New meta-analysis features in Stata 18

Gabriela Ortiz

StataCorp LLC

2023 Canadian Stata Conference August 4, 2023

Copyright ©2023 StataCorp LLC

Introduction Meta-analysis for prevalence Multilevel meta-analysis Conclusion

Introduction

New meta-analysis features in Stata 18

- Meta-analysis for prevalence
 - Stata's meta suite of commands now supports one-sample binary data, allowing you to estimate an overall proportion or prevalence of a symptom, disease, infection, or some other event
- Multilevel meta-analysis
 - You can now perform meta-analysis with effect sizes that are nested within higher-level groupings, such as regions or schools

Overview

- Meta-analysis for prevalence
 - Effect-size computation
 - Meta-analysis models
 - Summarizing meta-analysis data
- Multilevel meta-analysis
 - Meta-regression
 - Exploring heterogeneity at different levels
 - Sensitivity analysis

What is meta-analysis?

- This is a statistical technique for combining the results from several similar studies.
- The goal is to provide a single estimate of the effect of interest.
- If results vary widely across studies, the goal is then to understand the inconsistencies in the results.

Applications

- Prevalence of diabetes mellitus in patients with coronavirus
 Individuals with certain comorbid conditions, such as diabetes mellitus, are reported to be more severely affected from a coronavirus infection. Pinedo—Torres et al. (2020) performed random-effects meta-analysis and estimated the prevalence of diabetes as follows: 451.9 cases per 1000 patients infected with MERS-Cov, 90.38 cases per 1000 patients infected with SARS-Cov-1, and 100.42 cases per 1000 patients infected with SARS-Cov-2.
- Prevalence of chronic kidney disease (CKD)
 - Chronic kidney disease is a risk factor for cardiovascular disease. Hill et al. (2016) performed random-effects meta-analysis and estimated a prevalence of 13.4% for chronic kidney disease.

Introduction Meta-analysis for prevalence Multilevel meta-analysis Conclusion

Meta-analysis for prevalence

Fictional chronic kidney disease (CKD) data

- . use extremeprop
- . describe

Contains data from extremeprop.dta

Observations: 15

Variables: 5 5 Jul 2023 10:32

Variable name	Storage type	Display format	Value label		
author year mean_age ssize events	str20 float float float float	%20s %9.0g %9.0g %9.0g %9.0g		Author Year Mean age of participants Sample size Number of participants with CKD	

Sorted by:

Meta-analysis data

. list author year events ssize

		author	year	events	ssize
1.	Ortiz	et al.	1975	0	300
2.	Reynolds	et al.	2001	1	800
3.	Medina	et al.	1980	2	840
4.	Krasinsky	et al.	2002	16	520
5.	Cusack	et al.	2000	4	105
6.	Kaling	et al.	1995	47	650
7.	Johnson	et al.	1992	80	670
8.	Villanueva	et al.	1992	89	740
9.	Rogen	et al.	2004	226	915
10.	Yeun	et al.	2008	161	465
11.	Baldwin	et al.	2011	348	820
12.	Andrews	et al.	2012	72	150
13.	Simone	et al.	2007	197	200
14.	Barker	et al.	2016	219	220
15.	Young	et al.	2004	299	300

Meta-analysis models

K independent studies; each reports the number of events observed and the sample size of the study, allowing us to compute the following:

- ullet an estimate, $\hat{ heta}_j$, of the true (unknown) effect size $heta_j$
- ullet an estimate, $\hat{\sigma}_i$, of its standard error

$$\hat{\theta}_j = \theta_j + \epsilon_j, \ \epsilon_j \sim \mathcal{N}(0, \ \hat{\sigma}_j^2)$$

Model	Assumption	Target of inference
Common effect	$\theta_1 = \theta_2 = \ldots = \theta_K$	Common value $ heta$
Fixed effects	θ_i fixed	$\theta = \text{weighted average}(\theta_i)$
Random effects	$\theta_j = \{\theta + u_j\} \sim \mathcal{N}(\theta, \tau^2)$	$ heta = \mathbb{E}(heta_j)$

Random-effects meta-analysis

- Recall that, for each study, we'll compute an estimate of the proportion, $\hat{\theta}_j$, and an estimate, $\hat{\sigma}_j$, of its standard error
- For random-effects models, the overall estimate of the prevalence is a weighted average of the study-specific estimates

$$\hat{\theta}^* = \frac{\sum_{j=1}^K w_j \hat{\theta}_j}{\sum_{j=1}^K w_j}$$

where $w_j = \frac{1}{\hat{\sigma}_j^2 + \hat{\tau}^2}$ and $\hat{\tau}^2$ is the variance of the random effects

Effect sizes for a proportion

Effect size	Estimate	Variance
Raw proportion	$\hat{p} = \frac{e}{n}$	$\frac{\hat{p}(1-\hat{p})}{n}$
Freeman-Tukey	$\hat{p}_{FT} = \arcsin(\sqrt{rac{e}{n+1}}) + \arcsin(\sqrt{rac{e+1}{n+1}})$	$\frac{1}{n+0.5}$
Logit	$logit(\hat{ ho}) = In(rac{\hat{ ho}}{1-\hat{ ho}})$	$\frac{1}{n\hat{p}} + \frac{1}{n-n\hat{p}}$

Summary

- We are now familiar with
 - meta-analysis models (common effect, fixed effects, random effects)
 - how the overall estimate is computed (weighted average of the study-specific estimates)
 - effect sizes for proportions
- We can now begin working with our data

Declare meta-analysis data

```
. meta esize events ssize
Meta-analysis setting information
Study information
    No. of studies: 15
       Study label: Generic
        Study size: _meta_studysize
      Summary data: events ssize
       Effect size
              Type: ftukeyprop
             Label: Freeman-Tukev's p
          Variable: _meta_es
         Precision
         Std. err.: meta se
                CI: [_meta_cil, _meta_ciu]
          CI level: 95%
  Model and method
             Model: Random effects
            Method: REMI.
```

System variables

. describe

Contains data from extremeprop.dta

Observations: 15

Variables: 12 5 Jul 2023 10:32

Variable S	torage type	Display format	Value label	Variable label
author	str20	%20s		Author
year	float	%9.0g		Year
mean_age	float	%9.0g		Mean age of participants
ssize	float	%9.0g		Sample size
events	float	%9.0g		Number of participants with CKD
_meta_id	byte	%9.0g		Study ID
_meta_studyla~l	str8	%9s		Study label
_meta_es	double	%10.0g		Freeman-Tukey's p
_meta_se	double	%10.0g		Std. err. for Freeman-Tukey's p
_meta_cil	double	%10.0g		95% lower CI limit for Freeman-Tukey's p
_meta_ciu	double	%10.0g		95% upper CI limit for Freeman-Tukey's p
_meta_studysize	int	%9.0g		Sample size per study

Sorted by:

Note: Dataset has changed since last saved.

STATA 18

Summary of meta-analysis data

```
. meta summarize
```

Effect-size label: Freeman-Tukey's p

Effect size: _meta_es Std. err.: _meta_se

Meta-analysis summary Random-effects model

Method: REML

Number of studies = 15 Heterogeneity:

tau2 = 1.0909T2 (%) = 99.82H2 = 549.89

Effect size: Freeman-Tukey's p

Study	Effect size	[95% conf.	interval]	% weight
Study 1	0.058	-0.055	0.171	6.66
Study 2	0.085	0.016	0.155	6.68
Study 3	0.109	0.041	0.176	6.68
Study 4	0.358	0.272	0.444	6.67
Study 5	0.414	0.224	0.605	6.63
(output on	itted)			
Study 11	1.419	1.351	1.488	6.68
Study 12	1.531	1.371	1.691	6.64
Study 13	2.878	2.739	3.016	6.65
Study 14	2.979	2.847	3.111	6.66
Study 15	3.002	2.889	3.115	6.66
theta	1.139	0.610	1.669	

Test of theta = 0: z = 4.01Prob > |z| = 0.0001Test of homogeneity: Q = chi2(14) = 5004.80 Prob > Q = 0.0000 > 4 = > 4 = >

Summary of meta-analysis data

```
. meta summarize, proportion
```

Effect-size label: Freeman-Tukey's p
Effect size: meta es

Std. err.: _meta_se

Meta-analysis summary Random-effects model

Method: REML

Number of studies = Heterogeneity:

tau2 = 1.0909 I2 (%) = 99.82 H2 = 549.89

Study	Proportion	[95% conf.	interval]	% weight
Study 1	0.000	0.000	0.006	6.66
Study 2	0.001	0.001	0.005	6.68
Study 3	0.002	0.000	0.007	6.68
Study 4	0.031	0.017	0.048	6.67
Study 5	0.038	0.008	0.085	6.63
(output om	itted)			
Study 11	0.424	0.391	0.458	6.68
Study 12	0.480	0.400	0.560	6.64
Study 13	0.985	0.962	0.998	6.65
Study 14	0.995	0.981	0.997	6.66
Study 15	0.997	0.986	0.997	6.66
invftukey(theta)	0.290	0.089	0.549	

Test of theta = 0: z = 4.01

Test of homogeneity: Q = chi2(14) = 5004.80

Prob > |z| = 0.0001

STATA 18

Freeman-Tukey-transformed proportions

- Freeman-Tukey-transformed proportions have two advantages:
 - The back-transformed CIs are guaranteed to be in the [0,1] range
 - ullet The variance does not depend on the number of events, which means it will not assign artificially large or small weights to studies with \hat{p} close to 0 or 1

Declare meta-analysis data

Compute effect sizes

```
meta esize events samplesize [, model esize(estype) zerocells(spec)]
model: random, common, or fixed
estype: raw proportion, Freeman—Tukey-transformed proportion,
logit-transformed proportion
```

Logit-transformed proportions

```
. meta esize events ssize, esize(logitprop)
Meta-analysis setting information
Study information
    No. of studies: 15
       Study label: Generic
        Study size: _meta_studysize
      Summary data: events ssize
       Effect size
             Type: logitprop
             Label: Logit proportion
         Variable: meta es
   Zero-cells adj.: 0.5, only0
         Precision
         Std. err.: _meta_se
                CI: [ meta cil. meta ciu]
          CT level: 95%
  Model and method
             Model: Random effects
            Method: REMI.
```

Effect sizes for a proportion

Effect size	Estimate	Variance
Raw proportion	$\hat{p}=rac{e}{n}$	$\frac{\hat{p}(1-\hat{p})}{n}$
Freeman-Tukey	$\hat{p}_{FT} = \arcsin(\sqrt{\frac{e}{n+1}}) + \arcsin(\sqrt{\frac{e+1}{n+1}})$	$\frac{1}{n+0.5}$
Logit	$logit(\hat{ ho}) = In(rac{\hat{ ho}}{1-\hat{ ho}})$	$\frac{1}{n\hat{p}} + \frac{1}{n-n\hat{p}}$

Inverse-logit transformation

. $\mbox{meta summarize, proportion}$

Effect-size label: Logit proportion
Effect size: meta es

Std. err.: _meta_se

Meta-analysis summary Random-effects model

Method: REML

Number of studies = 19 Heterogeneity:

tau2 = 13.9514 I2 (%) = 99.83 H2 = 602.91

Study	Proportion	[95% conf.	interval]	% weight
Study 1	0.000	0.000	0.026	6.00
Study 2	0.001	0.000	0.009	6.40
Study 3	0.002	0.001	0.009	6.62
Study 4	0.031	0.019	0.050	6.82
Study 5	0.038	0.014	0.097	6.73
(output o	mitted)			
Study 11	0.424	0.391	0.459	6.85
Study 12	0.480	0.401	0.560	6.84
Study 13	0.985	0.955	0.995	6.69
Study 14	0.995	0.968	0.999	6.40
Study 15	0.997	0.977	1.000	6.40
invlogit(theta)	0.220	0.040	0.657	

Test of theta = 0: z = -1.30

Test of homogeneity: Q = chi2(14) = 766.23

Prob > |z| = 0.1947

STATA 18

Raw proportions

```
. meta esize events ssize, esize(proportion)
Meta-analysis setting information
 Study information
    No. of studies: 15
       Study label: Generic
        Study size: _meta_studysize
      Summary data: events ssize
       Effect size
              Type: proportion
             Label: Proportion
          Variable: meta es
   Zero-cells adj.: 0.5, only0
         Precision
         Std. err.: _meta_se
                CI: [ meta cil. meta ciu]
          CT level: 95%
  Model and method
             Model: Random effects
            Method: REMI.
```

Cls for raw proportions

```
. meta summarize, level(97)

Effect-size label: Proportion

Effect size: _meta_es

Std. err.: meta se
```

Meta-analysis summary Random-effects model

Method: REML

Number of studies = 15 Heterogeneity: tau2 = 0.1435 I2 (%) = 99.99 H2 = 9871.81

Study	Proportion	[97% conf.	interval]	% weight
Study 1	0.002	-0.003	0.007	6.68
Study 2	0.001	-0.001	0.004	6.68
Study 3	0.002	-0.001	0.006	6.68
Study 4	0.031	0.014	0.047	6.68
Study 5	0.038	-0.002	0.079	6.66
(output or	itted)			
Study 11	0.424	0.387	0.462	6.66
Study 12	0.480	0.391	0.569	6.60
Study 13	0.985	0.966	1.000	6.67
Study 14	0.995	0.986	1.000	6.68
Study 15	0.997	0.989	1.000	6.68
theta	0.324	0.112	0.536	

Test of theta = 0: z = 3.31

Test of homogeneity: Q = chi2(14) = 1.3e+05

Prob > |z| = 0.0009Prob > Q = 0.0000

STATA 18

Effect sizes for a proportion

- Logit transformation
 - Like the Freeman–Tukey transformation, guarantees that back-transformed confidence intervals will be in the [0,1] range
 - However, it assigns small weights to studies with \hat{p} close to 0 or 1 for common-effect models
- Raw proportions
 - Can produce confidence limits outside the [0, 1] range
 - Tends to assign large weights to studies with \hat{p} close to 0 or 1 for common-effect models
- Freeman—Tukey-transformed proportions solve both of these problems; they are variance stabilizing and produce a reasonable CI range

Fictional CKD data

 Let's continue with a modified version of the CKD data with less extreme values for the proportions

```
. use myprop1, clear
```

[.] list author ssize events mean_age

	author	ssize	events	mean_age
1.	Andrews & Thompson	1200	208	37.2
2.	Barker et al.	1125	277	57.4
3.	Cusack & Golds	1000	54	30.1
4.	Johnson & Johnson	670	80	35.3
5.	Kaling et al.	650	47	32.4
6.	Krasinsky & Blunt	520	23	28.2
7.	Medina et al.	840	25	26.5
8.	Ortiz & Baldwin	820	128	36.5
9.	Ortiz et al.	500	9	26.1
10.	Reynolds et al.	2000	57	24.5
11.	Rogen et al.	915	118	36.2
12.	Simone et al.	1600	401	48.6
13.	Villanueva & Blunt	740	89	34.7
14.	Yeun et al.	465	65	37.3
5.	Young et al.	2260	528	62.6
	_			

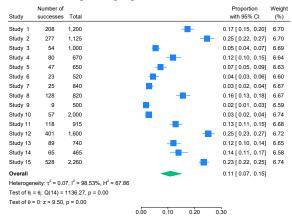
Computing Freeman-Tukey-transformed proportions

• Let's compute Freeman-Tukey-transformed proportions

```
. meta esize events ssize
Meta-analysis setting information
Study information
    No. of studies: 15
      Study label: Generic
        Study size: _meta_studysize
      Summary data: events ssize
       Effect size
              Type: ftukeyprop
            Label: Freeman-Tukey's p
          Variable: _meta_es
         Precision
         Std. err.: _meta_se
                CI: [ meta_cil, meta_ciu]
          CI level: 95%
 Model and method
            Model: Random effects
            Method: REML
```


Forest plot

. meta forestplot, proportion



Random-effects REML model

STATA 18

Cls for individual studies

- By default, meta summarize and meta forestplot compute
 Wald intervals for the proportion of each individual study
- However, it has been argued that the coverage probability of the Wald interval does not meet the nominal level for extreme values of the proportion and for small sample sizes

Coverage probability for Wald Cls

 \bullet Brown, Cai, and DasGupta (2001) plot the coverage probability for a Wald 95% CI for p = 0.2

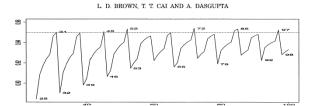


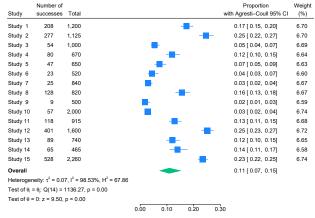
Fig. 1. Standard interval; oscillation phenomenon for fixed p = 0.2 and variable n = 25 to 100.

Alternative CIs for individual studies

- Alternative CI computations include the Clopper-Pearson,
 Wilson, Agresti-Coull, and Jeffreys and can be obtained with the citype() option
- Brown, Cai, and DasGupta (2001) recommend either the Wilson or Jeffreys interval for a sample size of 40 or less
- For sample sizes greater than 40, they found the Wilson, Jeffreys, and Agresti–Coull intervals to behave similarly

Forest plot with alternative CI

. meta forestplot, proportion citype(agresti)

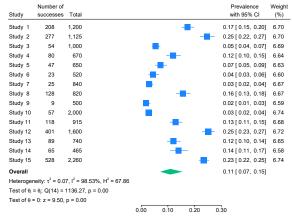


Random-effects REML model



Customizing the forest plot

. meta forestplot, prevalence

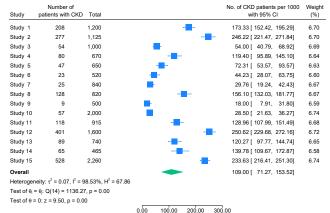


Random-effects REML model

Customizing the forest plot

. meta forestplot, columnopts(_e, title("patients with CKD"))

transform("No. of CKD patients per 1000": invftukey, scale(1000))

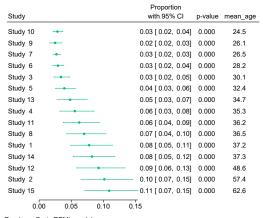


Random-effects REML model

STATA 18

Cumulative forest plot

. meta forestplot, proportion cumulative(mean_age)



Random-effects REML model

Prediction interval

- In addition to the CI for the estimate of the overall proportion, we can also compute the prediction interval
- The prediction interval estimates a plausible range for the proportion in a future study by incorporating the uncertainty of the between-study variance

Prediction interval and Agresti-Coull CI

. meta summarize, proportion citype(agresti) predinterval

Effect-size label: Freeman-Tukey's p
Effect size: meta es

Std. err.: meta_es

Meta-analysis summary Random-effects model

Method: REML

Number of studies = 15 Heterogeneity:

> tau2 = 0.0668 I2 (%) = 98.53 H2 = 67.86

		Agresti-	-Coull	
Study	Proportion	[95% conf.	interval]	% weight
Study 1	0.173	0.153	0.196	6.70
Study 2	0.246	0.222	0.272	6.70
Study 3	0.054	0.042	0.070	6.69
Study 4	0.119	0.097	0.146	6.64
Study 5	0.072	0.055	0.095	6.63
(output on	itted)			
Study 11	0.129	0.109	0.152	6.68
Study 12	0.251	0.230	0.272	6.72
Study 13	0.120	0.099	0.146	6.65
Study 14	0.140	0.111	0.174	6.58
Study 15	0.234	0.217	0.252	6.74
invftukey(theta)	0.109	0.071	0.154	

Note: Agresti CIs are reported only for individual studies. 95% prediction interval for invftukey(theta): [0.002, 0.343]

STATA 18

Exploring heterogeneity

- With meta summarize, we can estimate the overall proportion and perform cumulative meta-analysis to see how effect sizes vary as we accumulate studies
- We can also perform meta-regression to investigate whether between-study heterogeneity can be explained by one or more moderators

Random-effects meta-regression

Random-effects meta-regression model:

$$\hat{\theta}_j = x_j \beta + \epsilon_j^* = x_j \beta + u_j + \epsilon_j$$

where
$$\epsilon_j^* \sim \mathcal{N}(0,\,\hat{\sigma}_j^2 + au^2)$$

Meta-regression

```
. meta regress mean_age
```

Effect-size label: Freeman-Tukey's p

Effect size: meta es Std. err.: _meta_se

Random-effects meta-regression

Method: REML

Number of obs = 15 Residual heterogeneity:

> tan2 =.01087 I2 (%) = 91.14

H2 = 11.28

83.72

R-squared (%) = Wald chi2(1) 66.74

Prob > chi2 0.0000

_meta_es	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
mean_age _cons	.0208473 1068683	.0025518 .1001801	8.17 -1.07		.0158459 3032177	.0258487

Test of residual homogeneity: Q_res = chi2(13) = 179.99 Prob > Q_res = 0.0000

Subgroup-analysis forest plot

. meta forestplot, proportion subgroup(agegroup) ...

Study	Number of patients with CKD	Total	No. of CKD patients per 1000 with 95% CI	Weigh (%)
Mean age < 30				
Study 3	54	1,000	54.00 [40.79, 68.92]	6.69
Study 6	23	520	44.23 [28.07, 63.75]	6.60
Study 7	25	840	29.76 [19.24, 42.43]	6.67
Study 9	9	500	18.00 [7.91, 31.80]	6.59
Study 10	57	2,000	28.50 [21.63, 36.27]	6.74
			33.98 [23.01, 46.95]	
30 <= Mean age < 40				
Study 4	80	670	119.40 [95.89, 145.10]	6.64
Study 5	47	650	72.31 [53.57, 93.57]	6.63
Study 8	128	820	156.10 [132.03, 181.77]	6.67
Study 11	118	915	128.96 [107.99, 151.49]	6.68
Study 13	89	740	120.27 [97.77, 144.74]	6.65
			118.31 [92.38, 146.95]	
40 <= Mean age				
Study 1	208	1,200	173.33 [152.42, 195.29]	6.70
Study 2	277	1,125	246.22 [221.47, 271.84]	6.70
Study 12	401	1,600	250.62 [229.68, 272.16]	6.72
Study 14	65	465	139.78 [109.67, 172.87]	6.58
Study 15	528	2,260	233.63 [216.41, 251.30]	6.74
			208.31 [166.88, 253.02]	
Overall			109.00 [71.27, 153.52]	
		0.	0 300.00	
andom-effects REML r	nodel			

stata 🔞

Subgroup meta-analysis

. meta summarize, subgroup(agegroup) prop noheader nometashow (output omitted)

Heterogeneity summary

Group	df	Q	P > Q	tau2	% I2	H2
Mean age < 30	4	18.40	0.001	0.004	79.43	4.86
30 <= Mean ~40	4	26.68	0.000	0.008	85.69	6.99
40 <= Mean age	4	51.69	0.000	0.014	94.54	18.31
Overall	14	1136.27	0.000	0.067	98.53	67.86

Test of group differences: Q_b = chi2(2) = 92.60

 $Prob > Q_b = 0.000$

Small-study effects

- "Small-study effects" refers to cases in which smaller studies tend to report results that are systematically different from those reported by larger studies.
- Small-study effects may be present because of publication bias.
- Publication bias refers to cases in which the decision to publish a study depends on the statistical significance of its results.

Tools for exploring small-study effects

- Funnel plots
 - Create a scatterplot of the study-specific effect sizes against measures of study precision.
- Tests for small-study effects
 - Regression-based and nonparametric rank correlation tests.
- Trim-and-fill analysis
 - Assess the impact of publication bias on the results of the meta-analysis.
- We will not explore these tools because we have a high degree of heterogeneity

Introduction Meta-analysis for prevalence **Multilevel meta-analysis** Conclusion

Multilevel meta-analysis

Multilevel data

- In our previous example, we performed a standard random-effects meta-analysis in which we assumed that the effect sizes were independent across studies
- However, if your data have a multilevel (hierarchical) structure, you can perform multilevel meta-analysis to account for the correlation between effect sizes in the same group

Standard meta-analysis as a two-level model

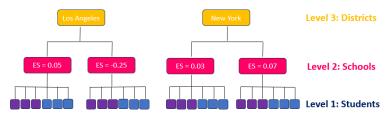
- Consider a series of studies that examined whether students performed better under a modified school calendar, with frequent breaks, as opposed to the traditional schedule
- Each study was performed in a different school
- The effect size is the standardized mean difference in performance, with positive values indicating that students on the modified calendar performed better than students on the traditional calendar

Standard meta-analysis as a two-level model

Here we see the effect size reported by each study

Three-level model

- Now suppose that multiple studies belong to the same district
- Schools belonging to the same district will be more similar in terms of demographics and socioeconomical factors, resulting in a correlation between results within a district



• Here we see how studies are grouped by district

Modified school calendar data

```
. use schoolcal2, clear
```

(Effect of modified school calendar on student achievement)

. describe

Contains data from schoolcal2.dta

Observations: 56 Effect of modified school calendar on student achievement Variables: 9 5 Jul 2023 11:06 (dta has notes)

Variable name	Storage type	Display format	Value label	Variable label
district	int	%12.0g		District ID
school	byte	%9.0g		School ID
study	byte	%12.0g		Study ID
stdmdiff	double	%10.0g		Standardized difference in means of achievement test scores
var	double	%10.0g		Within-study variance of stdmdiff
year	int	%12.0g		Year of the study
se	double	%10.0g		Within-study standard-error of stdmdiff
year_c	byte	%9.0g		Year of the study centered around 1990
mean_exp	float	%9.0g		Mean teacher experience

Sorted by: district

Modified school calendar data

. list district school study stdmdiff mean_exp in 1/11, sepby(district)

	district	school	study	stdmdiff	mean_exp
1.	11	1	1	18	6.394918
2.	11	2	2	22	1.820014
2. 3.	11	3	3	. 23	7.86858
4.	11	4	4	3	8.369441
5.	12	1	5	.13	10.48499
6.	12	2	6	26	10.73829
7.	12	3	7	.19	2.892403
8.	12	4	8	.32	6.689758
9.	18	1	9	.45	5.5483
10.	18	2	10	. 38	13.40538
11.	18	3	11	. 29	3.927117

Multilevel meta-analysis model

We'll fit a three-level random-intercepts model

$$\hat{\theta}_{jk} = \theta + u_j^{(3)} + u_{jk}^{(2)} + \epsilon_{jk}$$

where $u_j^{(3)} \sim \mathcal{N}(0,\, \tau_3^2)$, $u_{jk}^{(2)} \sim \mathcal{N}(0,\, \tau_2^2)$, and $\epsilon_{jk} \sim \mathcal{N}(0,\, \hat{\sigma}_{jk}^2)$. Note that j represents the third level (district), k represents the second level (school within district), and ϵ_{jk} represents the sampling errors.

Three-level meta-analysis

. meta multilevel stdmdiff, relevels(district school) essevariable(se) nolog Multilevel REML meta-analysis ${\tt Number\ of\ obs\ =\ 56}$

Grouping information

Group variable	No. of	Obser	group	
	groups	Minimum	Maximum	
district	11	3	5.1	11
school	56	1	1.0	1

Log restricted-likelihood = -7.9587239

Wald chi2(0) = .Prob > chi2 = .

stdmdiff Coefficient Std. err. z P>|z| [95% conf. interval]

Test of homogeneity: Q_M = chi2(55) = 578.86

 $Prob > Q_M = 0.0000$

Random-effects p	parameters	Estimate
district: Identity	sd(_cons)	. 2550724
school: Identity	sd(_cons)	. 1809324

ѕтата 📧

Assess variability among effect sizes

```
. estat heterogeneity
Method: Cochran
Joint:
    I2 (%) = 90.50
Method: Higgins-Thompson
district:
    I2 (%) = 63.32
school:
    I2 (%) = 31.86
Total:
    I2 (%) = 95.19
```

Fit a two-level model

- We want to test whether there is a nonnegligible amount of heterogeneity between the schools within a district
- First, we store our results from the previous model
 - . meta multilevel stdmdiff, ///
 relevels(district school) essevariable(se)
 - . estimates store full_model
- We now fit a two-level model with district as the second level
 - . meta multilevel stdmdiff, ///
 relevels(district), essevariable(se)
 - . estimates store school_effect

Likelihood-ratio test

```
. lrtest full_model school_effect
Likelihood-ratio test
Assumption: school_effect nested within full_model
LR chi2(1) = 48.52
Prob > chi2 = 0.0000
Note: The reported degrees of freedom assumes the null hypothesis is not on the boundary of the parameter space. If this is not true, then the reported test is conservative.
Note: LR tests based on REML are valid only when the fixed-effects specification is identical for both models.
```

Sensitivity analysis

- Suppose we're interested in exploring how different magnitudes of the school-level variation impact our estimates of the overall standardized mean difference and the district-level variation
- To answer this question, we'll refit our model, each time setting the random-effects standard deviations for the school level to a different value

Random-intercepts standard deviations

```
. meta multilevel stdmdiff, ///
relevels(district school, sd(. 0.01)) esse(se)
. estimates store fixsd1
. meta multilevel stdmdiff, ///
relevels(district school, sd(. 0.18)) esse(se)
. estimates store fixsd2
. meta multilevel stdmdiff, ///
relevels(district school, sd(. 0.60)) esse(se)
. estimates store fixsd3
```

Comparing effect sizes

. estimates table _all, stats(sd2) keep(stdmdiff:_cons) b(%8.3f) se(%8.3f)

Variable	fixsd1	fixsd2	fixsd3
_cons	0.196 0.090	0.185 0.085	0.123 0.083
sd2	0.010	0.180	0.600

Legend: b/se

Comparing random-effects standard deviations for districts

. estimates table _all, stats(sd2) keep(lns1_1_1:_cons) b(%8.3f) eform

Variable	fixsd1	fixsd2	fixsd3
_cons	0.288	0.255	0.000
sd2	0.010	0.180	0.600

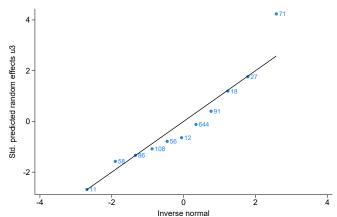
Predictions of random effects

- . qui: meta multilevel stdmdiff, relevels(district school) $\ensuremath{\mathtt{esse}}(\ensuremath{\mathtt{se}})$
- . predict double u3 u2, reffects reses(se_u3 se_u2, diagnostic)
- . by district, sort: generate tolist = (_n==1)
- . list district u3 se_u3 if tolist

	district	u3	se_u3
1.	11	18998596	.07071817
5.	12	08467077	.13168501
9.	18	.1407273	.11790486
12.	27	.24064814	.13641505
16.	56	1072942	.13633364
20.	58	23650899	.15003184
31.	71	.53427781	.12606072
34.	86	2004695	.1499012
42.	91	.05711692	.14284823
48.	108	14168396	.13094894
53.	644	01215679	.10054689

Normal quantile plot

- . generate double ustan3 = u3/se_u3
- . qnorm ustan3 if tolist, mlabel(district)



Models with random slopes

- meta multilevel allows us to fit random-intercepts meta-analysis models
 - . meta multilevel stdmdiff, relevels(district school) esse(se)
- We can also fit this model as follows:
 - . meta meregress stdmdiff || district: || school:, esse(se)
- If we wish to include random slopes, we can instead use meta meregress
 - . meta meregress stdmdiff x1 || district: x1 || school:, esse(se)
 - The me in meregress refers to mixed effects

Three-level meta-regression with random slopes

```
. meta meregress stdmdiff mean_exp \ensuremath{///}
```

- > || district: mean_exp ///
- > || school:, essevariable(se) nolog nogroup

Multilevel REML meta-regression

Number of obs = 56 Wald chi2(1) = 8.37 Prob > chi2 = 0.0038

Log restricted-likelihood = -3.3635425

stdmdiff	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
mean_exp	0262054	.009058	-2.89	0.004	0439587	0084521
_cons	.3580009	.0981127	3.65	0.000	.1657036	.5502982

Test of homogeneity: $Q_M = chi2(54) = 558.47$ Prob > $Q_M = 0.0000$

Random-effects parameters	Estimate		
district: Independent sd(mean_exp) sd(_cons)	.0156308		
school: Identity sd(_cons)	. 146955		

Display variance components

. estat sd, variance

Random-effects	Estimate		
district: Indepen	.0002443 .0678826		
school: Identity	var(_cons)	.0215958	

Random-effects covariance structures

$$\begin{array}{ll} \text{unstructured} & \Sigma = \begin{bmatrix} \sigma_{11} & & \\ \sigma_{21} & \sigma_{22} & \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} \\ \\ \text{independent} & \Sigma = \begin{bmatrix} \sigma_{11} & & \\ 0 & \sigma_{22} & \\ 0 & 0 & \sigma_{33} \end{bmatrix} \\ \\ \text{exchangeable} & \Sigma = \begin{bmatrix} \sigma_{11} & & \\ \sigma_{21} & \sigma_{11} & \\ \sigma_{21} & \sigma_{21} & \sigma_{11} \end{bmatrix} \\ \\ \text{identity} & \Sigma = \begin{bmatrix} \sigma_{11} & & \\ 0 & \sigma_{11} & \\ 0 & 0 & \sigma_{33} \end{bmatrix} \end{array}$$

Specifying the random-effects covariance structure

```
. meta meregress stdmdiff mean_exp ///
> || district: mean_exp, covariance(unstructured) ///
> || school:, essevariable(se) nolog nogroup variance
```

Multilevel REML meta-regression

Number of obs = 56Wald chi2(1) = 9.12

Log restricted-likelihood = -1.6956741

Prob > chi2 = 0.0025

stdmdiff	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
mean_exp _cons		.0106528 .1203726			0530423 .1571773	0112842 .6290293

Test of homogeneity: $Q_M = chi2(54) = 558.47$

 $\texttt{Prob} \, > \, \texttt{Q}_\texttt{M} \, = \, \texttt{0.0000}$

Random-effects parameters	Estimate
<pre>district: Unstructured</pre>	.0005578 .1166725 0068591
school: Identity var(_cons)	.0201185

sтата 18

Introduction Meta-analysis for prevalence Multilevel meta-analysis Conclusion

Conclusion

Summary

- Today, we learned how to do the following in Stata:
 - Compute different effect sizes for meta-analysis of prevalence.
 - Summarize meta-analysis data in both a table and a graph.
 - Perform meta-regression with effect sizes that have hierarchical structures.
 - Assess heterogeneity at different levels of the hierarchy.

Resources

- Overview of meta-analysis features in Stata
- Video tutorial on performing meta-analysis in Stata
- Stata Meta-Analysis Reference Manual

References

Barker, T. H., C. B. Migliavaca, C. Stein, V. Colpani, M. Falavigna, E. Aromataris, and Z. Munn. 2021. Conducting proportional meta-analysis in different types of systematic reviews: A guide for synthesisers of evidence. BMC Medical Research Methodology 21.

Brown, L. D., T. T. Cai, and A. DasGupta. 2001. Interval estimation for a binomial proportion. *Statistical Science* 16: 101–133.

Hill, N. R., S. T. Fatoba, J. L. Oke, J. A. Hirst, C. A. O'Callaghan, D. S. Lasserson, and F. D. R. Hobbs. 2016. Global prevalence of chronic kidney disease - A systematic review and meta-analysis. *PLoS One* 11(7).

Pinedo-Torres, I., M. Flores-Fernández, M. Yovera-Aldana, C. Gutierrez-Ortiz, P. Zegarra-Lizana, C. Intimayta-Escalante, C. Moran-Mariños, C. Alva-Diaz, and K. Pacheco-Barrios. 2020. Prevalence of diabetes mellitus and its associated unfavorable outcomes in patients with acute respiratory syndromes due to coronaviruses infection: A systematic review and meta-analysis. *Clinical Medicine Insights: Endocrinology and Diabetes* 13: 1–16.

