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Introduction

@ When comparing multiple treatments, we want to know:

(A) Whether or not each treatment effect is different from zero

(B) Whether or not each treatment effect is different from all others

@ With k treatments, this involves making a total of

~— 2] 2
(A) ~——
(B)

unique comparisons (e.g., with 4 treatments, there are a total of 10

comparisons)



@ We consider the following regression model:

k
Y: = BoCONTROL, + Y ~ B TREAT; ; + Z}5 + Ut
i=1

@ The (average) treatment effect of the ith treatment is
ai = Bi — Po, i=1,...,k,
so we want to test
(A) ;=0 (& Bi=p), foreachie{l,... k}
(B) aj=«q; (& Bi=p;), for each unique pair (i,j) € {1,...,k}?
or, more simply,

(B; = B5;, for each unique pair (i,j) € {0,1,...,k}? ]




e NOTE: This is very different from a single joint test:

Bo=...= Pk

(the alternative here is uninformative)



Simple Example: Teacher Incentives

o Field experiment from Muralidharan & Sundararaman (2011)
o Considers the effects of k = 2 teacher incentive pay treatments:

o Incentives based on test scores of the teacher’s own students
o Incentives based on test scores of all students in a teacher's school

@ The effects of these interventions are compared to test scores of
students in similar schools (the control group)

@ Z, includes 49 county dummies and the pre-treatment test score
e Standard errors are clustered by school (we use wild cluster bootstrap
when applying our procedure below)

@ We focus on combined (math and language) test scores; there are a
total of 29,760 obs.



@ Any effect of individual incentive treatment?
Test a1 = 0 (<:> ﬁl = ,80)

T-stat: 4.84 (Pasy = 1.298 x 1079)
@ Any effect of group incentive treatment?

Test ap =0 (<:> B = ﬁo)
T-stat: 2.70 (pasy = 0.007)

© Any difference between individual incentive and group incentive?
Test a1 = (<:> ,31 = ﬂz)

T-stat: 1.91 (pasy = 0.056)



Multiple Testing Problem

@ Our approach to this multiple testing problem is to seek to control
the familywise error rate (FWER): the probability of finding at least
one spurious difference (Type | error) between the parameters

@ |t is straightforward to modify our procedure to target control of a
less stringent error rate such as the false discovery rate (Benjamini &
Hochberg, 1995)



FWER Error Rates

(A) k independent T-tests at 5% level
(B) () independent T-tests at 5% level
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Graphical Procedure

o Utilize procedure of Bennett & Thompson (2017, JASA), which can
be seen as a resampling-based generalization of Tukey's (1953)
procedure

@ The approach is to plot each parameter estimate BA,L,- together with
its corresponding uncertainty interval,

[Lni(7): Uni(7)] = |Bni £ x se (Bn:)} ,

where ~ is chosen to control the FWER
o We infer that 8; > B; if L,; > Uy



Why not use confidence intervals

@ Comparisons based on the non-overlap of confidence intervals are not
reliable:

e With a single comparison (k = 1), non-overlap of Cl's lead to serve
under-rejection

@ When the number of comparisons grows, non-overlap of Cl's lead to
over-rejection



|deal choice of

@ The “ideal” choice of v is the smallest value satisfying

Probp {max L, i(y) > min Upi(7)} < «

Probability of at least one non-overlap

when all k parameters are equal

@ This choice is infeasible since P is unknown



Data-driven choice of ~

@ We choose ~ to satisfy the bootstrap analogue of the above condition:
Probs {max L} ;(v) > minU;;(7)} < a,
where

[L50(0): Upi(0)] = [(Bai = Bni) 7 xse (7))



Teacher Incentives Example: The Overlap Plot

Year 2 Score
Gamma - Uncertainty Intervals

Beta Coefficient

C1JRL IND GRP

Data-driven choice of «: 0.497



Plotting Marginal Treatment Effects

@ Empirical researchers are typically interested only in the a coefficients
(the marginal treatment effects)

@ Accordingly, we can plot &, ; along with the re-centered uncertainty
interval for 3;

Bn,i - Bn,O :t’Y X se <Bn,i
——

Qi

N—

@ We also include the re-centered uncertainty interval for 5y

Bn,O - Bn,O :t’Y X se (Bn,o)
———

0



Teacher Incentives Example: Marginal Treatment Effects

Year 2 Score - Marginal
Gamma - Uncertainty Intervals

Beta Coefficient
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Dotted line corresponds to upper endpoint of re-centered uncertainty
interval for By



@ Bennett & Thompson show that, under fairly general conditions, the
procedure:
© Bounds the FWER by « asymptotically
@ Is consistent in the sense that the ordering of all parameter pairs are
correctly inferred asymptotically
@ Simulation evidence in both Bennett & Thompson and Thompson &
Webb suggests that the finite sample properties of the procedure are
satisfactory



@ If the procedure fails to resolve all pairwise comparisons, it may be
possible to do so via a global refinement which is analogous to the
stepdown procedures of Romano & Wolf (2005) and others



A Modified Procedure

@ The above procedure controls the FWER error rate across all pairwise
comparisons

@ This approach allows for a (potentially complete) ranking of all the
treatments:

e Assuming larger values of outcome variable are “better”, one could
infer that treatment i is the “best” if

Loi> U, for all j #£ i

o Similarly, one may be able to identify a “second best” treatment, a
“third best” treatment, etc.



@ While such a complete ranking may occasionally be of value, interest
often centers on identifying only the (first) best treatment

@ Specifically, we may only want to know whether or not the treatment
effect which is estimated to be the largest is actually statistically
distinguishable from the other treatments effects (and zero)

@ Such a problem is the focus of multiple comparisons with the best
procedures

@ Here, we follow BT in developing a modification of the basic overlap
procedure to focus on this problem



e Let [1], [2], ..., [k + 1], be the random indices such that

Bn,[l] > Bn,[Z] > > Bn,[k+1]

o Note that ) is the true value of the parameter which is estimated to
be largest, and not necessarily the largest parameter value

e Similarly, Ly, [1] is the lower endpoint of the uncertainty interval
associated with the largest point estimate, which is not necessarily
the largest lower endpoint (the standard error of 3,,7[1] might be
relatively large)



@ Similar to before, we infer that fy) is the largest parameter value in
the collection if L, ;j > U, ;) for all j > 1

@ Our “ideal” choice of v is the smallest value satisfying

Probp {Ln,[l](’Y) > max Un,U](V)} sa
J

when all k parameters are equal

@ A feasible choice of =y is the smallest value satisfying

Probps, {Lz,p](W) > max U:,U](’Y)} <a

@ This choice of v will be (weakly) smaller than the choice resulting
from the basic procedure, leading to greater power



Teacher Incentives Example: Modified Overlap Plot
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Data-driven choice of : 0.316 (compare with 0.497)



Charitable Giving Example

Data comes from field experiment by Karlan & List (2007)

Experiment was designed to examine the effect of matching grants on
charitable giving
Letters sent out to n = 50,083 previous donors

1/3 of letter recipients belonged to control group
Remaining 2/3 of letter recipients got one of the k = 36 treatments
that varied by
@ Matching ratio: 1:1, 2:1, or 3:1
@ Maximum size of matching grant: $25,000, $50,000, $100,000, or none
© Amount used as illustration: 1, 1.25, or 1.50 x donor’s prev. max.
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