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TL;DR — What This Does

Problem. Large Stata Monte Carlo runs crash or crawl as memory
accumulates across replications.

Single core (or n-core) license for Stata, throttles CPU usage.

Idea. Partition total replications R into B batches of r each
(R = B × r). Launch each batch in a fresh Stata session via a shell
script; run sequentially or concurrently.

Why it works. Fresh process ⇒ clean heap and no RAM
accumulation; multiple processes ⇒ OS-level parallelism (even with
Stata/SE).

Bonus. Crash-resume: re-run the launcher; only unfinished batches
execute.
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Motivation — Real Case

For simulations in MacKinnon et al. [2025], to test Liu [2025] we
needed ≈11 parameter settings × ≈2,000 reps ⇒ ≈22,000 trials.

Each replication took up to 30 minutes.
The simulations involved a brute force jackknife of Callaway and
Sant’Anna [2021], unlike the fast jackknife in MacKinnon et al. [2023].
Each DGP could take up to 2 months of CPU time on a single core for
only 2500 replications.

Manual multi-core attempts: later batches slowed; some machines
failed.

Need: memory-safe, parallel, and resume-friendly workflow that runs
on modest hardware.
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What People Try (and Why It Fails)

Manual batching across do-files: hand edits, seed/file-name typos,
painful restarts.

“Intermediate” approach: loop over batches inside one Stata
session; Stata never exits between batches ⇒ memory creeps.

Proposed: close Stata after each batch; next batch opens in a new
Stata instance.
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Workflow Overview (Simple Division of R)

1 Template do-file (author once): mark fields varying by batch (IDs,
rep range, parameters).

2 Python generator (edit minimally): reads the template; emits B
batch do-files with correct indices/paths and deterministic seeds.

3 Shell launcher (no edits): determines number of cores available and
chips away at the uncompleted set of batch do-files.

4 Declare SE or MP: pass one flag; multiple SE processes can still
saturate multiple cores.

5 Run & watch: each batch in a fresh process; memory resets
automatically.

6 Append/Merge: per-batch .DTAs → one results file.
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Figure: Workflow Diagram
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Crash–Resume (Key Benefit)

If power fails or a run is interrupted, simply re-run the launcher.

Completed batch do-files are automatically moved to done dofiles.

Files remaining in generated dofiles/ are the only ones executed.

No manual bookkeeping, or tedious forvalues updates.
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For Stata/SE Users — Why This Still Parallels

Stata/SE is single-core per process. We launch multiple processes
concurrently using stata’s batch mode; the OS schedules them on
different cores.

Net effect: near-linear speedup up to core count (I/O permitting).

Works via Git Bash/WSL/PowerShell.

Increase CPU utilization from 8.5% to over 90%
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Seed Discipline (Reproducibility)

Can specify unique seeds for all batch files in advance to ensure
reproducibility.

Requires storing seeds in a separate file before hand

This can be simplified using Stata’s set rngstream command
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Memory Reset (Mechanism)

Fresh process = fresh heap; no cumulative objects across batches.

Eliminates “last batch is slowest” pathology in long single sessions.

Robust to occasional leaks in user code, because each batch starts
clean.
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Tuning Knobs (Pick B , r Quickly)

Batch size r : choose so peak RAM < 50–60% of available memory.

Number of batches B: for a given number of reps, more batches
allows for frequent output.

Cores vs threads: Further experimentation is needed

Concurrency cap: set a number of cores free so the machine remains
usable.

Prefer local SSD for logs/CSVs; avoid network drive contention.
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Limitations / Trade-offs

Requires Python (batch generator).

Requires a shell (Bash).

Multi-file touchpoints: edit template.do, generator config, and
append/merge script.

System saturation risk: too many concurrent batches can make the
computer feel unusable.

Mitigations: prebuilt generators; fixed, no-edit launcher; concurrency cap;
compact per-rep output.
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Quick Simulation Results

Setup To illustrate the problem, we ran 100 replications of a modern
difference-in-difference estimator

Parallel Setup: Used a Machine with 16 cores, 24 logical process
(requested 22 of them).

Serial: 100 reps took 458 minutes in total, or 4.63 minutes on
average

Parallel: 100 reps took 52.5 minutes in total, or 0.53 minutes on
average
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Timing Comparison
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Practical Checklist

Set R,B, r ,S0 and output folder.

Write one template.do with clear placeholders.

Run generator → create batch DO files.

Launch with SE/MP flag and concurrency cap.

Append CSVs/DTAs → analyze results.

15 / 21



FAQ

Do I need Stata-MP? No—SE works; parallelism is via multiple
processes.

Different OS support? Yes — through Git Bash.

Huge logs? One log per batch; rotate/compress if needed.

Partial reruns? Yes—only unfinished batches execute on relaunch.
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Takeaways

Memory-safe: fresh Stata per batch prevents RAM accumulation.

Resume-friendly: crash? Re-launch runs only what’s left.

Portable parallelism: multi-core speedups without add-ons.
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Future Work

Additional massive Monte Carlos for Karim et al. [2025] which uses
the estimators in Karim et al. [2024] and Karim and Webb [2024]

Generalizing code for easier adoption

Experimenting with optimal number of cores requested
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Example Code

Code for a very simple example is available at
https://github.com/liu-yunhan/Batched-Monte-Carlos

Note there are 6 files:

template.do and create replications.py - modify these
1.run do files, MP, and SE - shell scripts, no need to edit
readme

This code just calculates 100 sample means across 100 instances of
Stata
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