Batching Stata Monte Carlos: Memory-Safe,

Resume-Friendly, and Parallel

Yunhan (Max) Liu Matthew D. Webb

Carleton University

2025 Canadian Stata Conference — Poster Presentation

1/21

TL;:DR — What This Does

o Problem. Large Stata Monte Carlo runs crash or crawl as memory
accumulates across replications.

@ Single core (or n-core) license for Stata, throttles CPU usage.

o ldea. Partition total replications R into B batches of r each
(R = B x r). Launch each batch in a fresh Stata session via a shell
script; run sequentially or concurrently.

@ Why it works. Fresh process = clean heap and no RAM
accumulation; multiple processes = OS-level parallelism (even with
Stata/SE).

@ Bonus. Crash-resume: re-run the launcher; only unfinished batches
execute.

2/21

Motivation — Real Case

e For simulations in MacKinnon et al. [2025], to test Liu [2025] we
needed =11 parameter settings x ~2,000 reps = ~22,000 trials.

e Each replication took up to 30 minutes.
e The simulations involved a brute force jackknife of Callaway and
Sant'Anna [2021], unlike the fast jackknife in MacKinnon et al. [2023].
e Each DGP could take up to 2 months of CPU time on a single core for
only 2500 replications.
@ Manual multi-core attempts: later batches slowed; some machines
failed.
@ Need: memory-safe, parallel, and resume-friendly workflow that runs
on modest hardware.

3/21

What People Try (and Why It Fails)

e Manual batching across do-files: hand edits, seed/file-name typos,
painful restarts.

o “Intermediate” approach: loop over batches inside one Stata
session; Stata never exits between batches = memory creeps.

@ Proposed: close Stata after each batch; next batch opens in a new
Stata instance.

4/21

Workflow Overview (Simple Division of R)

O Template do-file (author once): mark fields varying by batch (IDs,
rep range, parameters).

@ Python generator (edit minimally): reads the template; emits B
batch do-files with correct indices/paths and deterministic seeds.

© Shell launcher (no edits): determines number of cores available and
chips away at the uncompleted set of batch do-files.

@ Declare SE or MP: pass one flag; multiple SE processes can still
saturate multiple cores.

© Run & watch: each batch in a fresh process; memory resets
automatically.

@ Append/Merge: per-batch .DTAs — one results file.

5/21

Template Python
do-file generator
Y
batch_001.do batch_002.do batch_003.do e batch_N.do

A\,

Shell launcher
(SE or MP)

Merged
Results

Aggregator

6/21

Crash—Resume (Key Benefit)

If power fails or a run is interrupted, simply re-run the launcher.
Completed batch do-files are automatically moved to done_dofiles.

Files remaining in generated_dofiles/ are the only ones executed.

No manual bookkeeping, or tedious forvalues updates.

7/21

For Stata/SE Users — Why This Still Parallels

e Stata/SE is single-core per process. We launch multiple processes
concurrently using stata’s batch mode; the OS schedules them on
different cores.

o Net effect: near-linear speedup up to core count (I/O permitting).
e Works via Git Bash/WSL /PowerShell.

@ Increase CPU utilization from 8.5% to over 90%

8/21

Seed Discipline (Reproducibility)

@ Can specify unique seeds for all batch files in advance to ensure
reproducibility.

@ Requires storing seeds in a separate file before hand

@ This can be simplified using Stata's set rngstream command

9/21

Memory Reset (Mechanism)

@ Fresh process = fresh heap; no cumulative objects across batches.
@ Eliminates “last batch is slowest” pathology in long single sessions.

@ Robust to occasional leaks in user code, because each batch starts
clean.

10/21

Tuning Knobs (Pick B, r Quickly)

e Batch size r: choose so peak RAM < 50-60% of available memory.

@ Number of batches B: for a given number of reps, more batches
allows for frequent output.

@ Cores vs threads: Further experimentation is needed

@ Concurrency cap: set a number of cores free so the machine remains
usable.

o Prefer local SSD for logs/CSVs; avoid network drive contention.

11/21

Limitations / Trade-offs

Requires Python (batch generator).

Requires a shell (Bash).

Multi-file touchpoints: edit template.do, generator config, and
append/merge script.

e System saturation risk: too many concurrent batches can make the
computer feel unusable.

Mitigations: prebuilt generators; fixed, no-edit launcher; concurrency cap;
compact per-rep output.

12/21

Quick Simulation Results

@ Setup To illustrate the problem, we ran 100 replications of a modern
difference-in-difference estimator

o Parallel Setup: Used a Machine with 16 cores, 24 logical process
(requested 22 of them).

@ Serial: 100 reps took 458 minutes in total, or 4.63 minutes on
average

o Parallel: 100 reps took 52.5 minutes in total, or 0.53 minutes on
average

13/21

Timing Comparison

Cumulative Time (in minutes)

500

400

300

200

100

Cumulative Time by Replication

—— Serial
——— Parallel

Replication Number

14/21

Practical Checklist

Set R, B, r,Sp and output folder.

Write one template.do with clear placeholders.
Run generator — create batch DO files.

Launch with SE/MP flag and concurrency cap.
Append CSVs/DTAs — analyze results.

15/21

Do | need Stata-MP? No—SE works; parallelism is via multiple
processes.

Different OS support? Yes — through Git Bash.

Huge logs? One log per batch; rotate/compress if needed.

Partial reruns? Yes—only unfinished batches execute on relaunch.

16/21

o Memory-safe: fresh Stata per batch prevents RAM accumulation.
@ Resume-friendly: crash? Re-launch runs only what’s left.

o Portable parallelism: multi-core speedups without add-ons.

17/21

e Additional massive Monte Carlos for Karim et al. [2025] which uses
the estimators in Karim et al. [2024] and Karim and Webb [2024]

@ Generalizing code for easier adoption

@ Experimenting with optimal number of cores requested

18/21

Example Code

@ Code for a very simple example is available at
https://github.com/liu-yunhan/Batched-Monte-Carlos
@ Note there are 6 files:
e template.do and create_replications.py - modify these
o l.run_do_files, MP, and SE - shell scripts, no need to edit
o readme
@ This code just calculates 100 sample means across 100 instances of
Stata

19/21

https://github.com/liu-yunhan/Batched-Monte-Carlos

References |

Brantly Callaway and Pedro HC Sant’Anna. Difference-in-differences with
multiple time periods. Journal of Econometrics, 225(2):200-230, 2021.

Sunny Karim and Matthew D Webb. Good controls gone bad:
Difference-in-differences with covariates. arXiv preprint arXiv:2412.14447,
2024.

Sunny Karim, Matthew D Webb, Nichole Austin, and Erin Strumpf.
Difference-in-differences with unpoolable data. arXiv preprint
arXiv:2403.15910, 2024.

Sunny Karim, Matthew D. Webb, Nichole Austin, and Erin Strumpf. Which
policy works and where? estimation and inference of state level treatment
effects using difference-in-differences. Mimeo, 2025.

Yunhan Liu. csdidjack: Cluster jackknife inference for callaway and sant'anna
difference-in-differences (stata package).

https://github.com/liu-yunhan/csdidjack, 2025. GitHub repository;
Stata package.

20/21

https://github.com/liu-yunhan/csdidjack

References Il

James G. MacKinnon, Morten @. Nielsen, and Matthew D. Webb. Fast and
reliable jackknife and bootstrap methods for cluster-robust inference. Journal
of Applied Econometrics, 38:671-694, 2023.

James G. MacKinnon, Morten @rregaard Nielsen, Matthew D. Webb, and Sunny
Karim. Improving inferences for callaway and sant'anna DiD using the cluster
jackknife. Mimeo, 2025.

21/21

	References

