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High-dimensional models include too many potential covariates
for a given sample size

I have an extract of the data Sunyer et al. (2017) used to
estimate the effect air pollution on the response time of primary
school children

htime i = no2iγ + xiβ + εi

htime measure of the response time on test of child i (hit time)
no2 measure of the polution level in the school of child i
xi vector of control variables that might need to be included

There are 252 controls in x, but I only have 1,084 observations

I cannot reliably estimate γ if I include all 252 controls
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Potential solutions

htime i = no2iγ + xiβ + εi

I am willing to believe that the number of controls that I need to
include is small relative to the sample size

This is known as a sparsity assumption

Suppose that x̃ contains the subset of x that must be included
to get a good estimate of γ for the sample size that I have

If I knew x̃, I could use the model

htime i = no2iγ + x̃i β̃ + εi

So, the problem is that I don’t know which variables belong in x̃
and which do not
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htime i = no2iγ + x̃i β̃ + εi

Now I have a covariate-selection problem

Which of the controls in x belong in x̃ ?

Historically, I would use theory to decide which variables go into
x̃

Many researchers want to use data-based methods or
machine-learning methods to perform the covariate selection

Some post-covariate-selection estimators provide reliable
inference for the few parameters of interest

Some do not
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A naive approach

The “naive” solution is :

1 Always include the covariates of interest
2 Use covariate-selection to obtain estimate of which covariates

are in x̃
Denote estimate by x̂

3 Use estimate x̂ as if it contained the covariates in x̃
regress htime no2 xhat
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Why naive approach fails

Unfortunately, naive estimators that use the selected covariates
as if they were x̃ provide unreliable inference in repeated samples

Covariate-selection methods make too many mistakes in
estimating x when some of the coefficients are small in
magnitude
Here is an example of small coefficient

A coefficient with a magnitude between 1 and 2 times the
standard error is small

If your model only approximates the functional form of the true
model, there are approximation terms

The coefficients on some of the approximating terms are most
likely small
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Missing small-cofficient covariates matters

It might seem that not finding covariates with small coefficients
does not matter

But it does

When some of the covariates have small coefficients, the
distribution of the covariate-selection method is not sufficiently
concentrated on the set of covariates that best approximates the
process that generated the data

Covariate-selection methods will frequently miss the covariates
with small coefficients causing ommitted variable bias

The random inclusion or exclusion of these covariates causes the
distribution of the naive post-selection estimator to be not
normal and makes the usual large-sample theory approximation
invalid in theory and unreliable in finite samples
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Beta-min condition

The beta-min condition was invented to rule-out the existence of
small coefficients in the model that best approximates the
process that generated the data

Beta-min conditions are super restrictive and are widely viewed
as not defensible

See Leeb and Potscher (2005), Leeb and Pötscher (2006), Leeb
and Pötscher (2008), and Pötscher and Leeb (2009)
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Partialing-out estimators

htime i = no2iγ + x̃i β̃ + εi

A series of seminal papers

Belloni, Chen, Chernozhukov, and Hansen (2012);
Belloni, Chernozhukov, and Hansen (2014);
Belloni, Chernozhukov, and Wei (2016a); and
Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey,
and Robins (2018)

derived a series of partialing-out estimators that provide reliable
inference for γ

These methods use covariate-selection methods to control for x̃
The cost of using covariate-selection methods is that these
partialing-out estimators do not produce estimates for β̃
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Recommendations

I am going to provide lots of details, but here are two take aways

1 If you have time, use the cross-fit partialing-out estimator

xporegress, xpologit, xpopoisson, xpoivregress

2 If the cross-fit estimator takes too long, use either the
partialing-out estimator

poregress, pologit, popoisson, poivregress

or the double-selection estimator

dsregress, dslogit, dspoisson
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. use breathe7

.

. local ccontrols "sev_home sev_sch age ppt age_start_sch oldsibl "

. local ccontrols "`ccontrols´ youngsibl no2_home ndvi_mn noise_sch"

.

. local fcontrols "grade sex lbweight lbfeed smokep "

. local fcontrols "`fcontrols´ feduc4 meduc4 overwt_who"

.
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. describe htime no2_class `fcontrols´ `ccontrols´

storage display value
variable name type format label variable label

htime double %10.0g ANT: mean hit reaction time (ms)
no2_class float %9.0g Classroom NO2 levels (g/m3)
grade byte %9.0g grade Grade in school
sex byte %9.0g sex Sex
lbweight float %9.0g 1 if low birthweight
lbfeed byte %19.0f bfeed duration of breastfeeding
smokep byte %3.0f noyes 1 if smoked during pregnancy
feduc4 byte %17.0g edu Paternal education
meduc4 byte %17.0g edu Maternal education
overwt_who byte %32.0g over_wt WHO/CDC-overweight 0:no/1:yes
sev_home float %9.0g Home vulnerability index
sev_sch float %9.0g School vulnerability index
age float %9.0g Child´s age (in years)
ppt double %10.0g Daily total precipitation
age_start_sch double %4.1f Age started school
oldsibl byte %1.0f Older siblings living in house
youngsibl byte %1.0f Younger siblings living in house
no2_home float %9.0g Residential NO2 levels (g/m3)
ndvi_mn double %10.0g Home greenness (NDVI), 300m

buffer
noise_sch float %9.0g Measured school noise (in dB)
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. xporegress htime no2_class, controls(i.(`fcontrols´) c.(`ccontrols´) ///
> i.(`fcontrols´)#c.(`ccontrols´))

Cross-fit fold 1 of 10 ...
Estimating lasso for htime using plugin
Estimating lasso for no2_class using plugin

(output omitted )
Cross-fit fold 10 of 10 ...
Estimating lasso for htime using plugin
Estimating lasso for no2_class using plugin

Cross-fit partialed-out Number of obs = 1,084
linear model Number of controls = 252

Number of selected controls = 15
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 25.36
Prob > chi2 = 0.0000

Robust
htime Coef. Std. Err. z P>|z| [95% Conf. Interval]

no2_class 2.353006 .4672161 5.04 0.000 1.437279 3.268732

Note: Chi-squared test is a Wald test of the coefficients of the variables of
interest jointly equal to zero.

Another microgram of NO2 per cubic meter increases the mean
reaction time by 2.35 milliseconds.
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. poregress htime no2_class, controls(i.(`fcontrols´) c.(`ccontrols´) ///
> i.(`fcontrols´)#c.(`ccontrols´))

Estimating lasso for htime using plugin
Estimating lasso for no2_class using plugin

Partialed-out linear model Number of obs = 1,084
Number of controls = 252
Number of selected controls = 11
Wald chi2(1) = 24.45
Prob > chi2 = 0.0000

Robust
htime Coef. Std. Err. z P>|z| [95% Conf. Interval]

no2_class 2.286149 .4623136 4.95 0.000 1.380031 3.192267

Note: Chi-squared test is a Wald test of the coefficients of the variables of
interest jointly equal to zero.

Another microgram of NO2 per cubic meter increases the mean
reaction time by 2.29 milliseconds.
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Estimators

Describe estimators implemented in poregress, and
xporegress

Estimators use the least absolute shrinkage and selection
operator (lasso) to perform covariate-selection

I discuss lasso details after describing estimators
For now just think of lasso as covariate-selection method that
works when the number of potential covariates is large

The number of potential covariates p can be greater than the
number of observations N
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Partialing-out estimator for linear model

Consider model

y = dγ + xβ + ε

For simplicity, d is a single variable, all methods handle multiple
variables

I discuss a linear model

Nonlinear models have similar methods that involve more details
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PO estimator for linear model (I)

y = dγ + xβ + ε

1 Use a lasso of y on x to select covariates x̃y that predict y

2 Regress y on x̃y and let ỹ be residuals from this regression

3 Use a lasso of d on x to select covariates x̃d that predict d

4 Regress d on x̃d and let d̃ be residuals from this regression

5 Regress ỹ on d̃ to get estimate and standard error for γ

Only the coefficient on d is estimated

Not estimating β can be viewed as the cost of getting reliable
estimates of γ that are robust to the mistakes that
model-selection techniques make
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PO estimator for linear model (II)

y = dγ + xβ + ε

1 Use a lasso of y on x to select covariates x̃y that predict y

2 Regress y on x̃y and let ỹ be residuals from this regression

3 Use a lasso of d on x to select covariates x̃d that predict d

4 Regress d on x̃d and let d̃ be residuals from this regression

5 Regress ỹ on d̃ to get estimate and standard error for γ

This is an extension of the partialing-out method for obtaining
the ordinary least squares (OLS) estimate for the coefficient and
standard error on d (Also known as the result of the
Frisch-Waugh-Lovell theorem)
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y = dγ + xβ + ε

1 Use a lasso of y on x to select covariates x̃y that predict y
2 Regress y on x̃y and let ỹ be residuals from this regression
3 Use a lasso of d on x to select covariates x̃d that predict d
4 Regress d on x̃d and let d̃ be residuals from this regression

5 Regress ỹ on d̃ to get estimate and standard error for γ

Heuristically, the moment conditions used in step 5 are unrelated
to the selected covariates

Formally, the moments conditions used in step 5 have been
orthogonalized, or “immunized” to small mistakes in covariate
selection

Chernozhukov, Hansen, and Spindler (2015a); and
Chernozhukov, Hansen, and Spindler (2015b)
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Cross-fitting / double-machine-learning PO

Cross-fitting is also known as double maching learning (DML)

It uses split-sample techniques on PO estimators

to weaken the sparsity condition
to get better finite sample performance

Split-sample techniques further reduce the impact of covariate
selection on the estimator for γ
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Cross-fitting / double-machine-learning PO

Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and
Robins (2018) discusses

Why sample-splitting techniques applied to naive
machine-learning/covariate-selection estimators do not provide
reliable inference inference for γ in repeated samples

Heuristically, the machine-learning estimators do not converge
fast enough to remove the correlation between covariate of
interest and the out-of-sample errors in the term predicted by
the machine-learning method
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Cross-fitting / double-machine-learning PO

Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and
Robins (2018) discusses

PO estimators simplify the problem and their distributions
depend on the correlation between partialed-out covariate of
interest and the errors in the term predicted by the
machine-learning method

Naive estimator depends correlation between the covariate of
interest and the errors in the term predicted by the
machine-learning method

Sample-splitting gets better properties by depending on the
out-of-sample correlation between partialed-out covariate of
interest and the errors in the term predicted by the
machine-learning method instead of the in-sample correlation
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1 Split data into samples A and B
2 Using the data in sample A

1 Use a lasso of y on x to select covariates x̃y that predict y
2 Regress y on x̃y and let β̃A be the estimated coefficients
3 Use a lasso of d on x to select covariates x̃d that predict d
4 Regress d on x̃d and let δ̃A be the estimated coefficients

3 Using the data in sample B
1 Fill in the residuals for ỹ = y − x̃y β̃A

2 Fill in the residuals for d̃ = d − x̃d δ̃A
4 Using the data in sample B

1 Use a lasso of y on x to select covariates x̃y that predict y
2 Regress y on x̃y and let β̃B be the estimated coefficients
3 Use a lasso of d on x to select covariates x̃d that predict d
4 Regress d on x̃d and let δ̃B be the estimated coefficients

5 Using the data in sample A
1 Fill in the residuals for ỹ = y − x̃y β̃B

2 Fill in the residuals for d̃ = d − x̃d δ̃B
6 Regress ỹ on d̃ to get estimates for γ
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What’s a lasso?

The linear lasso solves

β̂ = arg min
β

{
1/n

n∑
i=1

(yi − xiβ
′) + λ

k∑
j=1

ωj |βj |

}

where

λ > 0 is the lasso penalty parameter
x contains the p potential covariates
the ωj are parameter-level weights known as penalty loadings
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What’s a lasso?

β̂ = arg min
β

{
1/n

n∑
i=1

(yi − xiβ
′) + λ

k∑
j=1

ωj |βj |

}

As λ grows, the coefficients get “shrunk” towards zero

The kink in the absolute value function causes some of the
elements of β̂ to be zero at the solution for some values of λ

There is a finite value of λ = λmax for which all the estimated
coefficients are zero

As λ decreases from λmax , the number of nonzero coefficients
increases

If p < n, you obtain the (unpenalized) OLS estimates at λ = 0
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What’s a lasso?

β̂ = arg min
β

{
1/n

n∑
i=1

(yi − xiβ
′) + λ

k∑
j=1

ωj |βj |

}

For λ ∈ (0, λmax) some of the estimated coefficients are exactly
zero and some of them are not zero.

This is how the lasso works as a covariate-selection method

Covariates with estimated coefficients of zero are excluded
Covariates with estimated coefficients that not zero are included
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Choosing λ

You must choose λ before you use the lasso to perform covariate
selection

Three methods for selecting λ are

1 Plug-in estimators

These estimators are the default in the PO, DS, and XPO
commands

2 Cross-validation
3 The adaptive lasso
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Plug-in based lasso

Plug-in estimators find the value of the λ that is large enough to
dominate the estimation noise

see Belloni, Chernozhukov, and Wei (2016b); Belloni, Chen,
Chernozhukov, and Hansen (2012); and Bickel et al. (2009)
Belloni, Chernozhukov, and Wei (2016b) and Belloni, Chen,
Chernozhukov, and Hansen (2012) show that a lasso with their
plug-in estimator achieves an optimal bound on the number of
covariates it will include
In practice, their bound means that a plug-in-based lasso will
include the important covariates and that it will not include
many covariates that do not belong in the model
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Cross-validated lasso

Cross-valdiation (CV) finds the β̂ that minimizes the
out-of-sample prediction error

CV is widely used, but it is not the best method when using lasso
as a covariate-selection method in a PO, XPO, or DS estimator

CV tends to choose a λ that causes lasso to include variables
whose coefficients are zero in the model that best approximates
the true data generating process
This over-selection tendency can cause a CV-based PO,DS,
XPO estimator to have poor coverage properties

(Although the XPO estimators are more robust to this problem
that PO and DS estimators)
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Cross-validated lasso

See Hastie, Tibshirani, and Wainwright (2015) for lots about
how CV lasso is implemented

See Chetverikov, Liao, and Chernozhukov (2017) for some
technical results that could explain the tendency of the
cross-validated lasso to include many covariates that do not
belong in the model

See Bühlmann and Van de Geer (2011) for some discussions of
the tendency of cross-validated lasso to over select
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Adaptive lasso

The adaptive lasso tends to include more zero-coefficient
covariates than a plug-in based lasso and fewer than a
cross-validated lasso

The adaptive lasso is a multistep version of CV

The first step is CV

The second step does CV among the covariates selected in the
first step
In the second step, the penalty loadings are set to the inverse of
the first-step estimates coefficients

Covariate with larger coefficients are more likely to be included
in the second step
See Zou (2006) and Bühlmann and Van de Geer (2011)

30 / 31



Conclusion

If you have a model like

E[y |d, x] = G (dγ + xβ)]

where
G () is the functional form implied by a linear regression, a logit
regression, a Poisson regression
d contains a few know covariates
x contains many potential controls

You can use
xporegress, xpologit, xpopoisson, poregress, pologit, or
popoisson,
to estimate γ
xpoivregress and poivregress estimate γ for linear models
with endogenous covariates when there are many potential
instruments and many potential controls
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