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Overview

This talk is about methods and software for estimating the
causal impact of a few covariates on an outcome in a sparse
high-dimensional model

This talk

defines sparse high-dimensional models
discusses Neyman-orthogonal (NO) estimators for the
parameters of interest
discusses why use BIC-based stepwise instead of the lasso for an
NO estimator
discusses the the swpo command
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What’s a high dimensional model?

I have an extract of the data Sunyer et al. (2017) used to
estimate the effect air pollution on the response time of primary
school children

E[htimei |no2 class, x] = exp(no2 classiγ + xiβ)

htime the response time on test of child i (hit time)
no2 class air-pollution level in the school of child i
xi vector of control variables that might need to be

included

I want to estimate the effect no2 class on htime and a
confidence interval for the size of this effect
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High-dimensional models for inference

E[htimei |no2 class, x] = exp(no2 classiγ + xiβ)

If the number of covariates in x is small relative to the number
of observations

I can simply include all the controls in x

In high-dimensional models, there are too many potential
control covariates in x to reliably estimate γ when all the
controls are included

There are 252 controls in x, but I only have 1,036 observations

I cannot reliably estimate γ if I include all 252 controls
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Potential solutions

E[htimei |no2 class, x] = exp(no2 classiγ + xiβ)

Suppose that x̃ contains the subset of x that must be included
to get a good estimate of γ for the sample size that I have

If I knew x̃, I could use the model

E[htimei |no2 class, x] = exp(no2 classiγ + x̃iβ)

I am willing to assume the number of variables in x̃i is small
relative to the sample size

This is a sparsity assumption
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A high-dimentional model is one in which there are too many
potential covariates, given the sample size

A sparse high-dimentional model in one in which, we only need
to include a few of the many potential covariates

Few is defined relative to the sample size

We must solve two problems to do estimation and inference in a
sparse high-dimensional model

1 How to select the few important covariates?
2 How to get an estimator that is robust to the first stage

covariate selection
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Theory-based model selection

The traditional approach would be to use theory to determine
which covariates should be included

Theory tells us to include controls x̌

Poisson quasi maximum likelihood (QML) of htime on
no2 class and controls x̌

Let γ̂x̌ be estimator with theory-based controls
Let γ̂x̃ be estimator with best-approximating-model controls
γ̂x̃ converges to γ but γ̂x̌ does not converge to γ

Live with large-sample bias from theory-based covariate selection
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Many researchers want to use the lasso and other data-based
methods to perform the covariate selection

These methods should be able to remove the large-sample bias
arising from theory-based covariate selection

Some post-covariate-selection estimators provide reliable
inference for the few parameters of interest

Some do not
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A naive approach

Naive estimator:

1 Use covariate-selection to obtain estimate of which covariates in
x are in x̃
Denote estimate by xhat

2 Use QML Poisson to estimate γ and β̃
poisson htime no2 class xhat
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Why naive approach fails

Unfortunately, naive estimators that use the selected covariates
as if they were x̃ provide unreliable inference in repeated samples

Covariate-selection methods make too many mistakes in
estimating x when some of the coefficients are small in
magnitude
Here is an example of small coefficient

A nonzero coefficient with a magnitude between 1 and 3 times
its standard error is small

If your model only approximates the process that generated the
data, there are approximation terms

The coefficients on some of the approximating terms are
probably small

See Leeb and Pötscher (2005), Leeb and Pötscher (2006), Leeb
and Pötscher (2008), and Pötscher and Leeb (2009)
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Missing small-coefficients covariates matters

It might seem that not finding covariates with small coefficients
does not matter

But it does

When some of the covariates have small coefficients, the
distribution of the covariate-selection method is not sufficiently
concentrated on the set of covariates that best approximates the
process that generated the data

Covariate-selection methods will frequently miss the covariates
with small coefficients causing omitted variable bias

The random inclusion or exclusion of these covariates causes

the distribution of the naive post-selection estimator to be not
normal
it makes the usual large-sample theory approximation invalid in
theory and unreliable in finite samples
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Let’s get specific

The regression function is

E[y |d, x] = exp(dα′ + x̃β̃
′
) (1)

where

d includes the few covariates of interest
x̃ is the subset of x that belong in the model

there are too many covariates in x to use the
quasi-maximum-likelihood (QML) Poisson estimator for the
model

E[y |d, x] = exp(dα′ + xβ′)

If you knew the subset x̃ you could estimate α and the β the
model in (1)
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E[y |d, x] = exp(dα′ + x̃β̃
′
)

A series of seminal papers

Belloni, Chen, Chernozhukov, and Hansen (2012);

Belloni, Chernozhukov, and Hansen (2014); and

Belloni, Chernozhukov, and Wei (2016)

derived a series of Neyman-orthogonal estimators that provide
reliable inference about α

These estimators use a covariate-selection method to select x̃

The cost of using a covariate-selection method is that these
Neyman-orthogonal estimators do not produce estimates for β̃
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When you use two-step estimators, you usually have to adjust
your standard errors to account for the parameters you
estimated in the first step

When you estimate average partial effects, you have to adjust
for estimating the coefficients in the first stage
Stack the moment conditions

When you

1 do model selection
2 use the selected model

you have to use an estimator in the second stage that is robust
to the model selection mistakes made in the first step

An NO estimator uses moment equations that have had the
effect of the first stage model selection removed
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In a linear model NO estimators end up being an extension of the
partialing out algorighm we all learned in first regression class

Stata calls NO estimators partialling-out estimators

NO algorithm for
yi = diγ + xiβ + εi

1 Use selection method to find xy (subset of x) that should be
included in model for y

2 Let ỹ be residuals from regressing y on xy
3 Use selection method to find xd (subset of x) that should be

included in model for d
4 Let d̃ be residuals from regressing d on xd
5 Estimate γ from OLS of ỹx on ỹd
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Covariate selection

Methods for covariate selection
Best subset regression

Compute the BIC, or another IC, for all possible subsets of x
Select the model that minimizes the BIC
Infeasible at p gets large, cannot compute all 2p estimators

One can view the lasso as a feasible convex optimization
problem that approximates the best-subset problem

The lasso has tuning parameters that must be selected
Each method of selecting the lasso tuning parameters is, in
effect, a different version of the lasso

Stepwise algorithms are another way to approximate the
best-subset problem
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Belloni, Chernozhukov, Hansen and coathors use a particular
version of the least absolute shrinkage and selection operator
(lasso) to perform covariate selection

See Hastie et al. (2015) and Belloni et al. (2012) for
introductions to the lasso and the form used by Belloni,
Chernozhukov, Hansen and coathors

In our papers, we look at using different versions of the lasso
and at using BIC-based stepwise
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BIC based stepwise algorithm

1 Let xf be the full set of potential covariates
2 Let xin be the covariates to include in the model

At the start let xin include the constant term

3 Let BICc be the BIC for the current model of QML of y on xin
4 For each covariate j in xf , let BICj be the for the model of y on

xin and xj
5 Let j̃ the j that yields the smallest BICj

6 If BICj̃ < BICc , then

add xj̃ to xin
remove xj̃ from xf
let BICc = BICj̃

go to step 4

else
exit

See Drukker and Liu (2021) and citations therein for more details
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Why consider forward stepwise

Drukker and Liu (2021)

discuss a family of data generating processes (DGPs) for which
the lasso fails to select the covariates x̃ in finite samples
present simulation evidence that a BIC-based forward stepwise
method can reliably select the x̃ from x for DGPs in this family
present simulation evidence that a testing-based forward
stepwise method cannot reliably select the x̃ from x for DGPs
in this family

Using a BIC-based forward stepwise method takes longer than
lasso-based methods

Can take much longer

You are trading time for selection accuracy for some DGPs
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Iterated sure independence screening (SIS) uses a first step that
removes variables that have no marginal predictive power. The
iterative process puts back the variables that have conditional
predictive power and removes the ones that were false included
in the first step.

We are currently looking into using a version of iterated SIS to
reduce the computation time of BIC-based forward-stepwise NO
estimators

Fan and Lv (2008), Fan et al. (2009), and Fan and Song (2010)
provide introductions to iterative SIS
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Use extract of data from Sunyer et al. (2017)

. use breathe7, clear

. describe
Contains data from breathe7.dta
Observations: 1,089

Variables: 20 22 Sep 2021 14:39

Variable Storage Display Value
name type format label Variable label

htime double %10.0g ANT: mean hit reaction time (ms)
no2_class float %9.0g Classroom NO2 levels (g/m3)
sev_sch float %9.0g School vulnerability index
noise_sch float %9.0g Measured school noise (in dB)
age float %9.0g Child´s age (in years)
ppt double %10.0g Daily total precipitation
grade byte %9.0g grade Grade in school
sex byte %9.0g sex Sex
age_start_sch double %4.1f Age started school
oldsibl byte %1.0f Older siblings living in house
youngsibl byte %1.0f Younger siblings living in house
lbfeed byte %19.0f bfeed duration of breastfeeding
smokep byte %3.0f noyes 1 if smoked during pregnancy
feduc4 byte %17.0g edu Paternal education
meduc4 byte %17.0g edu Maternal education
sev_home float %9.0g Home vulnerability index
no2_home float %9.0g Residential NO2 levels (g/m3)
overwt_who byte %32.0g over_wt WHO/CDC-overweight 0:no/1:yes
ndvi_mn double %10.0g Home greenness (NDVI), 300m

buffer
lbweight float %9.0g 1 if low birthweight

Sorted by:
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Potential Controls I

.

. local ccontrols "sev_home sev_sch age no2_home ppt ndvi_mn noise_sch"

.

. local fcontrols "grade sex meduc4 "

.

. local allcontrols "c.(`ccontrols´) i.(`fcontrols´) "

. local allcontrols "`allcontrols´ i.(`fcontrols´)#c.(`ccontrols´) "
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BIC-stepwise-based results

. posw htime no2_class, controls(`allcontrols´) model(poisson) method(bic)

select controls for htime using stepwise bic
select controls for no2_class using stepwise bic

Partialing-out stepwise bic Number of obs = 1,084
Number of controls = 79
Number of selected controls = 45
Wald chi2(1) = 30.92

Model: poisson Prob > chi2 = 0.0000

Robust
htime Coefficient std. err. z P>|z| [95% conf. interval]

no2_class .0034337 .0006175 5.56 0.000 .0022234 .0046439

Note: Chi-squared test is a Wald test of the coefficients of the variables of
interest jointly equal to zero.

. nlcom exp(_b[no2_class])

_nl_1: exp(_b[no2_class])

htime Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 1.00344 .0006196 1619.47 0.000 1.002225 1.004654

Another microgram of NO2 per cubic meter increases the mean
reaction time by about 0.3%
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lasso-based results

. popoisson htime no2_class, controls(`allcontrols´) coef

Estimating lasso for htime using plugin
Estimating lasso for no2_class using plugin

Partialing-out Poisson model Number of obs = 1,084
Number of controls = 79
Number of selected controls = 10
Wald chi2(1) = 29.40
Prob > chi2 = 0.0000

Robust
htime Coefficient std. err. z P>|z| [95% conf. interval]

no2_class .0032534 .0006 5.42 0.000 .0020773 .0044294

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. nlcom exp(_b[no2_class])

_nl_1: exp(_b[no2_class])

htime Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 1.003259 .000602 1666.56 0.000 1.002079 1.004439

Another microgram of NO2 per cubic meter increases the mean
reaction time by about 0.3%
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Conclusions

So far

Sparse high-dimensional models require covariate selection
You must use an NO estimator to account for covariate selection
There are DGPs for which an NO estimator that uses
BIC-stepwise will perform well, but an NO estimator that uses
lasso will not perform well

Future

Use iterated SIS combined with BIC stepwise to get
dramatically faster but just as accurate results
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