
Ado-file and Mata programming:
Useful skills for many researchers

Christopher F Baum

Boston College

Canadian Stata Conference 2025

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 1 / 149

What level of Stata programming skill makes sense for you?

What level of Stata programming skill makes sense for you?

How advantageous might it be to acquire additional Stata programming skills? First, some
nomenclature related to programming:

You are a Stata programmer if you write do-files: sequences of Stata commands
which you execute with the do command or by double-clicking on the file.
You might also write what Stata formally defines as a program: a set of Stata
commands that includes the program statement. A Stata program, stored in an
ado-file, defines a new Stata command.
You can use Stata’s programming language, Mata, to write routines in that language
that are called by do-files or ado-files.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 2 / 149

What level of Stata programming skill makes sense for you?

Any of these tasks involve Stata programming.

With that set of definitions in mind, we must deal with the why: why should you become a
Stata programmer? After answering that essential question, we take up some of the
aspects of how: how you can become a more efficient user of Stata by making use of
programming techniques, be they simple or complex.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 3 / 149

What level of Stata programming skill makes sense for you?

Using any computer program or language is all about efficiency: not computational
efficiency as much as human efficiency. You want the computer to do the work that can
be routinely automated, allowing you to make more efficient use of your time and reducing
human errors. Computers are excellent at performing repetitive tasks; humans are not.

One of the strongest rationales for learning how to use programming techniques in Stata
is the potential to shift more of the repetitive burden of data management, statistical
analysis and the production of graphics to the computer.

Let’s consider several specific advantages of using Stata programming techniques in the
three contexts enumerated above.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 4 / 149

What level of Stata programming skill makes sense for you? Using do-files

Context 1: do-file programming

Using a do-file to automate a specific data management or statistical task leads to
reproducible research and the ability to document the empirical research process. This
reduces the effort needed to perform a similar task at a later point, or to document the
specific steps you followed for your co-workers.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 5 / 149

What level of Stata programming skill makes sense for you? Using do-files

Ideally, your entire research project should be defined by a set of do-files which execute
every step from input of the raw data to production of the final tables and graphs. As a
do-file can call another do-file (and so on), a hierarchy of do-files can be used to handle a
quite complex project.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 6 / 149

What level of Stata programming skill makes sense for you? Using do-files

The beauty of this approach is flexibility: if you find an error in an earlier stage of the
project, you need only modify the code and rerun that do-file and those following to bring
the project up to date. For instance, an researcher may need to respond to a review of her
paper—submitted months ago to an academic journal—by revising the specification of
variables in a set of estimated models and estimating new statistical results. If all of the
steps producing the final results are documented by a set of do-files, that task becomes
straightforward.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 7 / 149

What level of Stata programming skill makes sense for you? Using do-files

I argue that all serious users of Stata should gain some facility with do-files and the Stata
commands that support repetitive use of commands. A few hours’ investment should save
days or weeks of time over the course of a sizable research project.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 8 / 149

What level of Stata programming skill makes sense for you? Using do-files

That advice does not imply that Stata’s interactive capabilities should be shunned. Stata
is a powerful and effective tool for exploratory data analysis and ad hoc queries about
your data. But data management tasks and the statistical analyses leading to tabulated
results should not be performed with “point-and-click” tools which leave you without an
audit trail of the steps you have taken.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 9 / 149

What level of Stata programming skill makes sense for you? Using do-files

Responsible research involves reproducibility, and “point-and-click” tools do not promote
reproducibility. For that reason, I counsel researchers to move their data into Stata (from
a spreadsheet environment, for example) as early as possible in the process, and perform
all transformations, data cleaning, etc. with Stata’s do-file language. This can save a great
deal of time when mistakes are detected in the raw data, or when they are revised.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 10 / 149

What level of Stata programming skill makes sense for you? Writing your own ado-files

Context 2: ado-file programming

You may find that despite the breadth of Stata’s official and community-contributed
commands, there are tasks that you must repeatedly perform that involve variations on
the same do-file. You would like Stata to have a command to perform those tasks. At that
point, you should consider Stata’s ado-file programming capabilities.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 11 / 149

What level of Stata programming skill makes sense for you? Writing your own ado-files

Stata has great flexibility: a Stata command need be no more than a few lines of Stata
code, and once defined that command becomes a “first-class citizen." You can easily
write a Stata program, stored in an ado-file, that handles all the features of official Stata
commands such as if exp, in range and command options. You can (and should) write
a help file that documents its operation for your benefit and for those with whom you share
the code.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 12 / 149

What level of Stata programming skill makes sense for you? Writing your own ado-files

Although ado-file programming requires that you learn how to use some additional
commands used in that context, it may help you become more efficient in performing the
data management, statistical or graphical tasks that you face.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 13 / 149

What level of Stata programming skill makes sense for you? Writing your own ado-files

My first response to would-be ado-file programmers: don’t! In many cases, standard Stata
commands will perform the tasks you need. A better understanding of the capabilities of
those commands will often lead to a researcher realizing that a combination of Stata
commands will do the job nicely, without the need for custom programming.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 14 / 149

What level of Stata programming skill makes sense for you? Writing your own ado-files

Those familiar with other statistical packages or computer languages often see the need
to write a program to perform a task that can be handled with some of Stata’s unique
constructs: the local macro and the functions available for handling macros and lists. If
you become familiar with those tools, as well as the full potential of commands such as
merge and frames, you may recognize that your needs can be readily met.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 15 / 149

What level of Stata programming skill makes sense for you? Writing your own ado-files

The second bit of advice along those lines: use Stata’s search command and the Stata
user community (via Statalist) to ensure that the program you envision writing has not
already been written. In many cases an official Stata command will do almost what you
want, and you can modify (and rename) a copy of that command to add the features you
need.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 16 / 149

What level of Stata programming skill makes sense for you? Writing your own ado-files

In other cases, a user-written program from the Stata Journal or the SSC Archive (help
ssc) may be close to what you need. You can either contact its author or modify (and
rename) a copy of that command to meet your needs.

In either case, the bottom line is the same advice:
don’t waste your time reinventing the wheel!

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 17 / 149

What level of Stata programming skill makes sense for you? Writing your own ado-files

If your particular needs are not met by existing Stata commands nor by user-written
software, and they involve a general task, you should consider writing your own ado-file.
In contrast to many statistical programming languages and software environments, Stata
makes it very easy to write new commands which implement all of Stata’s features and
error-checking tools. Some investment in the ado-file language is needed, but a good
understanding of the features of that language—such as the program and syntax
statements—is not hard to develop.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 18 / 149

What level of Stata programming skill makes sense for you? Writing your own ado-files

A huge benefit accrues to the ado-file author: few data management, statistical,
tabulation or graphical tasks are unique. Once you develop an ado-file to perform a
particular task, you will probably run across another task that is quite similar. A clone of
the ado-file, customized for the new task, will often suffice.

In this context, ado-file programming allows you to assemble a workbench of tools where
most of the associated cost is learning how to build the first few tools.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 19 / 149

What level of Stata programming skill makes sense for you? Writing Mata subroutines for do-files and ado-files

Context 3: Mata subroutines for do-files and ado-files

Your do-files or ado-files may perform some complicated tasks which involve many
invocations of the same commands. Stata’s ado-file language is easy to read and write,
but it is interpreted: Stata must evaluate each statement and translate it into machine
code. Stata’s Mata programming language (help mata) creates compiled code which
can run much faster than ado-file code.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 20 / 149

What level of Stata programming skill makes sense for you? Writing Mata subroutines for do-files and ado-files

Your do-file or ado-file can call a Mata routine to carry out a computationally intensive task
and return the results in the form of Stata variables, scalars or matrices. Although you
may think of Mata solely as a “matrix language”, it is actually a general-purpose
programming language, suitable for many non-matrix-oriented tasks such as text
processing and list management.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 21 / 149

What level of Stata programming skill makes sense for you? Writing Mata subroutines for do-files and ado-files

The Mata programming environment is tightly integrated with Stata, allowing interchange
of variables, local and global macros and Stata matrices to and from Mata without the
necessity to make copies of those objects. A Mata program can easily generate an entire
set of new variables (often in one matrix operation), and those variables will be available
to Stata when the Mata routine terminates.

Although I will not discuss it in this talk, this full integration is also available in recent
versions of Stata for the Python language. help python for full details.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 22 / 149

What level of Stata programming skill makes sense for you? Writing Mata subroutines for do-files and ado-files

Mata’s similarity to the C language makes it very easy to use for anyone with prior
knowledge of C. Its handling of matrices is broadly similar to the syntax of other matrix
programming languages such as MATLAB, Ox and GAUSS. Translation of existing code for
those languages or from lower-level languages such as Fortran or C is usually quite
straightforward. Unlike Stata’s C plugins, code in Mata is platform-independent, and
developing code in Mata is easier than in compiled C.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 23 / 149

Extensibility of official Stata

Extensibility of official Stata

An advantage of the command-line driven environment involves extensibility: the
continual expansion of Stata’s capabilities. A command, to Stata, is a verb instructing the
program to perform some action.

Commands can be “built in” commands—those elements so frequently used that they
have been coded into the “Stata kernel.” A relatively small fraction of the total number of
official Stata commands are built in, but they are used very heavily.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 24 / 149

Extensibility of official Stata

The vast majority of Stata commands are written in Stata’s own programming
language–the “ado-file” language. If a command is not built in to the Stata kernel, Stata
searches for it along the adopath. Like the PATH in Unix, Linux or DOS, the adopath
indicates the several directories in which an ado-file might be located. This implies that
the “official” Stata commands are not limited to those coded into the kernel.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 25 / 149

Extensibility of official Stata

The importance of this program design goes far beyond the limits of official Stata. Since
the adopath includes both Stata directories and other directories on your hard disk (or on
a server’s filesystem), you can acquire new Stata commands from a number of web sites.
The Stata Journal (SJ), a quarterly peer-reviewed journal, is the primary method for
distributing user contributions. Between 1991 and 2001, the Stata Technical Bulletin
played this role.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 26 / 149

Extensibility of official Stata

The SJ is a subscription publication (articles more than three years old freely
downloadable), but the ado- and sthlp-files may be freely downloaded from Stata’s web
site. The Stata help command accesses help on all installed commands; the Stata
search command will locate commands that have been documented in the STB and the
SJ, and with one click you may install them in your version of Stata. Help for these
commands will then be available in your own copy.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 27 / 149

Extensibility of official Stata

User extensibility: the SSC archive

But this is only the beginning. Stata users worldwide participate in the Statalist forum,
and when a user has written and documented a new general-purpose command to
extend Stata functionality, they announce it on Statalist, to which you may freely
subscribe: see Stata’s web site.

Since September 1997, all items posted to Statalist (over 3,000) have been placed in
the Boston College Statistical Software Components (SSC) Archive in RePEc (Research
Papers in Economics), available from IDEAS (http://ideas.repec.org) and
EconPapers (http://econpapers.repec.org).

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 28 / 149

Extensibility of official Stata

Any component in the SSC archive can be readily inspected with a web browser, using
IDEAS’ or EconPapers’ search functions, and if desired you may install it with one
command from the archive from within Stata.

For instance, if you know there is a module in the archive named mvsumm, you could use
ssc describe mvsumm to learn more about it, and ssc install mvsumm to install it
if you wish. Anything in the archive can be accessed via Stata’s ssc command: thus ssc
describe mvsumm will locate this module, and make it possible to install it with one click.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 29 / 149

Extensibility of official Stata

The command ssc new lists, in the Stata Viewer, all SSC packages that have been
added or modified in the last month. You may click on their names for full details. The
command ssc hot reports on the most popular packages on the SSC Archive.

The Stata command ado update checks to see whether all packages you have
downloaded and installed from the SSC archive, the Stata Journal, or other
user-maintained net from... sites are up to date.

ado update alone will provide a list of packages that have been updated. You can then
use ado update, update to refresh your copies of those packages, or specify which
packages are to be updated.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 30 / 149

Ado-file programming: structure of an ado-file The program statement

Ado-file programming: structure of an ado-file

A Stata program adds a command to Stata’s language. The name of the program is the
command name, and the program must be stored in a file of that same name with
extension .ado, and placed on the adopath: the list of directories that Stata will search
to locate programs.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 31 / 149

Ado-file programming: structure of an ado-file The program statement

A Stata program begins with the program define progname statement, which usually
includes the option ,rclass, and a version 19 statement. The progname must not be
the same as any Stata command, nor for safety’s sake the same as any accessible
user-written command. If search progname does not turn up anything, you can use
that name.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 32 / 149

Ado-file programming: structure of an ado-file The program statement

Programs (and Stata commands) are generally either r-class or e-class. The latter group
of programs are for estimation; the former do everything else. Most programs you write
are likely to be r-class.

The distinction: r-class programs return results in r(), while e-class programs return
results in e(). They also involve many requirements in order to play the role of an
estimation program and permit post-estimation commands.

Strictly speaking, programs can also be declared s-class, returning results in s(), or not
declared at all, in which case they are n-class. If not declared, programs cannot use
return, ereturn or sreturn.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 33 / 149

Ado-file programming: structure of an ado-file The program statement

A program can receive positional arguments, which define a sequence of local macros
depending on their order:

l . program stcty
1. loc state = "`1´"
2. loc county = "`2´"
3. display _n "`county´ county is located in the state of `state´"
4. end

. sjlog close, replace

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 34 / 149

Ado-file programming: structure of an ado-file The program statement

. stcty Massachusetts Suffolk

Suffolk county is located in the state of Massachusetts

. stcty Michigan Emmet

Emmet county is located in the state of Michigan

. stcty Illinois Cook

Cook county is located in the state of Illinois

. sjlog close, replace

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 35 / 149

The syntax statement

The syntax statement

More commonly, the syntax statement is used to define the command’s format. For
instance, a command that accesses one or more variables in the current data set will
have a syntax varlist statement. With specifiers, you can specify the minimum and
maximum number of variables to be accepted; whether they are numeric or string; and
whether time-series operators or factor variables are allowed. Each variable name in the
varlist must refer to an existing variable.

Alternatively, you could specify a newvarlist, the elements of which must only refer to
new variables.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 36 / 149

Including a subset of observations

Including a subset of observations

One of the most useful features of the syntax statement is that you can specify [if]
and [in] arguments, which allow your command to make use of standard if exp and
in range syntax to limit the observations to be used. Later in the program, you use
marksample touse to create an indicator (dummy) temporary variable identifying those
observations, and an if ‘touse’ qualifier on statements such as generate and
regress.

The syntax statement can also include a using qualifier, allowing your command to
read or write external files, and a specification of command options.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 37 / 149

Using program options

Using program options

Option handling includes the ability to make options optional or required; to specify
options that change a setting (such as regress, noconstant); that must be integer
values; that must be real values; or that must be strings. Options can specify a numlist
(such as a list of lags to be included), a varlist (to implement, for instance, a by(varlist)
option); a namelist (such as the name of a matrix to be created, or the name of a new
variable).

Essentially, any feature that you may find in an official Stata command, you may
implement with the appropriate syntax statement. See [P] syntax for full details and
examples.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 38 / 149

Temporary variables and tempnames

Temporary variables and tempnames

Within your own command, you do not want to reuse the names of existing variables or
matrices. You should use the tempvar and tempname commands to create “safe”
names for variables or matrices, respectively, which you then refer to as local macros.
That is, tempvar eps1 eps2 will create temporary variable names which you could
then use as generate double ‘eps1’ =

These variables and temporary named objects will disappear when your program
terminates (just as any local macros defined within the program will become undefined
upon exit).

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 39 / 149

The return statement

The return statement

So after doing whatever computations or manipulations you need within your program,
how do you return its results? You can include display statements in your program to
print out the results, but like official Stata commands, your program will be most useful if it
also returns those results for further use. Given that your program has been declared
rclass, you use the return statement for that purpose.

You can return scalars, local macros, or matrices:

return scalar teststat = `testval´
return local df = `N´ - `k´
return local depvar "`varname´"
return matrix lambda = `lambda´

These objects may be accessed as r(name) in your do-file: e.g. r(df) will contain the
number of degrees of freedom calculated in your program.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 40 / 149

A sample program

A sample program from help return:

program define mysum, rclass
version 18
syntax varname
return local varname `varlist´
tempvar new
quietly {
count if !mi(`varlist´)
return scalar N = r(N)
gen double `new´ = sum(`varlist´)
return scalar sum = `new´[_N]
return scalar mean = return(sum)/return(N)
}
end

A shortcut for a program allowing only one variable is to specify syntax varname.
Despite that, the local macro returned is still varlist.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 41 / 149

A sample program

This program can be executed as mysum varname. It prints nothing, but places three
scalars and a macro in the return list. The values r(mean), r(sum), r(N), and
r(varname) can now be referred to directly.

With minor modifications, this program can be enhanced to enable the if exp and in
range qualifiers. We add those optional features to the syntax command, use the
marksample command to delineate the wanted observations by touse, and apply if
‘touse’ qualifiers on two computational statements:

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 42 / 149

A sample program

program define mysum2, rclass
version 18
syntax varname(numeric) [if] [in]
return local varname `varlist´
tempvar new
marksample touse
sort `touse´
quietly {
count if !mi(`varlist´) & `touse´
return scalar N = r(N)
gen double `new´ = sum(`varlist´) if `touse´
return scalar sum = `new´[_N]
return scalar mean = return(sum)/return(N)
}
end

Specifying numeric ensures that a numeric variable is provided. The sort command
ensures that the observations selected by if and in qualifiers will appear at the end of
the data in memory.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 43 / 149

A second example of ado-file programming

A second example of ado-file programming

The rolling: prefix (see help rolling) will allow you to save the estimated
coefficients (_b) and standard errors (_se) from a moving-window regression. What if you
want to compute a quantity that depends on the full variance-covariance matrix of the
regression (VCE)? Those quantities cannot be saved by rolling:.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 44 / 149

A second example of ado-file programming

For instance, the regression

. regress y L(1/4).x

estimates the effects of the last four periods’ values of x on y. We might naturally be
interested in the sum of the lag coefficients, as it provides the steady-state effect of x on
y. This computation is readily performed with lincom. If this regression is run over a
moving window, how might we access the information needed to perform this
computation?

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 45 / 149

A second example of ado-file programming

A solution is available in the form of a wrapper program which may then be called by
rolling:. We write our own r-class program, myregress, which returns the quantities
of interest: the estimated sum of lag coefficients and its standard error.

The program takes as arguments the varlist of the regression and two required options:
lagvar(), the name of the distributed lag variable, and nlags(), the highest-order lag
to be included in the lincom. We build up the appropriate expression for the lincom
command and return its results to the calling program.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 46 / 149

A second example of ado-file programming

. type myregress.ado

*! myregress v1.0.0 CFBaum 11aug2008
program myregress, rclass
version 11
syntax varlist(ts) [if] [in], LAGVar(string) NLAGs(integer)
regress `varlist´ `if´ `in´
local nl1 = `nlags´ - 1
forvalues i = 1/`nl1´ {

local lv "`lv´ L`i´.`lagvar´ + "
}
local lv "`lv´ L`nlags´.`lagvar´"
lincom `lv´
return scalar sum = `r(estimate)´
return scalar se = `r(se)´
end

As with any program to be used under the control of a prefix operator, it is a good idea to
execute the program directly to test it to ensure that its results are those you could
calculate directly with lincom.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 47 / 149

A second example of ado-file programming

. use wpi1, clear

. qui myregress wpi L(1/4).wpi t, lagvar(wpi) nlags(4)

. return list

scalars:
r(se) = .0082232176260432
r(sum) = .9809968042273991

. lincom L.wpi+L2.wpi+L3.wpi+L4.wpi

(1) L.wpi + L2.wpi + L3.wpi + L4.wpi = 0

wpi Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .9809968 .0082232 119.30 0.000 .9647067 .9972869

Having validated the wrapper program by comparing its results with those from lincom,
we may now invoke it with rolling:

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 48 / 149

A second example of ado-file programming

. rolling sum=r(sum) se=r(se) ,window(30) : ///
> myregress wpi L(1/4).wpi t, lagvar(wpi) nlags(4)
(running myregress on estimation sample)

Rolling replications (95)
1 2 3 4 5

.. 50

...

We can graph the resulting series and its approximate 95% standard error bands with
twoway rarea and tsline:
. tsset end, quarterly

Time variable: end, 1967q2 to 1990q4
Delta: 1 quarter

. label var end Endpoint

. g lo = sum - 1.96 * se

. g hi = sum + 1.96 * se

. twoway rarea lo hi end, color(gs12) ylabel(,angle(0)) ///
> title("Sum of moving lag coefficients, approx. 95% CI") ///
> || tsline sum, legend(off)

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 49 / 149

A second example of ado-file programming

.5

1

1.5

2

1965q1 1970q1 1975q1 1980q1 1985q1 1990q1
Endpoint

Sum of moving lag coefficients, approx. 95% CI

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 50 / 149

A third example of ado-file programming

A third example of ado-file programming

Let’s say that you want to compute several statistics from the percentiles of a continuous
variable. Researchers often use the interquartile range, (p75 − p25), as an alternative to
the standard deviation as a measure of a variable’s spread. Those concerned with
income distributions often use (p90 − p10) as a measure of inequality. If we are
concerned about outliers, we might compute (p95 − p5) or (p99 − p1) to compare the
variable’s range (xmax − xmin) with these percentile ranges.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 51 / 149

A third example of ado-file programming

Computing these percentile ranges in a do-file is easy enough. You merely need to use
summarize, detail and access the appropriate percentiles in its stored results. But
you might like to have a program that would calculate the ranges from these percentiles
and make them available for later use. What must you do to write one? The first step is to
choose a name. Here is our first crack at the code.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 52 / 149

A third example of ado-file programming

. type pctrange.ado

*! pctrange v1.0.0 CFBaum 06feb2014
program pctrange

version 13.1
syntax varlist(max=1 numeric)
quietly summarize `varlist´, detail
scalar range = r(max) - r(min)
scalar p7525 = r(p75) - r(p25)
scalar p9010 = r(p90) - r(p10)
scalar p9505 = r(p95) - r(p5)
scalar p9901 = r(p99) - r(p1)
display as result _n "Percentile ranges for `varlist´"
display as txt "75-25: " p7525
display as txt "90-10: " p9010
display as txt "95-05: " p9505
display as txt "99-01: " p9901
display as txt "Range: " range

end

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 53 / 149

A third example of ado-file programming

A statistical command should accept if exp and in range qualifiers if it is to be useful.
Very little work is needed to add these features to our program. The definition of if exp
and in range qualifiers and program options is all handled by the syntax statement. In
the improved program, [if] and [in] denote that each of these qualifiers can be used.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 54 / 149

A third example of ado-file programming

The marksample touse command uses the information provided in a if exp or in
range qualifier operative if one or both were given on the command line. The
marksample command marks those observations which should enter the computations
in an indicator variable, ‘touse’, equal to 1 for the desired observations, and 0
otherwise. The ‘touse’ variable is a temporary variable, which will disappear when the
ado-file ends, like a local macro.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 55 / 149

A third example of ado-file programming

After defining this indicator variable, we use count if ‘touse’ to calculate the
number of observations after applying the qualifiers and display an error if there are no
observations. We must add if ‘touse’ to each statement in the program which works
with the input varlist. In this case, we need only modify the summarize statement to
include if ‘touse’. The new version of the program:

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 56 / 149

A third example of ado-file programming

*! pctrange v1.0.5 CFBaum 06feb2014
program pctrange, rclass

version 13.1
syntax varlist(max=1 numeric) [if] [in] [, noPRINT]
marksample touse
quietly count if `touse´
if `r(N)´ == 0 {

error 2000
}
local res range p7525 p9010 p9505 p9901
tempname `res´
quietly summarize `varlist´ if `touse´, detail
scalar `range´ = r(max) - r(min)
scalar `p7525´ = r(p75) - r(p25)
scalar `p9010´ = r(p90) - r(p10)
scalar `p9505´ = r(p95) - r(p5)
scalar `p9901´ = r(p99) - r(p1)
if "`print´" != "noprint" {

display as result _n "Percentile ranges for `varlist´, N = `r(N)´"
display as txt "75-25: " `p7525´
display as txt "90-10: " `p9010´
display as txt "95-05: " `p9505´
display as txt "99-01: " `p9901´
display as txt "Range: " `range´

}
foreach r of local res {

return scalar `r´ = ``r´´
}
return scalar N = r(N)
return local varname `varlist´

end
Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 57 / 149

A third example of ado-file programming Generalizing commands to handle multiple variables

Generalizing commands to handle multiple variables

It would be really handy to run pctrange for a number of variables with a single
command. You could always loop over those variables with a foreach loop, but
assembling the output afterward might be a bit of work. As the program produces five
statistics for each variable, perhaps a nicely-formatted table would be useful—and that
will require some rethinking about how the command’s results are to be displayed and
returned.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 58 / 149

A third example of ado-file programming Generalizing commands to handle multiple variables

First, you must tell the syntax statement that more than one numeric variable is allowed.
The program will perform as it does now for a single variable or produce a table if given
several variables. Because we are constructing a table, a Stata matrix is a useful device
to store the results we generate from summarize.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 59 / 149

A third example of ado-file programming Generalizing commands to handle multiple variables

Rather than placing the elements in scalars, we declare a matrix with the J() function,
calculating the number of rows needed with the macro extended function word count
string. The foreach loop then cycles through the varlist, placing the percentile ranges for
each variable into one row of the matrix. The local macro rown is used to build up the list
of row names, applied with matrix rownames.

The one trick needed here appears in the return statement when only one variable is
provided. We must doubly dereference r: once to specify the statistic being evaluated,
and a second time to retrieve its content.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 60 / 149

A third example of ado-file programming Generalizing commands to handle multiple variables

I added two additional options in the syntax statement for this version: a format()
option, which allows you to specify the Stata format used to display the matrix elements,
and the mat option.
*! pctrange v1.0.6 CFBaum 11aug2008

program pctrange, rclass byable(recall)
version 14
syntax varlist(min=1 numeric ts) [if] [in] [, noPRINT FORmat(passthru)

> MATrix(string)]
marksample touse
quietly count if `touse´
if `r(N)´ == 0 {

error 2000
}
local nvar : word count `varlist´
if `nvar´ == 1 {

local res range p7525 p9010 p9505 p9901
tempname `res´
quietly summarize `varlist´ if `touse´, detail
scalar `range´ = r(max) - r(min)
scalar `p7525´ = r(p75) - r(p25)
scalar `p9010´ = r(p90) - r(p10)
scalar `p9505´ = r(p95) - r(p5)
scalar `p9901´ = r(p99) - r(p1)

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 61 / 149

A third example of ado-file programming Generalizing commands to handle multiple variables

if "`print´" != "noprint" {
display as result _n "Percentile ranges for `varlist´, N = `r(N)´"
display as txt "75-25: " `p7525´
display as txt "90-10: " `p9010´
display as txt "95-05: " `p9505´
display as txt "99-01: " `p9901´
display as txt "Range: " `range´

}
foreach r of local res {

return scalar `r´ = ``r´´
}
return scalar N = r(N)

}
else {

tempname rmat
matrix `rmat´ = J(`nvar´,5,.)
local i 0
foreach v of varlist `varlist´ {

local ++i
quietly summarize `v´ if `touse´, detail
matrix `rmat´[`i´,1] = r(max) - r(min)
matrix `rmat´[`i´,2] = r(p75) - r(p25)
matrix `rmat´[`i´,3] = r(p90) - r(p10)
matrix `rmat´[`i´,4] = r(p95) - r(p5)
matrix `rmat´[`i´,5] = r(p99) - r(p1)
local rown "`rown´ `v´"

}
matrix colnames `rmat´ = Range P75-P25 P90-P10 P95-P05 P99-P01
matrix rownames `rmat´ = `rown´

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 62 / 149

A third example of ado-file programming Generalizing commands to handle multiple variables

if "`print´" != "noprint" {
local form ", noheader"
if "`format´" != "" {

local form "`form´ `format´"
}
matrix list `rmat´ `form´

}
if "`matrix´" != "" {

matrix `matrix´ = `rmat´
}
return matrix rmat = `rmat´

}
return local varname `varlist´

end

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 63 / 149

A third example of ado-file programming Generalizing commands to handle multiple variables

You can now invoke the program on a set of variables and, optionally, specify a format for
the output of matrix elements:
. pctrange regday specneed bilingua occupday tot_day tchratio, form(%9.2f)

Range P75-P25 P90-P10 P95-P05 P99-P01
regday 5854.00 918.50 2037.00 2871.00 4740.00

specneed 49737.01 2282.78 4336.76 5710.46 10265.45
bilingua 295140.00 0.00 6541.00 8817.00 27508.00
occupday 15088.00 0.00 5291.50 8096.00 11519.00
tot_day 6403.00 1070.00 2337.50 3226.00 4755.00
tchratio 15.60 3.25 5.55 7.55 10.60

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 64 / 149

A third example of ado-file programming Generalizing commands to handle multiple variables

The mat option allows the matrix to be automatically saved as a Stata matrix with that
name. This is useful if you are running pctrange several times (perhaps in a loop) and
want to avoid having to rename the result matrix, r(rmat), each time. You can use
Baum and Azevedo’s outtable routine (available from the SSC archive) to convert the
matrix into a LATEX table.

Table: MCAS percentile ranges

Range P75-P25 P90-P10 P95-P05 P99-P01
regday 5854.00 918.50 2037.00 2871.00 4740.00
specneed 49737.01 2282.78 4336.76 5710.46 10265.45
bilingua 295140.00 0.00 6541.00 8817.00 27508.00
occupday 15088.00 0.00 5291.50 8096.00 11519.00
tot day 6403.00 1070.00 2337.50 3226.00 4755.00
tchratio 15.60 3.25 5.55 7.55 10.60

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 65 / 149

A third example of ado-file programming Making commands byable

Making commands byable

As a final touch, you might want the pctrange command to be byable: to permit its use
with a by prefix. Because we are not creating any new variables with this version of the
program, this can be done by simply adding byable(recall) to the program
statement. The new program statement becomes:
program pctrange, rclass byable(recall)

The other enhancement you might consider is allowing the varlist to contain variables with
time-series operators such as L.gdp or D.income. We can easily incorporate that
feature by changing the syntax statement to add the ts suboption:
syntax varlist(min=1 numeric ts) [if] [in] ///
[, noPRINT FORmat(passthru) MATrix(string)]

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 66 / 149

A third example of ado-file programming Making commands byable

Likewise, we could permit the use of factor variables in the varlist by adding the fv
suboption. Because factor variables produce indicator variables taking on values 0 or 1, it
would not be sensible to compute their percentiles.

With these modifications, we can apply pctrange using the by prefix or use time-series
operators in the varlist. To illustrate the byable nature of the program, let’s generate an
indicator for teachers’ average salaries above and below the mean and calculate the
pctrange statistics for those categories.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 67 / 149

A third example of ado-file programming Making commands byable

. discard

. summarize avgsalry, meanonly

. generate byte highsal = avgsalry > r(mean) & !missing(avgsalry)

. label define sal 0 low 1 high

. label val highsal sal

. tabstat avgsalry, by(highsal) stat(mean N)

Summary for variables: avgsalry
by categories of: highsal

highsal mean N

low 33.5616 101
high 38.60484 94

Total 35.9927 195

We see that average salaries in low-salary school districts are over $5,000 less than
those in high-salary school districts.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 68 / 149

A third example of ado-file programming Making commands byable

. bysort highsal: pctrange regday specneed bilingua occupday tot_day tchratio

-> highsal = low

Range P75-P25 P90-P10 P95-P05 P99-P01
regday 4858 703 1740 2526 3716

specneed 49737.008 2030.8198 3997.9497 5711.2104 11073.81
bilingua 295140 0 6235 8500 13376
occupday 11519 0 5490 7095 11286
tot_day 5214 780 1770 2652 4597
tchratio 11.6 3.1999989 6.2999992 7.8000002 9.3999996

-> highsal = high

Range P75-P25 P90-P10 P95-P05 P99-P01
regday 5433 1052 2189 2807 5433

specneed 8570.4004 2486.3604 4263.9702 5620.54 8570.4004
bilingua 33968 0 8466 11899 33968
occupday 15088 0 5068 8100 15088
tot_day 5928 1179 2572 3119 5928
tchratio 15.6 2.4000006 4.7000008 6.2999992 15.6

The salary differences carry over into the percentile ranges, where the ranges of
tot_day, total spending per pupil, are much larger in the high-salary districts than in the
low-salary districts.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 69 / 149

Writing an egen function

Writing an egen function

The egen (Extended Generate) command is open-ended, in that any Stata user can
define an additional egen function by writing a specialized ado-file program.The name of
the program (and of the file in which it resides) must start with _g: that is,
_gcrunch.ado will define the crunch() function for egen.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 70 / 149

Writing an egen function

To illustrate egen functions, let us create a function to generate the 90–10 percentile
range of a variable. The syntax for egen is:

egen
[
type

]
newvar = fcn(arguments)

[
if
][

in
] [

, options
]

The egen command, like generate, can specify a data type. The syntax command
indicates that a newvarname must be provided, followed by an equals sign and an fcn, or
function, with arguments. egen functions may also handle if exp and in range
qualifiers and options.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 71 / 149

Writing an egen function

We calculate the percentile range using summarize with the detail option. On the last
line of the function, we generate the new variable, of the appropriate type if specified,
under the control of the ‘touse’ temporary indicator variable, limiting the sample as
specified.
. type _gpct9010.ado

*! _gpct9010 v1.0.0 CFBaum
program _gpct9010
version 14
syntax newvarname =/exp [if] [in]
tempvar touse
mark `touse´ `if´ `in´
quietly summarize `exp´ if `touse´, detail
quietly generate `typlist´ `varlist´ = r(p90) - r(p10) if `touse´

end

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 72 / 149

Writing an egen function

This function works perfectly well, but it creates a new variable containing a single scalar
value. As noted earlier, that is a very profligate use of Stata’s memory (especially for large
_N) and often can be avoided by retrieving the single scalar which is conveniently stored
by our pctrange command. To be useful, we would like the egen function to be byable,
so that it could compute the appropriate percentile range statistics for a number of groups
defined in the data.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 73 / 149

Writing an egen function

The changes to the code are relatively minor. We add an options clause to the syntax
statement, as egen will pass the by prefix variables as a by option to our program.
Rather than using summarize, we use egen’s own pctile() function, which is
documented as allowing the by prefix, and pass the options to this function. The revised
function reads:

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 74 / 149

Writing an egen function

. type _gpct9010.ado

*! _gpct9010 v1.0.1 CFBaum
program _gpct9010
version 14
syntax newvarname =/exp [if] [in] [, *]
tempvar touse p90 p10
mark `touse´ `if´ `in´
quietly {

egen double `p90´ = pctile(`exp´) if `touse´, `options´ p(90)
egen double `p10´ = pctile(`exp´) if `touse´, `options´ p(10)
generate `typlist´ `varlist´ = `p90´ - `p10´ if `touse´

}
end

These changes permit the function to produce a separate percentile range for each group
of observations defined by the by-list.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 75 / 149

Writing an egen function

To illustrate, we use auto.dta:
. sysuse auto, clear
(1978 Automobile Data)

. bysort rep78 foreign: egen pctrange = pct9010(price)

Now, if we want to compute a summary statistic (such as the percentile range) for each
observation classified in a particular subset of the sample, we may use the pct9010()
function to do so.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 76 / 149

Writing an e-class program

Writing an e-class program

The ado-file programs we have discussed in earlier sections are all r-class programs; that
is, they provide results in the return list. Many statistical procedures involve fitting a
model (rather than computing one or more statistics) and are thus termed estimation
commands, or e-class commands.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 77 / 149

Writing an e-class program

One of Stata’s great strengths derives from the common nature of its estimation
commands, which follow a common syntax, leave behind the same objects, and generally
support the same postestimation tools, such as test, lincom, and margins to compute
marginal effects and predict to compute predicted values, residuals and similar
quantities.

Although e-class commands are somewhat more complicated than r-class commands, it
is reasonably simple for you to implement an estimation command as an ado-file. Many of
the programming concepts discussed in earlier sections are equally useful when dealing
with e-class commands. The additional features needed generally relate to
postestimation capabilities.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 78 / 149

Writing an e-class program

As spelled out in [U] 18.9 Accessing results calculated by estimation commands,
there are a number of conventions that an e-class command must follow:

The command must save its results in e(), accessed by ereturn list, rather
than in r().
It should save its name in e(cmd).
It should save the contents of the command line in e(cmdline).
It should save the number of observations in e(N) and identify the estimation sample
by setting the indicator variable (or “function”) e(sample).
It must save the entire coefficient vector as Stata matrix e(b) and the
variance–covariance matrix of the estimated parameters as Stata matrix e(V).

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 79 / 149

Writing an e-class program

Correct capitalization of these result names is important. The coefficient vector is saved
as a 1 × k row vector for single-equation estimation commands, with additional rows
added for multiple-equation estimators. The variance-covariance matrix is saved as a
k × k symmetric matrix.

The presence of e(b) and e(V) in standardized locations enables Stata’s postestimation
commands (including those you write) to work properly. Estimation commands may set
other e() scalars, macros or matrices.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 80 / 149

Writing an e-class program

Whereas a r-class program, such as pctrange, uses the return command to return its
results in r(), an e-class program uses the ereturn command. The command
ereturn name = exp returns a scalar value, while ereturn local name value and
ereturn matrix name matname return a macro and a Stata matrix, respectively. You
do not use ereturn for the coefficient vector or estimated variance–covariance matrix.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 81 / 149

Writing an e-class program

The ereturn post command posts the estimates of b and V to their official locations.
To return the coefficient vector and its variance–covariance matrix, you need to create the
coefficient vector, say ‘beta’, and its variance–covariance matrix, say ‘vce’, and pass
them back in the following fashion. We also can define the estimation sample flagged by
the sample indicator temporary variable, ‘touse’:

ereturn post ‘beta’ ‘vce’, esample(‘touse’)

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 82 / 149

Writing an e-class program

You can save anything else in e(), using the ereturn scalar, ereturn local, or
ereturn matrix commands, as described above. It is best to use the commonly used
names for various quantities. For instance, e(df_m) and e(df_r) are commonly used
to denote the numerator (model) and denominator (residual) degrees of freedom. e(F)
commonly refers to the test against the null (constant-only) model for non-asymptotic
results, while e(chi2) is used for an asymptotic estimator. e(r2) or e(r2_p) refer to
the R2 or pseudo-R2, respectively.

Although you are free to choose other names for your ereturn values, it is most helpful if
they match those used in common Stata commands. See [U] 18.10.2 Storing results in
e() for more details.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 83 / 149

Introduction to Mata

Introduction to Mata

Since the release of version 9, Stata has contained a full-fledged matrix programming
language, Mata, with most of the capabilities of MATLAB, R, Ox or Gauss. You can use
Mata interactively, or you can develop Mata functions to be called from Stata. In this talk,
we emphasize the latter use of Mata.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 84 / 149

Introduction to Mata

Mata functions may be particularly useful where the algorithm you wish to implement
already exists in matrix-language form. It is quite straightforward to translate the logic of
other matrix languages into Mata: much more so than converting it into Stata’s matrix
language.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 85 / 149

Introduction to Mata

A large library of mathematical and matrix functions is provided in Mata, including
optimization routines, equation solvers, decompositions, eigensystem routines and
probability density functions. Mata functions can access Stata’s variables and can work
with virtual matrices (views) of a subset of the data in memory. Mata also supports file
input/output.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 86 / 149

Introduction to Mata Circumventing the limits of Stata’s matrix language

Circumventing the limits of Stata’s matrix language

Mata circumvents the limitations of Stata’s traditional matrix commands. Stata matrices
must obey the maximum matsize: 800 rows or columns in Stata/BE. Thus, code relying
on Stata matrices is fragile. Stata’s matrix language does contain commands such as
matrix accum which can build a cross-product matrix from variables of any length, but
for many applications the limitation of matsize is binding.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 87 / 149

Introduction to Mata Circumventing the limits of Stata’s matrix language

Even in Stata/SE or Stata/MP, with the possibility of a much larger matsize, Stata’s
matrices have another drawback. Large matrices consume large amounts of memory,
and an operation that converts Stata variables into a matrix or vice versa will require at
least twice the memory needed for that set of variables.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 88 / 149

Introduction to Mata Circumventing the limits of Stata’s matrix language

The Mata programming language can sidestep these memory issues by creating matrices
with contents that refer directly to Stata variables—no matter how many variables and
observations may be referenced. These virtual matrices, or views, have minimal overhead
in terms of memory consumption, regardless of their size.

Unlike some matrix programming languages, Mata matrices can contain either numeric
elements or string elements (but not both). This implies that you can use Mata
productively in a list processing environment as well as in a numeric context.

For example, a prominent list-handling command, Bill Gould’s adoupdate, is written
almost entirely in Mata. viewsource adoupdate.ado reveals that only 22 lines of code
(out of 1,193 lines) are in the ado-file language. The rest is Mata.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 89 / 149

Introduction to Mata Speed advantages

Speed advantages

Last but by no means least, ado-file code written in the matrix language with explicit
subscript references is slow. Even if such a routine avoids explicit subscripting, its
performance may be unacceptable. For instance, David Roodman’s xtabond2 can run in
version 7 or 8 without Mata, or in version 9 onwards with Mata. The non-Mata version is
an order of magnitude slower when applied to reasonably sized estimation problems.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 90 / 149

Introduction to Mata Speed advantages

In contrast, Mata code is automatically compiled into bytecode, like Java, and can be
stored in object form or included in-line in a Stata do-file or ado-file. Mata code runs many
times faster than the interpreted ado-file language, providing significant speed
enhancements to many computationally burdensome tasks.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 91 / 149

Introduction to Mata An efficient division of labor

An efficient division of labor

Mata interfaced with Stata provides for an efficient division of labor. In a pure matrix
programming language, you must handle all of the housekeeping details involved with
data organization, transformation and selection.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 92 / 149

Introduction to Mata An efficient division of labor

In contrast, if you write an ado-file that calls one or more Mata functions, the ado-file will
handle those housekeeping details with the convenience features of the syntax and
marksample statements of the regular ado-file language. When the housekeeping chores
are completed, the resulting variables can be passed on to Mata for processing. Results
produced by Mata may then be accessed by Stata and formatted with commands like
estimates display.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 93 / 149

Introduction to Mata An efficient division of labor

Mata can access Stata variables, local and global macros, scalars and matrices, and
modify the contents of those objects as needed. If Mata’s view matrices are used,
alterations to the matrix within Mata modifies the Stata variables that comprise the view.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 94 / 149

Syntax of the language Mata operators

Mata operators

To understand Mata syntax, you must be familiar with its operators. The comma is the
column-join operator, so

: r1 = (1, 2, 3)

creates a three-element row vector. We could also construct this vector using the row
range operator (..) as

: r1 = (1..3)

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 95 / 149

Syntax of the language Mata operators

The backslash is the row-join operator, so

c1 = (4 \ 5 \ 6)

creates a three-element column vector. We could also construct this vector using the
column range operator (::) as

: c1 = (4::6)

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 96 / 149

Syntax of the language Mata operators

We may combine the column-join and row-join operators:

m1 = (1, 2, 3 \ 4, 5, 6 \ 7, 8, 9)

creates a 3 × 3 matrix.

The matrix could also be constructed with the row range operator:

m1 = (1..3 \ 4..6 \ 7..9)

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 97 / 149

Syntax of the language Mata operators

The prime (or apostrophe) is the transpose operator, so

r2 = (1 \ 2 \ 3)´

is a row vector.

The comma and backslash operators can be used on vectors and matrices as well as
scalars, so

r3 = r1, c1´

will produce a six-element row vector, and

c2 = r1´ \ c1

creates a six-element column vector.

Matrix elements can be real or complex, so 2 - 3 i refers to a complex number
2 − 3 ×

√
−1.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 98 / 149

Syntax of the language Mata operators

The standard algebraic operators plus (+), minus (−) and multiply (∗) work on scalars or
matrices:

g = r1´ + c1
h = r1 * c1
j = c1 * r1

In this example h will be the 1 × 1 dot product of vectors r1, c1 while j is their 3 × 3
outer product.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 99 / 149

Syntax of the language Element-wise calculations and the colon operator

Element-wise calculations and the colon operator

One of Mata’s most powerful features is the colon operator. Mata’s algebraic operators,
including the forward slash (/) for division, also can be used in element-by-element
computations when preceded by a colon:

k = r1´ :* c1

will produce a three-element column vector, with elements as the product of the
respective elements: ki = r1i c1i , i = 1, . . . ,3.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 100 / 149

Syntax of the language Element-wise calculations and the colon operator

Mata’s colon operator is very powerful, in that it will work on nonconformable objects. For
example:

r4 = (1, 2, 3)
m2 = (1, 2, 3 \ 4, 5, 6 \ 7, 8, 9)
m3 = r4 :+ m2
m4 = m1 :/ r1

adds the row vector r4 to each row of the 3 × 3 matrix m2 to form m3, and divides the
elements of each row of matrix m1 by the corresponding elements of row vector r1 to
form m4.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 101 / 149

Design of a Mata function Element and organization types

Element and organization types

To call Mata code within an ado-file, you must define a Mata function, which is the
equivalent of a Stata ado-file program. Unlike a Stata program, a Mata function has an
explicit return type and a set of arguments. A function may be of return type void if it
does not need a �return statement. Otherwise, a function is typed in terms of two
characteristics: its element type and their organization type. For instance,

real scalar calcsum(real vector x)

declares that the Mata calcsum function will return a real scalar. It has one argument: an
object x, which must be a real vector.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 102 / 149

Design of a Mata function Element and organization types

Element types may be real, complex, numeric, string, pointer, transmorphic.
A transmorphic object may be filled with any of the other types. A numeric object may
be either real or complex. Unlike Stata, Mata supports complex arithmetic.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 103 / 149

Design of a Mata function Element and organization types

There are five organization types: matrix, vector, rowvector, colvector, scalar.
Strictly speaking the latter four are just special cases of matrix. In Stata’s matrix
language, all matrices have two subscripts, neither of which can be zero. In Mata, all but
the scalar may have zero rows and/or columns. Three- (and higher-) dimension matrices
can be implemented by the use of the pointer element type.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 104 / 149

Design of a Mata function Arguments, variables and returns

Arguments, variables and returns

A Mata function definition includes an argument list, which may be blank. The names of
arguments are required and arguments are positional. The order of arguments in the
calling sequence must match that in the Mata function. If the argument list includes a
vertical bar (|), following arguments are optional.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 105 / 149

Design of a Mata function Arguments, variables and returns

Within a function, variables may be explicitly declared (and must be declared if
matastrict mode is used). It is good programming practice to do so, as then variables
cannot be inadvertently misused. Variables within a Mata function have local scope, and
are not accessible outside the function unless declared as external.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 106 / 149

Design of a Mata function Arguments, variables and returns

A Mata function may only return one item (which could, however, be a multi-element
structure. If the function is to return multiple objects, Mata’s st_... functions should be
used, as we will demonstrate.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 107 / 149

Mata’s interface functions Data access

Data access

If you’re using Mata functions in conjunction with Stata’s ado-file language, one of the
most important set of tools are Mata’s interface functions: the st_ functions.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 108 / 149

Mata’s interface functions Data access

The first category of these functions provide access to data. Stata and Mata have
separate workspaces, and these functions allow you to access and update Stata’s
workspace from inside Mata. For instance, st_nobs(), st_nvar() provide the same
information as describe in Stata, which returns r(N), r(k) in its return list. Mata
functions st_data(), st_view() allow you to access any rectangular subset of
Stata’s numeric variables, and st_sdata(), st_sview() do the same for string
variables.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 109 / 149

Mata’s interface functions st_view()

st_view()

One of the most useful Mata concepts is the view matrix, which as its name implies is a
view of some of Stata’s variables for specified observations, created by a call to
st_view(). Unlike most Mata functions, st_view() does not return a result. It requires
three arguments: the name of the view matrix to be created, the observations (rows) that
it is to contain, and the variables (columns). An optional fourth argument can specify
touse: an indicator variable specifying whether each observation is to be included.

st_view(x, ., varname, touse)

states that the previously-declared Mata vector x should be created from all the
observations (specified by the missing second argument) of varname, as modified by the
contents of touse. In the Stata code, the marksample command imposes any if or in
conditions by setting the indicator variable touse.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 110 / 149

Mata’s interface functions Using views to update Stata variables

Using views to update Stata variables

A very important aspect of views: using a view matrix rather than copying data into Mata
with st_data() implies that any changes made to the view matrix will be reflected in
Stata’s variables’ contents. This is a very powerful feature that allows us to easily return
information generated in Mata back to Stata’s variables, or create new content in existing
variables.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 111 / 149

Mata’s interface functions Using views to update Stata variables

This may or may not be what you want to do. Keep in mind that any alterations to a view
matrix will change Stata’s variables, just as a replace command in Stata would. If you
want to ensure that Mata computations cannot alter Stata’s variables, avoid the use of
views, or use them with caution. You may use st_addvar() to explicitly create new Stata
variables, and st_store() to populate their contents.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 112 / 149

Mata’s interface functions Using views to update Stata variables

A Mata function may take one (or several) existing variables and create a transformed
variable (or set of variables). To do that with views, create the new variable(s), pass the
name(s) as a newvarlist and set up a view matrix.

st_view(Z=., ., tokens(newvarlist), touse)

Then compute the new content as:

Z[., .] = result of computation

It is very important to use the [., .] construct as shown. Z = will cause a new matrix
to be created and break the link to the view.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 113 / 149

Calling Mata with a single command line

Calling Mata with a single command line

You can invoke Mata with a single Stata command, in either interactive mode or in a
do-file or ado-file, with

. mata: one or more Mata commands, separated by semicolons

This context is most useful when you want to operate on one or more items in the Stata
workspace, and return the results to the Stata workspace. In doing so, if you create items
in Mata’s workspace, they will remain there until you give the command mata: mata
clear.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 114 / 149

Calling Mata with a single command line

As an example of a single-line Mata command, say that we have cross-sectional data on
nominal expenditures for 20 hospitals for selected years. For comparability across years,
we want to create real (inflation-adjusted) measures. We have a price deflator for health
care expenditures, benchmarked at 100 in 2000, for each of these years. Here are those
data.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 115 / 149

Calling Mata with a single command line

. list exp*, sep(0)

exp1994 exp1997 exp2001 exp2003 exp2005

1. 8.181849 8.803116 9.842918 5.858101 9.190242
2. 9.23138 9.526636 7.415146 10.4168 8.252012
3. 7.222272 6.583617 8.960152 6.53302 7.180707
4. 9.448738 7.972495 8.766521 5.63679 6.681845
5. 9.649901 6.769967 7.712472 9.241309 9.122219
6. 6.856859 9.078987 7.766836 8.037149 8.25163
7. 9.278242 7.264326 8.981012 8.23664 6.625589
8. 6.841638 7.565176 6.927269 8.598692 10.75326
9. 8.666395 7.525422 9.326843 8.239338 9.08489

10. 7.644565 7.221323 8.915318 8.676471 9.277551
11. 8.184382 9.080503 8.066475 8.371346 8.339171
12. 8.145008 9.001379 7.540075 7.305631 8.677146
13. 9.644306 9.578444 8.541085 7.431371 9.072832
14. 7.397709 10.08259 7.648673 7.524302 7.143608
15. 7.040617 8.258828 7.966858 10.83057 7.402671
16. 7.861959 7.856915 8.849826 7.502389 8.290931
17. 7.902071 9.412766 7.739596 7.646762 8.840546
18. 9.576131 7.904189 9.243579 8.642523 9.428108
19. 6.432031 8.056722 8.43427 8.755649 8.945447
20. 8.228907 9.583271 8.321041 6.481467 10.23306

. loc defl 87.6 97.4 103.5 110.1 117.4

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 116 / 149

Calling Mata with a single command line

In this example, we use a Mata view, labeled as X , to transform the Stata variables in
place. The local macro containing each year’s price deflator, defl, is transformed into a
row vector D and scaled by 100. The last Mata command uses the colon operator (:/) to
divide each hospital’s nominal expenditures by the appropriate year’s deflator.

. mata: expend = st_view(X=., ., "exp1994 exp1997 exp2001 exp2003 exp2005"); ///
> D = 0.01 :* strtoreal(tokens(st_local("defl"))); X[.,.] = X :/ D

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 117 / 149

Calling Mata with a single command line

We rename the Stata variables to reflect their new definitions:

. rename exp* rexp*

. list rexp*, sep(0)

rexp1994 rexp1997 rexp2001 rexp2003 rexp2005

1. 9.34001 9.038107 9.510066 5.32071 7.828145
2. 10.5381 9.780941 7.164392 9.461221 7.028971
3. 8.244602 6.75936 8.657151 5.933715 6.116446
4. 10.78623 8.185313 8.470069 5.1197 5.69152
5. 11.01587 6.950685 7.451664 8.393559 7.770204
6. 7.827465 9.321342 7.504189 7.299863 7.028646
7. 10.5916 7.458241 8.677306 7.481053 5.643602
8. 7.810089 7.767121 6.693013 7.809893 9.159508
9. 9.893146 7.726305 9.011443 7.483504 7.738408

10. 8.726672 7.414089 8.613833 7.880537 7.902514
11. 9.342902 9.322898 7.793695 7.603402 7.103212
12. 9.297955 9.241662 7.285097 6.635451 7.391095
13. 11.00948 9.834132 8.252256 6.749656 7.728137
14. 8.444874 10.35174 7.390022 6.834062 6.084845
15. 8.037233 8.47929 7.697447 9.837034 6.305512
16. 8.974838 8.066648 8.550556 6.814159 7.062121
17. 9.02063 9.66403 7.477871 6.945288 7.530277
18. 10.93166 8.115184 8.930994 7.849703 8.030757
19. 7.342501 8.271789 8.149053 7.952451 7.619631
20. 9.393729 9.839087 8.039653 5.886891 8.716402

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 118 / 149

A simple Mata function

A simple Mata function

We now give a simple illustration of how a Mata subroutine could be used to perform the
computations in a do-file. We construct an ado-file, varextrema, which takes a variable
name and accepts optional if or in qualifiers. Rather than computing statistics in the
ado-file, we call the calcextrema routine with two arguments: the variable name and
the ‘touse’ indicator variable.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 119 / 149

A simple Mata function

Imagine that we did not have an easy way of computing the minimum and maximum of
the elements of a Stata variable, and wanted to do so with Mata:

program varextrema, rclass
version 18
syntax varname(numeric) [if] [in]
marksample touse
mata: calcextrema("`varlist´", "`touse´")
display as txt " min (`varlist´) = " as res r(min)
display as txt " max (`varlist´) = " as res r(max)
return scalar min = r(min)
return scalar max = r(max)
end

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 120 / 149

A simple Mata function

Our ado-language code creates a Stata command, varextrema, which requires the
name of a single numeric Stata variable. You may specify if exp or in range conditions.
The Mata function calcextrema is called with two arguments: the name of the variable
and the name of the touse temporary variable marking out valid observations. As we will
see the Mata function returns its results in two numeric scalars: r(min), r(max).
Those are returned in turn to the calling program in the varextrema return list.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 121 / 149

A simple Mata function

We then add the Mata function definition to varextrema.ado:

version 18
mata:
mata set matastrict on
void calcextrema(string scalar varname, ///
string scalar touse)
{
real colvector x, cmm
st_view(x, ., varname, touse)
cmm = colminmax(x)
st_numscalar("r(min)", cmm[1])
st_numscalar("r(max)", cmm[2])
}
end

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 122 / 149

A simple Mata function

The Mata code as shown is strict: all objects must be defined. The function is declared
void as it does not return a result. A Mata function could return a single result to Mata,
but we need to send two results back to Stata. The input arguments are declared as
string scalar as they are variable names.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 123 / 149

A simple Mata function

We create a view matrix, colvector x, as the subset of varname for which touse==1.
Mata’s colminmax() function computes the extrema of its arguments as a two-element
vector, and st_numscalar() returns each of them to Stata as r(min), r(max)
respectively.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 124 / 149

A multi-variable function

A multi-variable function

Now let’s consider a slightly more ambitious task. Say that you would like to center a
number of variables on their means, creating a new set of transformed variables.
Surprisingly, official Stata does not have such a command, although Ben Jann’s center
command does so. Accordingly, we write Stata command centervars, employing a
Mata function to do the work.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 125 / 149

A multi-variable function

The Stata code:

program centervars, rclass
version 18
syntax varlist(numeric) [if] [in], ///
GENerate(string) [DOUBLE]
marksample touse
quietly count if `touse´
if `r(N)´ == 0 error 2000
foreach v of local varlist {
confirm new var `generate´`v´
}
foreach v of local varlist {
qui generate `double´ `generate´`v´ = .
local newvars "`newvars´ `generate´`v´"
}
mata: centerv("`varlist´", "`newvars´", "`touse´")
end

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 126 / 149

A multi-variable function

The file centervars.ado contains a Stata command, centervars, that takes a list of
numeric variables and a mandatory generate() option. The contents of that option are
used to create new variable names, which then are tested for validity with confirm new
var, and if valid generated as missing. The list of those new variables is assembled in
local macro newvars. The original varlist and the list of newvars is passed to the
Mata function centerv() along with touse, the temporary variable that marks out the
desired observations.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 127 / 149

A multi-variable function

The Mata code:

version 18
mata:
void centerv(string scalar varlist, ///
string scalar newvarlist,
string scalar touse)
{
real matrix X, Z
st_view(X=., ., tokens(varlist), touse)
st_view(Z=., ., tokens(newvarlist), touse)
Z[., .] = X :- mean(X)
}
end

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 128 / 149

A multi-variable function

In the Mata function, tokens() extracts the variable names from varlist and places
them in a string rowvector, the form needed by st_view . The st_view function then
creates a view matrix, X, containing those variables and the observations selected by if
and in conditions.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 129 / 149

A multi-variable function

The view matrix allows us to both access the variables’ contents, as stored in Mata matrix
X, but also to modify those contents. The colon operator (:-) subtracts the vector of
column means of X from the data. Using the Z[,]= notation, the Stata variables
themselves are modified. When the Mata function returns to Stata, the contents and
descriptive statistics of the variables in varlist will be altered.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 130 / 149

A multi-variable function

One of the advantages of Mata use is evident here: we need not loop over the variables in
order to demean them, as the operation can be written in terms of matrices, and the
computation done very efficiently even if there are many variables and observations. Also
note that performing these calculations in Mata incurs minimal overhead, as the matrix Z
is merely a view on the Stata variables in newvars. One caveat: Mata’s mean() function
performs listwise deletion, like Stata’s correlate command.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 131 / 149

Examples of Mata programming Example: Finding nearest neighbors

Example: Finding nearest neighbors

As an example of Mata programming, consider the question of how to find “nearest
neighbors” in geographical terms: that is, which observations are spatially proximate to
each observation in the dataset?

This can be generalized to a broader problem: which observations are closest in terms of
similarity of a number of variables? This might be recognized as a problem of calculating
a propensity score (see Leuven and Sianesi’s psmatch2 on the SSC Archive, or the
teffects suite) but we would like to approach it from first principles with a Mata routine.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 132 / 149

Examples of Mata programming Example: Finding nearest neighbors

We allow a match to be defined in terms of a set of variables on which a close match will
be defined. The quality of the match can then be evaluated by calculating the correlation
between the original variable’s observations and its values of the identified “nearest
neighbor.” That is, if we consider two units (patients, cities, firms, households) with similar
values of x1, . . . , xm, how highly correlated are their values of y?

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 133 / 149

Examples of Mata programming Example: Finding nearest neighbors

Although the original example is geographical, the underlying task is found in many
disciplines where a control group of observations is to be identified, each of which is the
closest match to one of the observations of interest.

For instance, in finance, you may have a sample of firms that underwent a takeover. For
each firm, you would like to find a “similar” firm (based on several characteristics) that did
not undergo a takeover. Those pairs of firms are nearest neighbors. In our application, we
will compute the Euclidian distance between the standardized values of pairs of
observations.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 134 / 149

Examples of Mata programming Example: Finding nearest neighbors

To implement the solution, we first construct a Stata ado-file defining program
nneighbor which takes a varlist of one or more measures that are to be used in the
match. In our application, we may use any number of variables as the basis for defining
the nearest neighbor. The user must specify y, a response variable; matchobs, a
variable to hold the observation numbers of the nearest neighbor; and matchval, a
variable to hold the values of y belonging to the nearest neighbor.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 135 / 149

Examples of Mata programming Example: Finding nearest neighbors

After validating any if exp or in range conditions with marksample, the program
confirms that the two new variable names are valid, then generates those variables with
missing values. The latter step is necessary as we construct view matrices in the Mata
function related to those variables, which must already exist.

We then call the Mata function, mf_nneighbor(), and compute one statistic from its
results: the correlation between the y() variable and the matchvals() variable,
measuring the similarity of these y() values between the observations and their nearest
neighbors.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 136 / 149

Examples of Mata programming Example: Finding nearest neighbors

. type nneighbor.ado

*! nneighbor 1.0.1 CFBaum 11aug2008
program nneighbor

version 11
syntax varlist(numeric) [if] [in], ///
Y(varname numeric) MATCHOBS(string) MATCHVAL(string)

marksample touse
qui count if `touse´
if r(N) == 0 {

error 2000
}

// validate new variable names
confirm new variable `matchobs´
confirm new variable `matchval´
qui generate long `matchobs´ = .
qui generate `matchval´ = .
mata: mf_nneighbor("`varlist´", "`matchobs´", "`y´", ///

"`matchval´", "`touse´")
summarize `y´ if `touse´, meanonly
display _n "Nearest neighbors for `r(N)´ observations of `y´"
display "Based on L2-norm of standardized vars: `varlist´"
display "Matched observation numbers: `matchobs´"
display "Matched values: `matchval´"
qui correlate `y´ `matchval´ if `touse´
display "Correlation[`y´, `matchval´] = " %5.4f `r(rho)´

end

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 137 / 149

Examples of Mata programming Example: Finding nearest neighbors

We now construct the Mata function. The function uses a view on the varlist,
constructing view matrix X. As the scale of those variables affects the Euclidian distance
(L2-norm) calculation, the variables are standardized in matrix Z using Ben Jann’s
mm_meancolvar() function from the moremata package on the SSC Archive. Views
are then established for the matchobs variable (C), the response variable (y) and the
matchvals variable (ystar).

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 138 / 149

Examples of Mata programming Example: Finding nearest neighbors

For each observation and variable in the normalized varlist, the L2-norm of distances
between that observation and the entire vector is computed as d. The heart of the
function is the call to minindex(). This function is a fast, efficient calculator of the
minimum values of a variable. Its fourth argument can deal with ties; for simplicity we do
not handle ties here.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 139 / 149

Examples of Mata programming Example: Finding nearest neighbors

We request the closest two values, in terms of the distance d, to each observation,
recognizing that each observation is its own nearest neighbor. The observation numbers
of the two nearest neighbors are stored in vector ind. Therefore, the observation number
desired is the second element of the vector, and y[ind[2]] is the value of the nearest
neighbor’s response variable. Those elements are stored in C[i] and ystar[i],
respectively.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 140 / 149

Examples of Mata programming Example: Finding nearest neighbors

. type mf_nneighbor.mata
mata: mata clear
mata: mata set matastrict on
version 11
mata:
// mf_nneighbor 1.0.0 CFBaum 11aug2008
void function mf_nneighbor(string scalar matchvars,

string scalar closest,
string scalar response,
string scalar match,
string scalar touse)

{
real matrix X, Z, mc, C, y, ystar
real colvector ind
real colvector w
real colvector d
real scalar n, k, i, j
string rowvector vars, v
st_view(X, ., tokens(matchvars), touse)

// standardize matchvars with mm_meancolvar from moremata
mc = mm_meancolvar(X)
Z = (X :- mc[1, .]) :/ sqrt(mc[2, .])
n = rows(X)
k = cols(X)
st_view(C, ., closest, touse)
st_view(y, ., response, touse)
st_view(ystar, ., match, touse)

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 141 / 149

Examples of Mata programming Example: Finding nearest neighbors

(continued)

// loop over observations
for(i = 1; i <= n; i++) {

// loop over matchvars
d = J(n, 1, 0)
for(j = 1; j <= k; j++) {

d = d + (Z[., j] :- Z[i, j]) :^2
}

minindex(d, 2, ind, w)
C[i] = ind[2]
ystar[i] = y[ind[2]]
}

}
end

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 142 / 149

Examples of Mata programming Example: Finding nearest neighbors

We now can try out the routine. We employ the usairquality dataset used in earlier
examples. It contains statistics for 41 U.S. cities’ air quality (so2, or sulphur dioxide
concentration) as well as several demographic factors. To test our routine, we first apply it
to a single variable: population (pop). Examining the result, we can see that it is properly
selecting the city with the closest population value as the nearest neighbor:

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 143 / 149

Examples of Mata programming Example: Finding nearest neighbors

. use usairquality, clear

. sort pop

. nneighbor pop, y(so2) matchobs(mo1) matchval(mv1)

Nearest neighbors for 41 observations of so2
Based on L2-norm of standardized vars: pop
Matched observation numbers: mo1
Matched values: mv1
Correlation[so2, mv1] = 0.0700

. list pop mo1 so2 mv1, sep(0)

pop mo1 so2 mv1

1. 71 2 31 36
2. 80 1 36 31
3. 116 4 46 13
4. 132 3 13 46
5. 158 6 56 28
6. 176 7 28 94
7. 179 6 94 28
8. 201 7 17 94
9. 244 10 11 8

10. 277 11 8 26
11. 299 12 26 31
12. 308 11 31 26
13. 335 14 10 14
14. 347 13 14 10
15. 361 14 9 14
16. 448 17 18 23
17. 453 16 23 18
18. 463 17 11 23
19. 497 20 24 14
20. 507 21 14 17
21. 515 22 17 61
22. 520 21 61 17
23. 529 24 14 29
24. 531 23 29 14
25. 540 24 26 29
26. 582 27 10 30
27. 593 26 30 10
28. 622 29 56 10
29. 624 28 10 56
30. 716 31 12 16
31. 717 30 16 12
32. 744 33 29 28
33. 746 32 28 29
34. 751 33 65 28
35. 757 34 29 65
36. 844 37 9 47
37. 905 36 47 9
38. 1233 39 10 35
39. 1513 38 35 10
40. 1950 39 69 35
41. 3369 40 110 69

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 144 / 149

Examples of Mata programming Example: Finding nearest neighbors

We must note, however, that the response variable’s values are very weakly correlated
with those of the matchvar. Matching cities on the basis of one attribute does not seem
to imply that they will have similar values of air pollution. We thus exercise the routine on
two broader sets of attributes: one adding temp and wind, and the second adding
precip and days, where days measures the mean number of days with poor air quality.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 145 / 149

Examples of Mata programming Example: Finding nearest neighbors

. nneighbor pop temp wind, y(so2) matchobs(mo3) matchval(mv3)

Nearest neighbors for 41 observations of so2
Based on L2-norm of standardized vars: pop temp wind
Matched observation numbers: mo3
Matched values: mv3
Correlation[so2, mv3] = 0.1769

. nneighbor pop temp wind precip days, y(so2) matchobs(mo5) matchval(mv5)

Nearest neighbors for 41 observations of so2
Based on L2-norm of standardized vars: pop temp wind precip days
Matched observation numbers: mo5
Matched values: mv5
Correlation[so2, mv5] = 0.5286

We see that with the broader set of five attributes on which matching is based, there is a
much higher correlation between the so2 values for each city and those for its nearest
neighbor.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 146 / 149

Additional Mata resources

Additional Mata resources

If you’re serious about using Mata, you should familiarize yourself with Ben Jann’s
moremata package, available from SSC. The package contains a function library,
lmoremata, as well as full documentation of all included routines, in the same style as
Mata’s on-line function descriptions.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 147 / 149

Additional Mata resources

Routines in moremata currently include kernel functions; statistical functions for
quantiles, ranks, frequencies, means, variances and correlations; functions for sampling;
density and distribution functions; root finders; matrix utility and manipulation functions;
string functions; and input-output functions. Many of these functions provide functionality
as yet missing from official Mata, and ease the task of various programming chores.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 148 / 149

Additional Mata resources

For more detail on Mata, see Chapters 13–14 of An Introduction to Stata Programming,
Second Edition and Bill Gould’s Stata Conference talk, “Mata: the Missing Manual” at
https://ideas.repec.org/p/boc/chic11/2.html.

If you really want to become a serious Stata programmer, check out Bill Gould’s book,
The Mata Book: A Book for Serious Programmers and Those Who Want to Be, available
from http://stata-press.com.

Christopher F Baum (BC) Ado-file and Mata programming Canadian Stata Conference 2025 149 / 149

	What level of Stata programming skill makes sense for you?
	Using do-files
	Writing your own ado-files
	Writing Mata subroutines for do-files and ado-files

	Extensibility of official Stata
	Ado-file programming: structure of an ado-file
	The program statement

	The syntax statement
	Including a subset of observations
	Using program options
	Temporary variables and tempnames
	The return statement
	A sample program
	A second example of ado-file programming
	A third example of ado-file programming
	Generalizing commands to handle multiple variables
	Making commands byable

	Writing an egen function
	Writing an e-class program
	Introduction to Mata
	Circumventing the limits of Stata's matrix language
	Speed advantages
	An efficient division of labor

	Syntax of the language
	Mata operators
	Element-wise calculations and the colon operator

	Design of a Mata function
	Element and organization types
	Arguments, variables and returns

	Mata's interface functions
	Data access
	st_view()
	Using views to update Stata variables

	Calling Mata with a single command line
	A simple Mata function
	A multi-variable function
	Examples of Mata programming
	Example: Finding nearest neighbors

	Additional Mata resources

