189224            | 7.72  | 0.000 | .1090047   | .1831792  |
| TE exercise (Exercise vs           |             |                     |       |       |            |           |
| Control)                           | .2571816    | .0143876            | 17.88 | 0.000 | .2289824   | .285380   |

Number of obs = 2,000

• With a binary outcome, the effects are interpreted on a probability scale or as risk differences.

- With a binary outcome, the effects are interpreted on a probability scale or as risk differences.
- We expect the probability of better well-being to be 0.26 higher if everyone in the population exercises than if no one exercises. Of that, the probability of better well-being is 0.11 higher because of an increase in bonotonin levels which and 0.15 higher because of other factors.

- With a binary outcome, the effects are interpreted on a probability scale or as risk differences.
- We expect the probability of better well-being to be 0.26 higher if everyone in the population exercises than if no one exercises. Of that, the probability of better well-being is 0.11 higher because of an increase in bonotonin levels which and 0.15 higher because of other factors.
- We can use estat rr to report risk ratios or estat or to report odds ratios.

#### Risk ratios

. estat rr

 $\textbf{estat rr} \text{ requires potential-outcome means; refitting model } \dots$ 

Transformed treatment effects Number of obs = 2,000

| bwellbeing                         | Risk ratio | Robust<br>std. err. | z     | P> z  | [95% conf. | interval] |
|------------------------------------|------------|---------------------|-------|-------|------------|-----------|
| NIE exercise (Exercise vs          |            |                     |       |       |            |           |
| Control)                           | 1.245647   | .0392724            | 6.97  | 0.000 | 1.171004   | 1.325047  |
| NDE exercise (Exercise vs Control) | 1.477205   | .0708189            | 8.14  | 0.000 | 1.344724   | 1.622738  |
| TE exercise (Exercise vs Control)  | 1.840076   | .0706258            | 15.89 | 0.000 | 1.70673    | 1.983839  |

#### Odds ratios

. estat or

 $\textbf{estat or} \text{ requires potential-outcome means; refitting model } \dots$ 

Transformed treatment effects Number of obs = 2,000

| bwellbeing                         | Odds ratio | Robust<br>std. err. | z     | P> z  | [95% conf. | interval] |
|------------------------------------|------------|---------------------|-------|-------|------------|-----------|
| NIE<br>exercise<br>(Exercise<br>vs |            |                     |       |       |            |           |
| Control)                           | 1.562536   | .0898293            | 7.76  | 0.000 | 1.396031   | 1.748901  |
| NDE exercise (Exercise vs Control) | 1.871182   | .1490494            | 7.87  | 0.000 | 1.600713   | 2.187352  |
| TE exercise (Exercise vs Control)  | 2.92379    | .1841129            | 17.04 | 0.000 | 2.584315   | 3.307858  |

#### Continuous treatment

- **mediate** supports binary, multivalued, and continuous treatments.
- When the treatment is continuous, we need to include the continuous() option in the treatment specification and define the values at which we want the potential-outcome means to be evaluated. The first value will be considered the control.

#### Continuous treatment

. mediate (wellbeing) (bonotonin) (cexercise, continuous (30 60 90))

Iteration 0: EE criterion = 8.416e-28

Iteration 1: EE criterion = 8.416e-28 (backed up)

Causal mediation analysis Number of obs = 2,000

Outcome model: Linear
Mediator model: Linear
Mediator variable: bonotonin
Treatment type: Continuous

Continuous treatment levels:

0: cexercise = 30 (control)

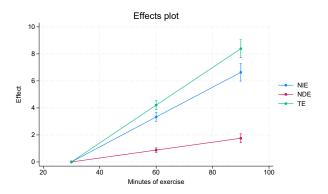
1: cexercise = 60 2: cexercise = 90

|           |             | Robust    |       |        |            |           |
|-----------|-------------|-----------|-------|--------|------------|-----------|
| wellbeing | Coefficient | std. err. | Z     | P>   z | [95% conf. | interval] |
| NIE       |             |           |       |        |            |           |
| cexercise |             |           |       |        |            |           |
| (1 vs 0)  | 3.329037    | .1613581  | 20.63 | 0.000  | 3.012781   | 3.645293  |
| (2 vs 0)  | 6.630837    | .3292353  | 20.14 | 0.000  | 5.985548   | 7.276127  |
| NDE       |             |           |       |        |            |           |
| cexercise |             |           |       |        |            |           |
| (1 vs 0)  | .8769353    | .0841601  | 10.42 | 0.000  | .7119845   | 1.041886  |
| (2 vs 0)  | 1.753871    | .1683203  | 10.42 | 0.000  | 1.423969   | 2.083772  |
| TE        |             |           |       |        |            |           |
| cexercise |             |           |       |        |            |           |
| (1 vs 0)  | 4.205972    | .1679266  | 25.05 | 0.000  | 3.876842   | 4.535103  |
| (2 vs 0)  | 8.384708    | .3394717  | 24.70 | 0.000  | 7.719356   | 9.05006   |

Note: Outcome equation includes treatment-mediator interaction.

## **Graphing effects**

 When we evaluate effects at multiple points, we can use estat effectsplot to easily compare the effects visually.



#### Final remarks

Learn more:

https://www.stata.com/manuals/causalmediate.pdf

# Thank you!

#### References

Nguyen, T. Q., I. Schmid, and E. A. Stuart. 2021. Clarifying causal mediation analysis for the applied researcher: Defining effects based on what we want to learn. Psychological Methods 26: 255-271.